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Abstract

This paper consiclers the problem of finding an optimal order of the rnultipli-
cation chain of matrices. A11 parallel algorithrns known use the dynamic program-
nring approach ancl run in a polylogarithmic time using, in the best case, n6 flog6 n
processols. Our algorithm uses a cliferent approach and reduces the problem to
computing sorne recurrence on a tree. We show that this recurrence can be opti-
mally solved which enables us to iurprove the parallel bound by a few factors. Our
algorithm runs in O(log3 z) tirne using ri,2/og3 n, processors on a CR.EW PRAM
ancl in O(log2rr,loglogn) tirne using ;;7_{* processors on a CRCW PRAM.
This algorithm solves also the or"ilrJK;i'hT?lL; an optirnal triangulation in a
convex polygorr. We show that for a monotone polygon this result can be even
improvecl to get an O(log2 n) time and z processor algorithrn on a CREW PRAM.

fntroduction
The problern of courputing ar opt'imal order of matrir mult'ipl'ication (the matrir chain
produ.ct problem) is defined as follows (see also e.g. [AHU-7a]).

Consider the evaluation of the product of. n rnatrices

M:MtxMzx"'xMn

wlrere M; ts a d;-t x d; (dt > 1) matrix. Since matrix rnultiplication satisfies the associa-

tive law, the final result is the same for all orders of rnultiplying. However, the order of
nrultiplic.ation greatly a{Iects the total nurnber of operations to evalu ate M . The problem
is to find an optimal order of multiplying the rnatrices, such that the total nurnber of

*'Ihis work was supported by the grant KBN 2-11 90-91-01.
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Figure 1: Geornetric
angles correspond to
50x20x10x100x1.
while ihe right one to

representation of the evaluation of a rnatrix chain. Above tri-
tlre chain Mr x Mz x Ms x Ma, where dimensions are as follows

Lefi triangualtion corresponds to the order (Mt x (Mz x M3)) x Ma

Mt x (Mz x ((Mt x Ml). The second order is optirnal.

operatiols is minimized. Here, we assurle that tlte number of operzrtions to rnultiply a

? x q matlix by a g x r rnatrix is Pgr'.
One can show that this problcrn is equivalent to the problern of finding at optirnal

triangulation of a conver, Ttolygon (see [HS-80]). Given a corlvex poiygon (u0''u1,. .. , u,).

Divide it into triangles, such that the total cost of partitioning is the smallest possible.

By ihe total cost of a triangulation we rnean the sum of costs of all triangles in this

partition. The cost of a triangle is the product of weights a,t each vertex of the triangle

(see also figure 1).

Tralsforrnation frorn one problem to another one can be done in lirrear secluential

time [HS-80] [HS-82] and also in 0(l) parallei tirne using n processors oI1 a CR.EW

PRAM [Cz-92). Thus rve will consider only the latter problern. In figure 1 there is an

exarnple of ordering of rnatrices and the corresponding triangulation of a polygon.

Both above problems c.an be solved in O(nlogn) serial tinie [HS-80]. This ancl all

other known algorithrns seern to be trighly sequential. The best previous knor,vn approach

to design parallel algorithms is basecl on clynarnic programrning. Ii gives us NC algo-

ritlrms which run in O(log2 rz) tirne using rf flogk ?) processors orl a CREW PRAM for

sorne constants k ([Ry-aa] and [GP-92]).
So there was a big gap between the best sequential ancl parallel algorithms. A sirnilar

situatiol fuolds in general, for ali tree problerns which c.an be solved by dynamic pro€yarl-

rling" Such problems like the optimal binary search trees, the alphabetic binary trees,

the problern of finding the optimal triangulation in a polygon and the recognizing of cou-

text free languages can, to the best of our knowledge, be solved in O(log2 rr) using almost

rz6 processors. But the best sequential algorithrns for these problems ruu in O(rf ), O(rf )

or even tn O(ntog n) time. The only exception is the Huffrnan coding problerrr rvhere

tlre best parallel NC algorithrn performs O(n21ogn) operatiorrs [AKLMT-89] compared

witlr optimal O(nlog n) sequential time.
Silce all tliese problerns are highly-sequential, recently there was cliscovered only

approxirnate algorithms. For ahnost optirnal binary search trees it rurrs in O(log2 ri)

tinre with O(n') total rvork on a CREW PRAM [AKLMT-89], for almost optirnal coding

trees irr O(logrz) time with O(n) total worh IAKLMT-891, and for a near-optirna,l order



of rnatrix multiplication in O(log n) time on a CREW PRAM and in O(log log n) time
on a CRCW PRAM, in both cases witir linear nurnber of operations [Cz-92]. These
algoritirms partially fill the gap between the total work in the sequential and parallel
approaches.

In this paper we present parallel algorithrn for the matrix chain product problem
and for the problern of an optimal triangulation of a convex polygon. This algorithrn
irnproves the best previous parallel bound by a few factors. It runs in O(log3 rz) time
using only rt2 flog3 r, pro."ssors orr a CREW PRAM. It can be also implernented on a
CRCW PRAM model to run in O(log2 rz log log n ) tirne with O(n3) total work.

This paper is organized as follows. In Section 2 we introduce some basic concepts

and notations. We also describe an O(rf) time sequentiai algorithm for the problem of
finding an optimal triangulation of a convex polygon. Then in Section 3 we show the
rnain idea of our parallel algoritiun for the matrix chain product problern and divide
it into a sequence of operations PEBBLE and COMPRESS. Section 4 gives an O(rf)
work NC parallel algorithrn for solving the recurrence for computing the cost of an

optirnal triangulation of a corlvex poiygon. In Section 5 we show how to find an optimal
triangulation using computed recurrence. Then surnmarize all results we obtain an NC
algorithm for the rnatrix chain product problern with O(n2) total work. In Section 6 we

describe extension of our algorithrn to optimal triangulation of a monotone polygon.

Basic notations and definitions
The following lemrna is useful in analyzing parallel algorithms, since it allows us to count
only the time and the total number of operations.

Lemma 2.I [Br-Ta] Let A be. a given algorithn with a paralleJ comput,ation tine of t.
Suppose that A involves a tcttal nurnbel of nt. contputational operations. Then A can be

irnplernented using p processors in O(t I mlp) parallel tinte..

This lemma requires two qualifications before orle can apply it to a PRAM. At the
beginning of the i-th paraliel step we must be able to compute the amount of the work
I.4{ done by that step in O(Wolp) time using p processors, and we rnust lcnow hot to
assign processors to their tasks. Both these conditions will be easily satisfied by our
algorithms.

2,L The single-source minimum path problem

In this paper we consicler a particular single-source rninirnum path problem. We are

givenaclirectetlacyclicgraph (DAG) whoseverticesare {1,...,?}}. Let M bethe nxn
matrix giving the weights of the edges of the graph. Since our digraph is acyclic we

assurne that for i > j, M(i, j): +oo. For all others entries (i.e., for i < j) define
M(i,i) : w(i,7), where u is sorne real-valued function.

The single-source minimum path problern is to find in a graph a shortest path from l
to i, for every 1 < i < n. One can show (see e.g" [GP-92]), that in a DAG this problem is



ecluivalent to the least weight subsequence problem [HL-87]. Given a real-valued weight
function -(i, j) and d(1). Compute

d( j) : 
,r1,ir {r1(i) t u(i, j)}, for all I < j { n

This problem was recently analysed in many papers, since it has a long list of applications.

The weight function T.r.' is said to be conrer if it satisfies the inverse quadrangle

inequality

.li,j) * u(z +r,j +1) > -(i,j +l) + u(i+r,j), forall 1< i < j -! <rt

We will also said the function tr to be concaae if it satisfics the cluadrangle inequality

*(i, j)+u,(i+1, j +1) <.(i, j +1) + u(i+r, j), for all 1< i < j -r <n

In the general case the least weight subsequence problern can be solved in O(rz2)

optirnal sequential tirne and in 0(log2 rz) time using O(rr"3 floga n) processors on a CREW
PRAM [GP-92]. But when the weight functions are either cor]cave or convex we car]

do it much better. The best sequential algorithrn runs in O(n) time when the weigirt

lurrctions are concave [Wil-88] and in O(na(n)) time for t]re convex weights [KK-90].
Recently there was discoverecl also parallel algorithrns. The best NC algorithrt. for the
concave weight rurrs in O11og2 n) time using rf flogn processors. For the convex weight

function we can do it rnore efficientiy.

Fact 2.2 [CL-90] The cotlexleast weigltt subsequence problen can lte solvedin O(1og2 rz)

tintt: using rL processor,s on a CREW PRAMT,

2.2 Notation concerning the triangulation problem

Throughout this paper we will uSe u6, ul,. . . , u,, to denote vertices as well as their weights

in a convex polygon. For simpiicity we assume that all weights are clistinct. If tirere are

some vertices with the same weights then we assume that a particular ordering is cirosen

and remains fixed.
Define a vertex u; to be tlte smallesf (nrinimurn) one if for each other vertex uj we

lrave u; < u;. Sirnilarly we define the ftth sm,allest vertex u; if there are exactly k - L

vertices srnaller than u;.

Define a bas'ic polygon, to be a polygor. wh.ere the second and the thircl smallest

vertices are neigirbours of the srnallest vertex. The following fact reduces our problem
to tlre triangulation of basi.c polygons.

Fact 2.3 [HS 80] There exisfs an optintal triangulation of a corrvex polygon containing
arcs or sicles between the smallest vertex and both tlte second and th.e third snallest
ot]es

lChan ancl Lam showecl in his paper an algorithm which runs in O(log2nloglogn) tilne with
O(nlog2 n) total work on a CREW PRAM. But using result for finding the all row minimain a totally
monotone 2-dimensional array [AK-90], we can simply improve it to the presented form.
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Figure 2: Candidates in a polygon and corresponding tree of candidates.

Fact 2.3 implies a partition of a convex polygon into srnaller nonintersecting basic sub-
polygons which are in an optirnal triangulation. In [Cz-92] was shown that such parti-
tioning can be found in O(log n) time using nllogr) processors on a CREW PRAM.

From now orl) we will find an optimal triangulation in each basic. subpolygon inde-
penclently. Wewillconsideronlybasicpolygons (r0,rr,...,u,,)., where us {u1 11t,, 1u;,
foreaclrl<i<rt.

Also the folloiving fact holds.

Fact 2.4 IHS 80] There exisfs an optitnaltriangulation of a convexpolygon containing
eitlter the arc joining the snallest vertex with the fourth smallest one or the arc joining
tfte secorrd srnaiJest vertex witlt the tltird sntallesf one.

Tlris fact allows us to clesign a sequential O(nz) time algorithm.

2.3 An sequential O("t) time algorithm for the matrix chain
product problem

Yao uses tabulation methods (dynamic program.rning) to find an optirnal triangulation
rn O(rt)) sequential tirne [Yao-82]. We briefly describe this algorithm.

Define a candi,date to be an arc or side (rr,r) such that for each k, i < k < 7, the
ineqrralities u; ( ukt Dj { ur hold. One c.an show that no candidates intersect (except
possibly at the endpoint), thus the number of candidates is linear (in an n-gon there are
exactly 2n -3 candidates).

Define the tree of candid,a,fes. Candidate (u;, u;) is an ancestor of candiclate (u6, u;) if
and only i{ i < k < l < 7 and (rr,r) I @n,o;). It is easy to see that such defined tree is
binary. h lCz-921rvas showtt irow to find the tree of candidates in O(log n) tirne using
tt,flogrz processors oI] a CREW PRAM. In this tree, the sides of the polygon are leaves,
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(a) (b)

Figure 3: Cones - (a) cone Q(ho,hi); (b) c.one Q(h;,h,)

except the side (uo,ur) which is the root of the tree. We will also use the notation h;

to denote a candidate (u;,ul) and in such case we will always assume that u; ( T.,j. An
exarnple of candiclates and of a tree of candidates is shown in figure 2.

We willsay that apolygon P isbelow a,r] arc (u;,ur) where i < j,if. P: (u;,...,trr).
In figure 2 the polygon below candidate (ue,ug) is P: (rt,rn,usru6, u7,us,us).

Define also the cone to be a subpolygon Q of the input polygon, such that Q is

equal to the sum of the polygon below some candidate A; : (uj,uj) and of the triangle
(u;,ujtuj) where u; is on a candidate A; rvhich is an ancestor of h1 or h; - hr. We wili
denote sucir a cone as Q(h;,h) or Q(i,j). Infigure 3 is shown the cone Q(ho,hr) - with
assunrption (a) that li; is an ancestor of. hi or (b) A; - hj. Also, in figure 2 the cone

Q(rr, hs) is tlie polygon Q - (rr, rn, us,u6,u7).

Define /(t) (r(t)) to be the left (rigilt) son of candidate h; in the tree of carLdidates.

Let us also define .s(i) (g(i)) to be the son of h; in the tree of c.ancliclates which is joining
with srnaller (greater) vertex on a candidate h;, that is with u; (respectivelyrj). Denote
by A(i,7) the cost of the triangle (u;,'ui,uf). Define also by ,(i, j) the cost of an optinral
triangulation of a cone QU, j).

Let us assume that we want to cornpute value c(i,i) (see figure + (u)). Since c(i,i)
denotes the cost of the polygon below h; where u; is the srnallest vertex and uj is the
second srnallest one and rnoreover uilo; is the third smallest one, we can join vertex u;

with u/1,1 using Fact 2.3.

Let us assume that we want to compute value c(.i, j) where h; is a ancestor of h; (see

figure + (U)(c)). In Q(i, j), r, is the smallest vertex, 'ui,uti are the second and the thircl
srnallest ones and uf,r; is the fourth srnallest one. Thrrs rrsing Fact 2.4 we have to choose

the srnallest of the partitions either after joining u; with u/1ry, or afterioining u, r,vith trj.

These observations reduce our algorithrn to the problem of solving the following
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Possible partitioning of a

(u) c(i,i)
(b) , (i, j)
(.) ,(i,i)

Our goal is to compute the value .((ro,ur), (ro,u1)), i.e.,, c(noor,aoor)' And it is clear

tlrat the reconstruction of an optirnal triangulation from computed values ,(i, j) can be

clone in 0(n) sequential tirne.

Fact 2.5 [Yao-82] There exisf.s an algorithntfor contputing an optimal triangulation of
a convex polygon whiclt runs in O(nz) tine.

Proof: Correctness of the algorithm follows from the previous cornments (see also

[Yao-82]). We computefunction ,(i,, j) in a bottorn-up ulanr]er. Before we start to com-

prrte c(i,/) we have already computed all values c(i,k) arrd c(s, j) for all [t - descendants

of h, and h" - descendants ol h;. Thus an O(#) running tirne is clear. r

3 Outline of a parallel algorithm for the triangula-
tion problem

In Section 2 we showed how to reduc.e our probleur to the problem of cornputing some

recurrence on trees. Using standard rnethods IGR 88] we can solve this recurrence in
0(log2 z) time using rz6 processors. In this section we show how to reduce the nurnber

Figure 4:
"on" -rO possible computations of ,rurtr", ..

: c(i,s (i)) + c (.s (i),.s (i))
: L(i, i) + , (i, i): c (i,l u)) + c (i,r (j))

if. i :7 and h; is a leaf
it i + 7 and lzi is a leaf
il i :1 and h, is not a leaf

if h; is an ancestor of h,1 and A; is not a leaf

recurrences in the tree.

fq
I zr("'i)

c(i.7) : {,(i.s(i)) + c(,.(i),'(t))

| ,,,i,,{ o(i''r)+ c(j'j)
t """ |. .(t. ''(r)) + c(i, /(7))



of processors needed.

Our algorithrn runs in the {ollowing four steps:

1. Divides the polygon into basic polygons.

2. Cornputes the tree of candidates for basic polygons.

3. Computes c(i,7) for all pairs i,7.

4. Finds an optimal triangulation using the values ,(i, j).

Steps (i) aiid (2) can be done in O(logn) using nf logr?. processors on a CREW
PRAM [Cz-92]. So we only show how to implement steps (3) and (a) in an efficient
way. Lr this section we give al outline of step (3) which will be analysed in detail in
the following section. Section 5 gives algorithm for reconstruction of an optimal polygon

from recurrence for the array c.

Let us define a vertex A, in the tree of c.andidates to be pebbled if ail values c(i,j)
and c(7, i) have been computed.

At the beginning of the algorithm we can easily pebble all leaves (corresponding to
the sicles of a basic polygon) in O(1) tirnc'with n2 prt,cr,sscirs. Ancl at the end of the

algorithm we want to pebble the root of the tree.

We will use the iclea of tree contracti,on IMP"-85] [Ry-85]. Define two operations on a
tree. Operation PEBBLE pebbles all vertices for which both sons are alreacly pebbled.

Operation COMPRESS operates on a chain of vertic.es (see ligure 5).

Suppose we have a sequence of vertices h,t,. . ., h6 such that

o h; is a father of h;11 and

o each h; is not pebbled and

o h6 has two pebbled sons and

o each h; (except h6) has got exactly one pebbled son

We will call such a sequerlce the chain. The operatio:n COMPRESS pebble all vertices

orr all chains in the tree.
It is well known that in a binary tree with rn vertices the foliowing algorithm will

pebble the root of the tree.

repeat [og, rnl times
PEBBLtr; COMPRESS;

Thus it is enougir to show how the operations PEBBLE antl COMPRESS may be

executed in an efficient rvay. We will also ensure the following invariant after each

operation. If vertex h; is pebbled then all its descendants are also pebbled.

The operatron PEBBLE can be easily performed in constant tirne with O(n2) oper-

atiorrs on a CREW PRAM. This is because to pebble vertex h; we need only to have

already computed all values c for its sons. And we know that these values are computecl

because both sons are pebbled. In the following section we show how to execute the

operation COMPRESS with the sarnc-'worh.
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Figure 5: Chain ht,h,r,...,hr. Candidates pz,...,pe are pebbled and h; is a father of
h;+t.

4 Computing the cost of an optimal triangualtion
of a polygon

Since tlre operation PEBBLE can be easily executed in constant time with O(rf 7 nurnber
of processors, we have only to show how to perform with the same bound the operation
COMPRESS,

We are given a chain of candidates h1 ,hr,..., h6 (see figure 5). h; is the father of
h;11 and p;+r irr the tree of candiacltes, and p;+r has already beerr pebbled. Both sons

of h6 (p;a1 and p612) have already been pebbled. One property of such a chain is that
u; l ut; (.r'o+, and that either ui : ui+7, ot u';: I)i+7.

We start by computing values c(i,i) for all I < i
,(i, j) for all hi or the chain.

4.L Computing values c(i,i)

( k and then we compute values

Lrlt bottom(i) denotes the cost of an optimal triangulation of the polygon below candidate
h; without candidates from the chain. Let also fan(i,7) denotes the cost of an optimal
triangulatiorr of the polygon between two c.andidates from tlie chain lz; and h;, where
tirere is no other candidate from the chain. We will always assurne that h; is an ancestor
of h1. For example in figure 5, fan(2,6) denotes the cost of an optirnal partitioning of
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polygon P : (r'r...u'n...rL,rL...u't...u).
In an optimal triangulation of the polygon below h; we have two cases - either below

h; tlrere exists at least one candidate frorn the chain hr,hr,...,hk, or there does rrot.

If below /z; in an optima,l trianguiation there is no candidate frorn the chain thcn
c(i,i): bottorn,(i). If tliere are, then let hi be the highest candidate from this partition
(i.e.,withthesmailestindex). Inthiscaselmegetc(i,i):fan(i,,j)+r(j,7). Thus,since
we are interested in the best partitioning, we obtain ihe following formula for computing

values c(i,i).
,..\ . Ibottom(i)

c\? 12 ) : r'ln 
I rnini.;5* {fan(i, j) + ,(j , j)}

This recurfence is ccluivalent to the single-source rninimum path problern in a DAG.

We are given the weight of the edge from the source - bottom(i). For each vertex l, a

minirnum path is either the edge directly from the source or is a rninimurn path to one

of precetles vertices and then the edge frorn this vertex to i. To reduce our problern to
tlre above one we have to cornpute in advance values bottom(i) and fan(i,/) W" can clo

it using the following lernma.

Lemma 4.L Let h,; anrl hi be two cancliclates, where h,; is an ancestor of h,1. If in an

optintal partitioning of the polygott below h; therc is no candidate wlticlt lir:s between h,;

ancl Lt,i then there exi,sts an optirnal triangulation where u; is joined to both ui and'uti.

Proof: Our proof is by incluction. If i + 1 : 7 then in the polygon belorv h;, 'r; is the

smallest vertex, uj is the third smallest one and u; is either equal to u; or u; is the second

smallest one. Thus using Fact 2.3 the result follows.

So, assume that i < j - 1. Frorr the induction assumption we get that 'u; is conrrected

botlr with u;-r ancl uj-1. This implies that the cote Q(i, i - I) is in an optimal partition
of the polygon (see figure 6). Now we consider only a triangulation of this cone. Because

eitlrer uj : uj-7 or ?j : u'i-1, it is enough to prove only tirat u; is joined with url. Since

u;-r is not joined with uj-r we get u; f ui-r. Thus in the cone Q(i, j - 1), ur is the

snrallest vertex, uj-t - the second, r'j*7 - the third and uj - the fourth smallest vertex.

Since ur-r is rrot joined with uj-r, Fact 2.4 implies that u; is corrnected rvith uj. !

Using this lemma we can conrpute the functions bottom a:nd fan.

bottorn(i) : c(hr., P,)

J

fan(i, j): L(hr,h) + D ,(ho,p,)
r =2+l

Here c(h;,p,) clenotes the cost of an optimal triangulation of the cone Q(h;,p,). And
since all calclidates p. have been pebbled, all values c(h;,p,) are already computed.

Hence we can c.ornpute the values bottorn(i) and fan(i,7) ir ()(log n) time using ti2 f logn
processors on a CREW PRAM.

k+2
\-
lJ

r-rf1
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Figure 6: Chain h;,h,;+t,...,h.i-t,hi. In an optimal partition of the polygon below h;
tirere is no candidates between h; a:nd h;.

To reduc.e our problem to the sin6qle-source minimum path one we define the weight
matrix of the graph as follows.

[ +o" i>i
.lM(i.j):\ fan(i,i) i< j<k

lbottom(i) i<i:k+t
and we are loohing for the rninirnurn path from the source k + 1.

Thus usirrg standard rnethocls we car] compute ail values c(i,i) with almost O(n3)
work, but we can irnprove this bound because the following lemma holds.

Lemma 4.2 Matrix M is convex.

Proof: To prove that M is a convex matrix we rnust check whether below inequality
holds.

M(i,j)+ M(i,+7,j +1) * M(i,j +1) - M(i+ 1,j) > 0 for alti < j -r
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First we consider the case when -i + 1 < k + 1. From the definitiorr w'e get

J

M(i,i) - fan(i, j): L(h;,h) + D ,(h,,p,)
r=i*7

J+1

M(i + I, j + 1) : fan(i + 1,i + 1) : A(h,*r, hi*) + D ,(h,+r,p,)
r=t*2

j+t
M(i,j + 1) : fan(i,j + t) : A(h;, hi+t)+ 

,L,"(h,,tt,1

M(i + I, j) :fan(i 1 1,-r) : A(; + 1, j) + f, ,(ho*r,p,)
r=i12

Thus

M(i,j)+M(i+r,j +1) - M(i,j +1) - M(i+r,j)
: fan(i,t) *fan(i +r,i + 1) -fan(i,i + t; - fan(i 1r,i)
: A(h;, hi) * A(h,11 ,hi+t) - A(hr, hi*r) * A(h;n1 ,h,) * c(h;+.t,pt+.r) - c(h,pi+r)
: uiuj'Dtj I u;L4uia1u'r*, -'u;uigtu|at - u;4ruiuti I c(h;+t,Pj+t) - c(h;,1tia1)

: (u;+r - ,;)@i+tr'j*, - rir') I ,(h;+t,pi+t) - c(h;,pi+t)

Now we can use sorne properties of the chain

o u; 1 ul, u; I u;+t, ul 1 ,'r*r, for all i

o if P ancl P' are both m-gons where the corresponding weights satisfies w; I 'wti,

then the cost of an optimum partitiol of P is less than or ecluai to the cost of
an optimurn partition of P'. This natural observation was shown first in IHS 82].

Fronr the above follows tirat c(h;a1 ,pj+t) ) c(h;,pr+r).

From these properties we get the result.

Now we corrsider the case rvhen j + I:,t + 1. Frorn the definition we get.

k

M(i, i): fan(i, k) : A(A;' h*) * D ,(h,,P,)
r=l*1

k+2

M(i+7,j+1) :bottorn(i1t) : L r(h;+',p,)
r=i1.2

k+'2

M(i,j +1) :bottom(i) : D r(h,,p,)
r=i*7

A

M(i + I, i) : fan(i * 1, k) : A(ho+' ,hr) + D ,(ho+',p,)
r=i*'2

Thus

M(i,j)+M(i+1,j +1)- M(i,j +1)- M(i+r,j)
: (r; - u;a1)u1"u'1,* c(h;*t,p*+i) - r(h;,pr+r)f ,(h;+t,It*+z) - c(h;,Itt+z)
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Now we must look nore carefully at the definition of ,(h;+t,pr+r). This function de-

notes the cost of a mirrimal triangulation of the polygon below.p6al with a triangle
A(hr+t,p*+r). In this polygon all vertices u1,u" (except u;+r) satisfy u1u" ) upul,. Let
us consider the same triangualation with weight u; instead of u;-,.1. Denote its cost as

d(h;,,p1,a1). It is clear that ,(h;,pt"+t) S d(h,,p*+r). In both polygons corresponding to
c(h,+t,pr+r) and d(b;,p*+r) there must be some triangle with vertex u;11 (respectively
u;). Let other vertices of this triangle be u1 and u". Thus we get

,(h;+t,pp+t) - d(ho,p*+r) 2 (r,+t - u;)up,

And sinc.e u1u" ) u6ul and c(h;,,p*+t) ! d(h;,p*+r), we obtain

(r, - ro+r)ueul"I r(h;+t,pp+t) - c(h;,/.r*+r) ) 0

Sirrce there is also ,(h;+t,p*+z) - c(h;,p*+z) ) 0 we get the result.

Because we have to compute in advance the arrays bottom and fan(i,7) with O("')
total work, we need O(log n) time with n2/log rl processors oil. a CREW PRAM for
preprocessing. And then, since our weights are corlvex, we compute all values c(i,i)
usirrg Far.t 2.2 in O(1og2 n) tirne with n processors. This gives us O(log2 n ) tirne and
O(rJ) operations for this step.

4.2 Computing entries 
"(i, 

j)
Now we desc.ribe how to comptrte the values c(.i, j) for either h; or hi from the chain. We
Irray assume that h; is an ancestor of. h1, since when h;: hj we have cornputed these
values in the previous section. And because we have already cornputed such values for
aIl h1 whicir are not in the chain and are below the candidate's root on the chain, we

will only consider h; from the chain.
Frorn Leuuna 2.4 we obtain the following recun'ence for ,(i, j)

r:(i, j ): rni. { +lt, i,) .+ 4j ,,i)' 
|. .(t.,'("r))+ c(i,l(j))

Since the values A(t,j), c(j, j) and either c(i,r(7)) or c(i,/(j)) (because either h11;; or
A,1ry is pebbled) are already computed, we may assume that are computed in advance.

For fixed index i this recurrence can be solved using standard algorithrns for expression
evaluation problern [GiRy-86]. This gives us O(logn) timewith O(n) workfor fixed i.
Tlrus we can coilrpute values ,(i, j) for all i # j, such that h; lies on a chain, in O(logn)
tinre rvith rt) flogrl processors on a CREW PRAM.

4.3 Computing all entries of the array c

I\ow lve can count the total work of the algoriihrn. The operatior PEBBLE can be

done in O(1) time with rz2 processors on a CREW PRAM. To compute values c(i, i) we

need O(log2n) tirne with rz2/log", pro."rsors and to cornpute all other values c(i, j) we

need O(log rz) time with n2/log n processors on a CREW PRAM. Hence we obtain an

tr
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algorithm for solving the recurrence for the array c, which runs in O(log3 n) time rvith
n2 f\og2 ?? processors on a CREW PRAM.

But we can look more precisely at the neeclecl number of operatiorrs. Let rni be the
nurnber of vertices which are pebblecl in the f-th step of the rnain loop. The operation
PEBBLE can be done in constant tinre with O(nt!) operations. The operation COM-
PRESS need O(iog2 n) time and only O(nm1) operations on a CREW PR.AM. Hence

irr tlre f-tlr step both the operations PEBBLE and COMPRESS can be executed in
O(log2 n) time with O(nrn,) total work. Sinc.e lrnt,1 : O(n), we get O("') nurnber of
operations in the whole algorithrn. Using Brent's Lernma 2.1 we can decrease the number
of needed processors to nz/log3 n for a CREW PRAM anci to *t*t* for a CR,CW

PRAM. This lemrna requires the assignment of processors to their taslts, which can be

easily done irr our aigorithm. Hence we obtain the following lemrna.

Lemma 4.3 We calt cornpute tlte affay c in O(lc,g3 n) tine usilg n,2fIog3 ?z processols

on a CREW PRAM attd in O(log2 n log log rt) tint: using E{#;C; processors on a
CRCW PRAM,

5 Reconstruction of an optimal triangulation
Now wc are given correctly computed the array c. Thus to solve the whole triangulation
problem we must only show how to fincl an optinral partition of a basic corlvex polygon
using the array c. There exists simple sequential linezr,r iime algorithm for reconstruction
brrt is harder to find ar O(n2 ) work NC parallel algorithm for this problern.

Our algorithrn runs in three steps. First, it finds for each canclidate tts cer,l. Then it
computes for each candidate the set of descenclants which are in an optimai triangulation
of the poly6lon below this candidate. In the last step algorithrn finds all arcs which are

in an optimal triangulation.
One can show that the reconstruction can be clone during the executing of algorithm

which cornputes the array c. But for better presentation we clescribe these operations

inclepenclently.

5.1 Finding ceils

For each candidate A; define its ce'il to be the set of candidates {hir,...,hj,,} such that

1. every Ar. is a descenclant of h;

2. every h;" exists in an optirnal triangulation in the polygon below b;

3. all candidates from the ceil are the highest ones which satisfy (1) and (2), that is
if h* lies between h, and hr" then h6 does not belong to the ceil of lz;

Sucir defiriecl set we will clenote as Ceil(h;).
We cornpute the sets C eil(h;) for each A; independently. From recurrence fbr the array

c follows that one of sons of h; is in its ceil. Thus to cornpute C ei,l(h;) we consider the
subtree of the tree of candidates which is rooted at the second son of h; - hsq. It is easy to
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see tlrat if c(i, sU)) : A(i,9(i))+ 
"kl(i),g(i)) 

tlien hn1;y exists in an optirnal triangulation.
Otlrerwise, c(i,g(i)) < A(i,9(t))+ ,b(i),9(i)) arrd in this case a sqn h6 of. hn6 exists in
an optimal triangulation of the polygon below h; only if c(i,l') : A(f , k) + c(k,k). This
observation gives us tire following condition for candidates from ihe ceil of. h;.

h* € C eil(rt.;) if and only if either lt.p : h4;1 or

c h* - hn61 or A6 is a descendant of hn1;; and

o c(h;,hr) : A(h,,t *) i c(hp,ha) and

o if h,n lies between h; and lzr then h," / C eil(h;)

Hence our probleln can be reduced to the following one. We are given a binary tree 7
(hn6istherootof thistree). Therearesollremarkedverticesinthetree(h;isrnarkediff
c(h,;,hr): A(h,, h1) + c(h1,4;)). For each rnarked vertex check whether all its ancestors

are not marked. This problern car] be solvecl in O(log rz) time using n/log ?i, processors

on a CREW PRAM as follows.
First we create the Euler tour of the tree of candidates [TaVi-S5] in constant tiure

with n processors on a CREW PRAM. Tliat is, we create a list of clirected edges of the
tree in such a way. Let for any vertex ,, f (r) denotes its father, /(u) denotes its left son,

and r(u) denotes its right son. Then if u is a leaf we take the edge following (/(r), r)
to be (r,/(r)). Otherwise we follow (f(r),r) by (u,l(u)), and (/(u),r) by (u,r(u)) and

(,'(r)', r) by (r, /(r)). Additionally if u is the root, then ihe edge (u, /(u)) is the first
vertex on the list, ancl (r(r), u) is the last one.

Now we can solve our problem using the prefix computation scheme. If a vertex
u is not marked, then assign for the eclges (u,l(u)), (/(u),u), (u,r(u)) and (r(u),u)
value 0. Otherwise assign for the edges (u, /(u)) and (u, r(u)) value 1 and for the eclges

(/(u),u) and (r(u),u) value -1. From the construction of the Euler tour follows that for
e\rery vertex u ali its ancestors are not rnarked if and only if the sutr. of all edges which
precede the edge (r,./(r)) is equalz to 0. Using an optinial O(log n) time algorithm for
list ranking [CV-86]) we can compute this surn in O(logrz) time r.rsinpE nflogrz processors

on a CREW PRAM. Hence we carl fr:nd C eil(h;) for all candidates in O(1og n) time with
O(rt2\ total work on a CR.EW PRAM.

5.2 Finding all candidates which exist in an optimal triangu-
lation of the polygon below h;

For each two candidates h;,h;, where h; is an ancestor of hi, define D(i,j) : 1 iff
irr an optimal triangulation of the polygon below h; exists candidates /z;. Otherwise
D(i,j): g. It is clear that the anay D denotes the transitive closure of the function
C eil.

Iriitialy we set D(i,, j):: 0 for all i, j. We will filI entries of the amay D during the
operations PEBBLE ancl COMPRESS of the algorithm. We will ensure the following

zTo bc nrore precise, this value is equal to the number of ancestors of o which are markecl.
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invariant after each operation. If a candid ale h; is pebbled, tiren we have correctly
computed values D(i. j) for all j,

When we pebble sorne vertex h;, we can colnpute values D(i,j) as follows. Let

Ceil(h;) : {hi,,...,hj,,}. W" start with setting D(i,,k):: 1 for all hs e Ce'il(h,;). All
otlrer candidates which exist in an optimal triangulation of the polygon below h; are

descenclants of candidates fton C eil(h;). Thus for every h4 which is a descendant of
sorne vertexhr e Ceil(h;) we rnay set D(i, rI):: D(k,d). It can be dorre in O(1) time
and n plocessors for each pebbled vertex. Thus we can execute aII PEBB.LE steps in
O(log n) time with O(n2) time-processor procluct on a CREW PR.AM.

Wlren we perforrn the operation COMPRESS on the chain, we may com.pute values

D(i, j) in a sirnilar way. Frorn the formula for c(i,i), we get c(i, i) -- fan(i,.s) + c(.s,.s),

wlrere either i:.s (thel fan(i,i) :0) or h" is a descendant of A; fron the chain. Using

this equality we can easily find for every i independently, all candiclates on the "uriniruum
path". That is, we can fincl all candidates from the chain which exist in an optimal
triangulation of the polygon below /z;. Denote thern as {hi,hi,,... ;hin,} in such a way

that h,;, is alwzLys an ancestor of h,i,*r. Let us also derr<tte hjo: lro. These cantlicla,tes can

be easily found in O(iog n) time with O(n) total rvorh for each h; indepentlently. It is

easy to see that h,j,*, e Cei,l(h1). We begin with setting D(i,i,) r:1, for all I l r 1m.
Norv we find the "highest pebbled ceil" of h;. That is, we find the highest canclidates

which are not on the chain and exist in an optimal triangulation of the polygon beiow h;.

We can get them using values Ceil(h1) for 0 ( r 1rn. The highest pebbled ceil of lz; is

the sumover all r',0 ( r' l rrl, of sets Ceil(h;)-{hj,*,}. Denoie this ceil as HPCeil(lt;).
We start with setting D(i,l.) :: 1 for evcry vertex h* e HPCeil(h;). Then for every h,l

whiclr is a descendant of sorne vertex b* € HPCeil(h.;) we set D(i,d):: D(k,d). Hence

we can compute all values D(i, j) f.or lr; on the chain in 0(logrz) time with 0(n) total
work on a CREW PRAM.

Sumrnarizing the cliscussiorr above, we can c.ompute the array D in O(1og2 n) time
using n2 flogz n processols on a CREW PRAM3.

5.3 Reconstruction of an triangulation triangulation
Now we can easily reconstruct an optimal triangulation from tire arrays D a:nd Ceil.
Frorrr values D(0,j), where h6 denotes the root of the tree of candidates, we get all
cancliclates whicli exist in optimal triangulation of the whole pol5tgon. Let h; exists in
this onc. We know that between h; and its ceil there does not exist any candiclate. Thrrs

we may triangulate the polygon betweerr h, and its ceil using Lernrna 4.1. We must only
join u; with all vertices fromCeil(lz;). Hence we caII perform this step in constant time
with O(n) work on a CRtrW PRAM.

Surnmarizing all discussions so far, we have the following lemma.

Lemma 5.L We can rec.onstruc.t an optintal triangttlation of tJre cortvex polygon in
O(logz rt) tirne usirig n2f\og2 ?t, pl'oces,sors on a CREW PRAM.

This lernma irnplies the main theorcnt.

3One can also improve this result to O(logn) tirie with O(nz) total work on a CREW I'RAM.
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Theorem 1

The natrix cltain product problen and the problem of finding an optinal triangulation
of a c.onvex polygott can be soJved in O(log3 n) tine using rf f\og3 n processo.rs on a

CREW PRAM and in O(log2 rz log log n) tine usilg rt2 f log2 n log log n processo.rs or a

CRCW PRAM.

6 Algorithm for an optimal triangulation of a mono-
tone polygon

Defirre a monotone pohlgon, to be a convex basic polygon with weights (ro,rr,...,u,),
where u6 ( ?1

polygon the tree of candidates is almost a chain. Each vertex is either a leaf or has

at least one son whose is a leaf. Thus after pebbling all leaves, we obtain exactly one

cliain, On this chain, all non-chained candidates correspond to sides of a polygon. That
is, using the same notation as in Section 4, all p; are sides (see also figure 5). So, our
problern is reduced to finding an optirnal triangulation below h1 (the root of the tree).
We can solve it in a sirnilar way as in Section 4 to get an O(n2) total work algorithrn.
But since we are interested only in the value c(hy,h1), we can reduce our problem to
the single-source minirnum path problem. And since in our acyclic digraph the weight
nratrix is convex, we can use algorithm from Fact2.2 [CL-90]. It gives us an O(log2rt)
time and r) processors CREW PRAM algorithm. But unfortunately, the preprocessing

for tlris problem (i.e., cornputing weights in the graph) seens to need O(rtz) work.
To c.ornpute value bottom,(i,) we have to cornpute the surn , Df!?+rr(h;,p,).But in

tlris case each value c(h,;,p,) clenotes the cost of a triangle. In fac.t we can write this surn

irr tlre following way - Dfli*, u;u,r.nt,, where u,, u', denote the weights on the side p,.
Moreover we get.

k+2 k+z i
Y u;-,.1 : t u;to,wt,-lu;u,u,|

r=i+7 r'=1 r=1

Tlrus let us clenote lsurn(i) : Dl=r w,u',.Now it is clea,r that

bottctn(i) *- u;(LSum(k + 2) * tSun(i))

Ancl since we can cornpute all values of the an'ay -LSurn in O(logn) timeusing nflogn
processors on a CREW PRAM, with the same bound we can compute all values in the
anay bottom.

In a similar lnanner we c.an cornpute the array /an. From the definition we get.

;

fan(i, j) : A(h;,h) + D,r@,,P,)r=ltr

Let rrs clenote USurn(z) :Dl!-?*r'tu,ut',. This gives us thefollowingforrnula f.or fan.

fan(i,i): L(h;,hi) + u;(LSum(l, +2) - LSurn(i) - USurn(j))

T7



Tlrus we can in secluential constant tirne with one processor compute the entry fan(i,1).
Hence instead of holding these values in the array we can conpute them every time when

they are needed.

To summarize the discussion above, we can compute the cost of an optirnal triangrr-

lation of a monotone polygon in O(log2 n) tirne usirrg rz processors oil a CREW PRAM.
And it is easy to see that we can find this partition in O(logn) tirne using rtflogtt
processors on a CREW PRAM. This gives us the follorving theorern.

Theorem 2

The problen of fincling an optintal triangulation of a tnonotone polygon can be solvecl

in O(log2 n) tirne using n plocessols on a CREW PRAM.
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