Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Czumaj, Artur (1992) Parallel algorithm for the matrix chain product problem. University
of Warwick. Department of Computer Science. (Department of Computer Science
Research Report). (Unpublished) CS-RR-225

Permanent WRAP url:
http://wrap.warwick.ac.uk/60914

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60914
mailto:publications@warwick.ac.uk

Research Report 225

Parallel Algorithm for the Matrix Chain Product
Problem*

Czumaj A

RR225

This paper considers the problem of finding an optimal order of the multiplication chain of
matrices. All parallel algorithms known use the dynamic programming approach and run in a
polylogarithmic time using, in the best case, n 9/logd n processors. Our algorithm uses a
different approach and reduces the problem to computing some recurrence on a tree. We show
that this recurrence can be optimally solved which enables us to improve the parallel bound by a
few factors. Our algorithm runs in O (log3 n) time using n 2/log3 n processors on a CREW
PRAM and in O (log? r log log n) time using n 2/(log2 n log log n) processors on a CRCW
PRAM. This algorithm solves also the problem of finding an optimal triangulation in a convex
polygon. We show that for a monotone polygon this result can be even improved to get an O
(log2 n) time and n processor algorithm on a CREW PRAM.

* This work was supported by the grant KBN 2-11-90-91-01.

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom June 1992

Parallel Algorithm for the Matrix Chain Product
Problem*

Artur Czumaj

Warsaw University
and
University of Warwick

June, 1992

Abstract

This paper considers the problem of finding an optimal order of the multipli-
cation chain of matrices. All parallel algorithms known use the dynamic program-
ming approach and run in a polylogarithmic time using, in the best case, n®/log® n
processors. Qur algorithm uses a different approach and reduces the problem to
computing some recurrence on a tree. We show that this recurrence can be opti-
mally solved which enables us to improve the parallel bound by a few factors. Our
algorithm runs in O(log®n) time using nz/log n processors on a CREW PRAM
m processors on a CRCW PRAM.
This algorithm solves also the problem of finding an optimal triangulation in a

convex polygon. We show that for a monotone polygon this result can be even
improved to get an O(log? n) time and n processor algorithm on a CREW PRAM.

and in O(log? nloglogn) time using

1 Introduction

The problem of computing an optimal order of matrizc multiplication (the matriz chain
product problem) is defined as follows (see also e.g. [AHU-74]).
Consider the evaluation of the product of n matrices

M:M1XM2X"'XMH

where M; is a d;_1 X d; (d; > 1) matrix. Since matrix multiplication satisfies the associa-
tive law, the final result is the same for all orders of multiplying. However, the order of
multiplication greatly affects the total number of operations to evaluate M. The problem
is to find an optimal order of multiplying the matrices, such that the total number of

*This work was supported by the grant KBN 2-11-90-91-01.

100 10

Figure 1: Geometric representation of the evaluation of a matrix chain. Above tri-
angles correspond to the chain M; x M, X M3 x M,, where dimensions are as follows
50x20x 10 x 100 x 1. Left triangualtion corresponds to the order (My x (M, x M3)) x My
while the right one to My x (My x ((M3z x My)). The second order is optimal.

operations is minimized. Here, we assume that the number of operations to multiply a
p X ¢ matrix by a ¢ X 7 matrix is pqr.

One can show that this problem is equivalent to the problem of finding an optimal
triangulation of a convex polygon (see [HS-80]). Given a convex polygon (vo,vr,. .. , Un).
Divide it into triangles, such that the total cost of partitioning is the smallest possible.
By the total cost of a triangulation we mean the sum of costs of all triangles in this
partition. The cost of a triangle is the product of weights at each vertex of the triangle
(see also figure 1).

Transformation from one problem to another one can be done in linear sequential
time [HS-80] [HS-82] and also in O(1) parallel time using n processors on a CREW
PRAM [Cz-92]. Thus we will consider only the latter problem. In figure 1 there is an
example of ordering of matrices and the corresponding triangulation of a polygon.

Both above problems can be solved in O(nlogn) serial time [HS-80]. This and all
other known algorithms seem to be highly sequential. The best previous known approach
to design parallel algorithms is based on dynamic programming. It gives us NC algo-
rithms which run in O(log®n) time using n® /log® n processors on a CREW PRAM for
some constants k ([Ry-88] and [GP-92]).

So there was a big gap between the best sequential and parallel algorithms. A similar
situation holds in general, for all tree problems which can be solved by dynamic program.-
ming. Such problems like the optimal binary search trees, the alphabetic binary trees,
the problem of finding the optimal triangulation in a polygon and the recognizing of con-
text free languages can, to the best of our knowledge, be solved in O(log? n) using almost
n® processors. But the best sequential algorithms for these problems run in O(n?), O(n?)
or even in O(nlogn) time. The only exception is the Huffman coding problem where
the best parallel NC algorithm performs O(n?logn) operations [AKLMT-89] compared
with optimal O(nlogn) sequential time.

Since all these problems are highly-sequential, recently there was discovered only
approximate algorithms. For almost optimal binary search trees it runs in O(log® n)
time with O(n?) total work on a CREW PRAM [AKLMT-89], for almost optimal coding
trees in O(log n) time with O(n) total work [AKLMT-89], and for a near-optimal order

2

of matrix multiplication in O(logn) time on a CREW PRAM and in O(loglogn) time
on a CRCW PRAM, in both cases with linear number of operations [Cz-92]. These
algorithms partially fill the gap between the total work in the sequential and parallel
approaches.

In this paper we present parallel algorithm for the matrix chain product problem
and for the problem of an optimal triangulation of a convex polygon. This algorithm
improves the best previous parallel bound by a few factors. It runs in O(log®n) time
using only n?/log®n processors on a CREW PRAM. It can be also implemented on a
CRCW PRAM model to run in O(log® nloglogn) time with O(n®) total work.

This paper is organized as follows. In Section 2 we introduce some basic concepts
and notations. We also describe an O(n?) time sequential algorithm for the problem of
finding an optimal triangulation of a convex polygon. Then in Section 3 we show the
main idea of our parallel algorithm for the matrix chain product problem and divide
it into a sequence of operations PEBBLE and COMPRESS. Section 4 gives an O(n?)
work NC parallel algorithm for solving the recurrence for computing the cost of an
optimal triangulation of a convex polygon. In Section 5 we show how to find an optimal
triangulation using computed recurrence. Then summarize all results we obtain an NC
algorithm for the matrix chain product problem with O(n?) total work. In Section 6 we
describe extension of our algorithm to optimal triangulation of a monotone polygon.

2 Basic notations and definitions

The following lemma is useful in analyzing parallel algorithms, since it allows us to count
only the time and the total number of operations.

Lemma 2.1 [Br-74] Let A be a given algorithm with a parallel computation time of t.
Suppose that A involves a total number of m computational operations. Then A can be
implemented using p processors in O(t + m/p) parallel time.

This lemma requires two qualifications before one can apply it to a PRAM. At the
beginning of the :-th parallel step we must be able to compute the amount of the work
W, done by that step in O(W,/p) time using p processors, and we must know hot to
assign processors to their tasks. Both these conditions will be easily satisfied by our

algorithms.

2.1 The single-source minimum path problem

In this paper we consider a particular single-source minimum path problem. We are
given a directed acyclic graph (DAG) whose vertices are {1,...,n}. Let M be then xn
matrix giving the weights of the edges of the graph. Since our digraph is acyclic we
assume that for ¢ > j, M(¢,7) = 4oo. For all others entries (i.e., for ¢ < j) define
M(z,7) = w(i,j), where w is some real-valued function.

The single-source minimum path problem is to find in a graph a shortest path from 1
to 7, for every 1 <17 < n. One can show (see e.g. [GP-92]), that in a DAG this problem is

equivalent to the least weight subsequence problem [HL-87]. Given a real-valued weight
function w(z, j) and d(1). Compute
d(j) = min{d(¢)+ w(Z,j)}, foralll<j<n

1<i<y
This problem was recently analysed in many papers, since it has a long list of applications.

The weight function w is said to be convez if it satisfies the inverse quadrangle
inequality

w(t,j)+w(E+1,7+1)>w(E,j+1)+wi+1,y), foralll<i<j—1<n
We will also said the function w to be concave if it satisfies the quadrangle inequality
w(t,) +w(i@E+1,7+1) <w(,j+1)+wiE+1,5), foralll1<i<jyj—1<n

In the general case the least weight subsequence problem can be solved in O(n?)
optimal sequential time and in O(log? n) time using O(n?®/log* n) processors on a CREW
PRAM [GP-92]. But when the weight functions are either concave or convex we can
do it much better. The best sequential algorithin runs in O(n) time when the weight
functions are concave [Wil-88] and in O(na(n)) time for the convex weights [KK-90].
Recently there was discovered also parallel algorithms. The best NC algorithm for the
concave weight runs in O(log?n) time using n?/log n processors. For the convex weight
function we can do it more efficiently.

Fact 2.2 [CL-90] The convex least weight subsequence problem can be solved in O(log” n)
time using n processors on a CREW PRAM".

2.2 Notation concerning the triangulation problem

Throughout this paper we will use vg, vy, ..., v, to denote vertices as well as their weights
in a convex polygon. For simplicity we assume that all weights are distinct. If there are
some vertices with the same weights then we assume that a particular ordering is chosen
and remains fixed.

Define a vertex v; to be the smallest (minimum) one if for each other vertex v; we
have v; < v;. Similarly we define the kth smallest vertex v; if there are exactly & — 1
vertices smaller than v,.

Define a basic polygon to be a polygon where the second and the third smallest
vertices are neighbours of the smallest vertex. The following fact reduces our problem
to the triangulation of basic polygons.

Fact 2.3 [HS-80] There exists an optimal triangulation of a convex polygon containing
arcs or sides between the smallest vertex and both the second and the third smallest

ones

1Chan and Lam showed in his paper an algorithm which runs in O(log2 nloglogn) time with
O(nlog2 n) total work on a CREW PRAM. But using result for finding the all row minima in a totally
monotone 2-dimensional array [AK-90], we can simply improve it to the presented form.

4

Figure 2: Candidates in a polygon and corresponding tree of candidates.

Fact 2.3 implies a partition of a convex polygon into smaller nonintersecting basic sub-
polygons which are in an optimal triangulation. In [Cz-92] was shown that such parti-
tioning can be found in O(logn) time using n/logn processors on a CREW PRAM.
From now on, we will find an optimal triangulation in each basic subpolygon inde-
pendently. We will consider only basic polygons (vo, v1,...,v,), where vy < v; < v,, < v;,
for each 1 <2 < n.
Also the following fact holds.

Fact 2.4 [HS-80] There exists an optimal triangulation of a convex polygon containing
either the arc joining the smallest vertex with the fourth smallest one or the arc joining
the second smallest vertex with the third smallest one.

This fact allows us to design a sequential O(n?) time algorithm.

2.3 An sequential O(n?) time algorithm for the matrix chain
product problem

Yao uses tabulation methods (dynamic programining) to find an optimal triangulation
in O(n?) sequential time [Yao-82]. We briefly describe this algorithm.

Define a candidate to be an arc or side (v;,v;) such that for each k, i < k < j, the
inequalities v; < v, v; < v hold. One can show that no candidates intersect (except
possibly at the endpoint), thus the number of candidates is linear (in an n-gon there are
exactly 2n — 3 candidates).

Define the tree of candidates. Candidate (v;,v;) is an ancestor of candidate (vg,v;) if
and only if e <k <1< jand (v, v;) # (vk, vr). It is easy to see that such defined tree is
binary. In [Cz-92] was shown how to find the tree of candidates in O(logn) time using
n/log n processors on a CREW PRAM. In this tree, the sides of the polygon are leaves,

5

(a) (b)

Figure 3: Cones - (a) cone Q(h;, ;) ; (b) cone Q(hi, h;)

except the side (vo,v;) which is the root of the tree. We will also use the notation h;
to denote a candidate (v;,v!) and in such case we will always assume that v; < vl. An
example of candidates and of a tree of candidates is shown in figure 2.

We will say that a polygon P is below an arc (v;,v;) where 7 < j, if P = (v;,...,v;).
In figure 2 the polygon below candidate (vs,vg) is P = (vs3, vy, v5, Ug, U7, Us, Vg).

Define also the cone to be a subpolygon @ of the input polygon, such that @ is
equal to the sum of the polygon below some candidate h; = (vj,v}) and of the triangle
(vi,vj,v;) where v; is on a candidate £; which is an ancestor of h; or h; = h;. We will
denote such a cone as Q(hi, hj) or Q(z,7). In figure 3 is shown the cone Q(h;, h;) - with
assumption (a) that h; is an ancestor of hj or (b) h; = hj. Also, in figure 2 the cone
Q(hy, hs) is the polygon Q@ = (vy, v4, vs, Vs, V7).

Define {(7) (r(¢)) to be the left (right) son of candidate h; in the tree of candidates.
Let us also define s(z) (g(z)) to be the son of &, in the tree of candidates which is joining
with smaller (greater) vertex on a candidate k;, that is with v; (respectively v!). Denote
by A(z,7) the cost of the triangle (v, v;, v}). Define also by ¢(¢, 5) the cost of an optimal
triangulation of a cone (¢, 7).

Let us assume that we want to compute value c(z,7) (see figure 4 (a)). Since ¢(z,7)
denotes the cost of the polygon below h; where v; is the smallest vertex and v! is the
second smallest one and moreover vy, is the third smallest one, we can join vertex v
with vj;) using Fact 2.3.

Let us assume that we want to compute value ¢(¢, 7) where h; is a ancestor of h; (see
figure 4 (b)(c)). In Q(¢,7), vi is the smallest vertex, v;, v} are the second and the third
smallest ones and vl’(j 1s the fourth smallest one. Thus using Fact 2.4 we have to choose
the smallest of the partitions either after joining v; with vl’(j), or after joining v; with v}.

These observations reduce our algorithm to the problem of solving the following

Figure 4: Possible partitioning of a cone and possible computations of values c.
(a) (i) = c(iyg (1)) + ¢ (s (D)os (1)
(b) e(i,j)=A65) +¢(5,7)
(c) c(i,))=c(i,1(5)) +c(i,r(4))

recurrences in the tree,

0 if 1 = 5 and h; is a leaf
A, 7) if : # 7 and h; is a leaf
c(i,g) =< (i,9(¢)) + c(s(2), s(2)) if : = j and h; is not a leaf
A g) +e(5,7) o -
min A . if h; is an ancestor of h; and h; is not a leaf
{ c(2,7(5)) + (2, 1(7)) ! !

Our goal is to compute the value ¢((vg, v1), (v, v1)), 1.€., ¢(root,r00T). And it is clear
that the reconstruction of an optimal triangulation from computed values ¢(z, j) can be

done in O(n) sequential time.

Fact 2.5 [Yao-82] There exists an algorithm for computing an optimal triangulation of

a convex polygon which runs in O(n?) time.

Proof: Correctness of the algorithm follows from the previous comments (see also
[Yao-82]). We compute function ¢(¢, j) in a bottom-up manner. Before we start to com-
pute ¢(7,) we have already computed all values ¢(¢, k) and ¢(s, y) for all hy - descendants
of h; and h, - descendants of h;. Thus an O(n?) running time is clear. o

3 Outline of a parallel algorithm for the triangula-
tion problem

In Section 2 we showed how to reduce our problem to the problem of computing some

recurrence on trees. Using standard methods [GR-88] we can solve this recurrence in
2

O(log® n) time using n® processors. In this section we show how to reduce the number

7

of processors needed.
Our algorithm runs in the following four steps:

1. Divides the polygon into basic polygons.
2. Computes the tree of candidates for basic polygons.
3. Computes ¢(z,7) for all pairs 7, 7.

4. Finds an optimal triangulation using the values ¢(z, 7).

Steps (1) and (2) can be done in O(logn) using n/logn processors on a CREW
PRAM [Cz-92]. So we only show how to implement steps (3) and (4) in an efficient
way. In this section we give an outline of step (3) which will be analysed in detail in
the following section. Section 5 gives algorithm for reconstruction of an optimal polygon
from recurrence for the array c.

Let us define a vertex h; in the tree of candidates to be pebbled if all values ¢(z,j)
and ¢(j,¢) have been computed.

At the beginning of the algorithm we can easily pebble all leaves (corresponding to
the sides of a basic polygon) in O(1) time with n* processors. And at the end of the
algorithm we want to pebble the root of the tree.

We will use the idea of tree contraction [MR-85] [Ry-85]. Define two operations on a
tree. Operation PEBBLE pebbles all vertices for which both sons are already pebbled.
Operation COMPRESS operates on a chain of vertices (see figure 5).

Suppose we have a sequence of vertices hq, ..., by such that

e h; is a father of h;1; and
e cach h; is not pebbled and
e h; has two pebbled sons and

e cach h; (except hy) has got exactly one pebbled son

We will call such a sequence the chain. The operation COMPRESS pebble all vertices
on all chains in the tree.

It is well known that in a binary tree with m vertices the following algorithm will
pebble the root of the tree.

repeat [log, m| times

PEBBLE; COMPRESS;

Thus it is enough to show how the operations PEBBLE and COMPRESS may be
executed in an efficient way. We will also ensure the following invariant after each
operation. If vertex h; is pebbled then all its descendants are also pebbled.

The operation PEBBLE can be easily performed in constant time with O(n?) oper-
ations on a CREW PRAM. This is because to pebble vertex h; we need only to have
already computed all values ¢ for its sons. And we know that these values are computed
because both sons are pebbled. In the following section we show how to execute the
operation COMPRESS with the same work.

8

- . N
/7 : . N
. y \
,’ N “,p4 !
1 P, h2 Il
\ s ;
A ‘. ;
\ Yo
© @.
4 LT ~
4 - . AN
/ h H \
1 3 \
i p . h4 ‘-p \
\ 3 s 1
\ ’]
\ ’
N h 7/
) : o8
~
'd \ ’ N
/ s N \
/ ’ : \
! N ' \
| " .'p7 |
P, !
\ 5 h : !
\ k 6, ’
\ ' -t ’
N . h -
RO : O
S .o e e ettt eeeaaeceectacee e eeaan
,’ \
\
| t. ,
\ P, . P)
\ 9 ;
N
N / N //

Figure 5: Chain hy, hq, ..., k7. Candidates p,,...,pg are pebbled and h; is a father of
hiy1.

4 Computing the cost of an optimal triangualtion
of a polygon

Since the operation PEBBLE can be easily executed in constant time with O(n?) number
of processors, we have only to show how to perform with the same bound the operation
COMPRESS.

We are given a chain of candidates hq, hy, ..., ki (see figure 5). h; is the father of
hiy1 and p;11 in the tree of candiadtes, and p;;; has already been pebbled. Both sons
of hy (pr41 and pry2) have already been pebbled. One property of such a chain is that
v; < v; < vj,, and that either v; = vy, or v = vi4q.

We start by computing values ¢(¢,4) for all 1 < ¢ < k and then we compute values

¢(z,7) for all h; on the chain.

4.1 Computing values c(7,1)

Let bottom(7) denotes the cost of an optimal triangulation of the polygon below candidate
h; without candidates from the chain. Let also fan(z,7) denotes the cost of an optimal
triangulation of the polygon between two candidates from the chain h; and hj, where
there is no other candidate from the chain. We will always assume that h; is an ancestor
of h;. For example in figure 5, fan(2,6) denotes the cost of an optimal partitioning of

polygon P = (vy...vj...v5,v5...05...03).

In an optimal triangulation of the polygon below h; we have two cases - either below
h; there exists at least one candidate from the chain Ay, hy, ..., hg, or there does not.

If below h; in an optimal triangulation there is no candidate from the chain then
c(i,4) = bottom(t). If there are, then let h; be the highest candidate from this partition
(i.e., with the smallest index). In this case we get ¢(z,7) = fan(z,5) +¢(j,7). Thus, since
we are interested in the best partitioning, we obtain the following formula for computing
values ¢(z,¢).

. . { bottom (1)
¢(2,7) = min . . o
min;;<k {fon (i, 7) + ¢(5,)}
This recurrence is equivalent to the single-source minimum path problem in a DAG.
We are given the weight of the edge from the source - bottom(z). For each vertex ¢, a
minimum path is either the edge directly from the source or is a minimum path to one
of precedes vertices and then the edge from this vertex to 2. To reduce our problem to
the above one we have to compute in advance values bottom(z) and fan(z,j). We can do

it using the following lemma.

Lemma 4.1 Let h; and h; be two candidates, where h; is an ancestor of h;. If in an
optimal partitioning of the polygon below h; there is no candidate which lies between h;
and h; then there exists an optimal triangulation where v; is joined to both v; and v}.

Proof: Our proof is by induction. If ¢ + 1 = j then in the polygon below h;, v; is the
smallest vertex, v’ is the third smallest one and v, 1s either equal to v; or v; 1s the second
smallest one. Thus using Fact 2.3 the result follows.

So, assume that ¢ < j —1. From the induction assumption we get that v; is connected
both with v;_; and v}_;. This implies that the cone Q(7,j —1) is in an optimal partition
of the polygon (see figure 6). Now we consider only a triangulation of this cone. Because
either v; = vj_y or v; = vj_,, it is enough to prove only that v; is joined with v}. Since
v;j_1 1s not joined with v}, we get v; # vj_y. Thus in the cone Q1,5 — 1), v; is the
smallest vertex, v;_y - the second, v}_l - the third and U;- - the fourth smallest vertex.
Since vj_q is not joined with v}_;, Fact 2.4 implies that v; is connected with v}. O

Using this lemma we can compute the functions bottom and fan.

k+2
bottom (1) = Z c(hiy pr)
r=i+1
7
fan(i,5) = A(hi ki) + Y e(hi, pr)
r=i+1

Here c¢(h;, p,) denotes the cost of an optimal triangulation of the cone Q(h;, p,). And
since all candidates p, have been pebbled, all values c¢(h;,p,) are already computed.
Hence we can compute the values bottom(z) and fan(z,j) in O(logn) time using n*/logn

processors on a CREW PRAM.

10

Figure 6: Chain h;, hiyq,...,hj-1, ;. In an optimal partition of the polygon below h;
there is no candidates between h; and h;.

To reduce our problem to the single-source minimum path one we define the weight
matrix of the graph as follows.

+00 12
M(i,5) =9 fan(s,i) i<j<k
bottom(i) 1 <j=k+1

and we are looking for the minimum path from the source & + 1.
Thus using standard methods we can compute all values ¢(¢,7) with almost O(n?)
work, but we can improve this bound because the following lemma holds.

Lemma 4.2 Matrix M is convex.

Proof: To prove that M is a convex matrix we must check whether below inequality

holds.

MG +MGE+1,7+1) =M@, j+1)—MGE+1,5)>0 foralli<j—1

11

First we consider the case when 7 + 1 < k£ + 1. From the definition we get
J
]\4—(27‘7) = fan(i,j) = A(hh h]) + Z C(hiapT)
r=t41
i1
M@E+1,j+1) =fan(i+ 1,7 +1) = Ahipr, b)) + Y2 c(higr, pr)
r=i+2
J+1
M(Zaj + 1) = fan(iaj + 1) = A(hia hj+1) + Z C(h,‘,pr)
r=i+1
J
M(Z + 17.]) = fan(z' + 17]) = A(Z + 17]) + Z C(hi+1ap7“)
r=142
Thus

M(1,5) + MG+ 1,5 +1) = M5, 5 +1) = M(e 4+ 1,5)
=fan(z,7) +fan(e+ 1,5 + 1) —fan(s,j + 1) — fan(e + 1, 5)
= A(his hy) + Alhiga, hija) = D(his hja) = Dlhiga, by) + e(higa, pia) — e(hi, pis)
! ! ! !/
= VU;V5 + Vig1V41 054 — Vi1V — Vi1 050; + c(hipr, pipa) — c(hi, pist)
= (vig1 — Vi) (V410551 — v05) + c(hiv, Pis1) — e(his pisa)
Now we can use some properties of the chain

e v; < v/, v; < vy, v; <y, forall

o if P and P’ are both m-gons where the corresponding weights satisfies w; < wy,
then the cost of an optimum partition of P is less than or equal to the cost of
an optimum partition of P’. This natural observation was shown first in [HS-82].
From the above follows that ¢(hiy1,pjt1) > c(hy, pis1)-

From these properties we get the result.

Now we counsider the case when j + 1 = &k + 1. From the definition we get.

k
M(i,5) = fan(i, k) = A(hi, hi) + Y e(hiypr)

r=i1+1
k42
M(i+1,5+1) =bottom(i + 1) = > c(hiy1,pr)
r=t+2
k42
M(7,7 4 1) = bottom(z) = > c(hi,pr)
r=i+1
k
M(Z + 17]) - fan(i +1, k) = A(hi-i-lahk) + Z C(hi-l-l’pT)
r=i+2

Thus
M(i,)+ M@+ 1,5 +1) =M,y +1) - M@e+1,5)

= (v; — vip1)0kVg + (Pigt, Prgr) — (i Prar) + (higr, Pryz) — (i, Prg2)

12

Now we must look more carefully at the definition of ¢(hiy1,pry1). This function de-
notes the cost of a minimal triangulation of the polygon below piy; with a triangle
A(hit1,pe41). In this polygon all vertices vy, v, (except viy1) satisfy v;vy > vgvg. Let
us consider the same triangualation with weight v; instead of v;y;. Denote its cost as
d(hiyprs1). It is clear that e(hi, pry1) < d(hi, pes1). In both polygons corresponding to
c(hit1,pr+1) and d(h;, pryr) there must be some triangle with vertex vy, (respectively
vi). Let other vertices of this triangle be v; and v,. Thus we get

c(Pigry Prt1) — d(Piy pryr) 2 (vigr — vi)vev,
And since vy > vpvy, and e(hy, prs1) < d(hi, pey1), we obtain
(vi = vig1)orvg + c(his, Pesr) = (b, pra) 20

Since there is also ¢(hit1, pry2) — c(hi, pry2) = 0 we get the result. a

Because we have to compute in advance the arrays bottomn and fan(7,j) with O(n?)
total work, we need O(logn) time with n?/logn processors on a CREW PRAM for
preprocessing. And then, since our weights are convex, we compute all values ¢(z,17)
using Fact 2.2 in O(log®n) time with n processors. This gives us O(log?n) time and
O(n?) operations for this step.

4.2 Computing entries c(z, j)

Now we describe how to compute the values ¢(z, 5) for either k; or h; from the chain. We
may assume that h; 1s an ancestor of hj, since when h; = h; we have computed these
values in the previous section. And because we have already computed such values for
all h; which are not in the chain and are below the candidate’s root on the chain, we
will only consider h; from the chain.

From Lemma 2.4 we obtain the following recurrence for ¢(z,)

c(z,7) = min A7) +¢(5,7)
7 { (i, r(5)) + ¢(3,1(5))

Since the values A(z,7), ¢(j,7) and either ¢(z,7()) or ¢(7,1(j)) (because either hy;y or
h.(jy is pebbled) are already computed, we may assume that are computed in advance.
For fixed index 2 this recurrence can be solved using standard algorithms for expression
evaluation problem [GiRy-86]. This gives us O(logn) time with O(n) work for fixed 1.
Thus we can compute values ¢(z, 7) for all 7 # j, such that %, lies on a chain, in O(logn)

time with n?/log n processors on a CREW PRAM.

4.3 Computing all entries of the array c

Now we can count the total work of the algorithm. The operation PEBBLFE can be
done in O(1) time with n* processors on a CREW PRAM. To compute values c(i,1) we
need O(log®n) time with n?/log® n processors and to compute all other values (7, j) we
need O(logn) time with n?/logn processors on a CREW PRAM. Hence we obtain an

13

algorithm for solving the recurrence for the array ¢, which runs in O(log®n) time with
n? /log® n processors on a CREW PRAM.

But we can look more precisely at the needed number of operaf1011s, Let m; be the
number of vertices which are pebbled in the ¢-th step of the main loop. The operation
PEBBLE can be done in constant time with O(m?) operations. The operation COM-
PRESS need O(log*n) time and only O(nm;) operations on a CREW PRAM. Hence
in the ¢-th step both the operations PEBBLE and COMPRESS can be executed in
O(log®n) time with O(nm,) total work. Since 3, m, = O(n), we get O(n?) number of
operations in the whole algorithm. Using Brent’s Lemma 2.1 we can decrease the number
of needed processors to n?/log®n for a CREW PRAM and to EE#;I@ for a CRCW
PRAM. This lemma requires the assignment of processors to their tasks, which can be
easily done in our algorithm. Hence we obtain the following lemma.

Lemma 4.3 We can compute the array ¢ in O(log®n) time using n*/log® n processors
on a CREW PRAM and in O(log®nloglogn) time using I—CE%—;)W processors on a
CRCW PRAM.

5 Reconstruction of an optimal triangulation

Now we are given correctly computed the array c¢. Thus to solve the whole triangulation
problem we must only show how to find an optimal partition of a basic convex polygon
using the array ¢. There exists simple sequential linear time algorithm for reconstruction
but is harder to find an O(n?) work NC parallel algorithmn for this problem.

Our algorithm runs in three steps. First, it finds for each candidate its cei. Then it
computes for each candidate the set of descendants which are in an optimal triangulation
of the polygon below this candidate. In the last step algorithm finds all arcs which are
in an optimal triangulation.

One can show that the reconstruction can be done during the executing of algorithm
which computes the array ¢. But for better presentation we describe these operations

independently.

5.1 Finding ceils

For each candidate h; define its ceil to be the set of candidates {h;,,...,h;, } such that
1. every h,, is a descendant of h;
2. every hj, exists in an optimal triangulation in the polygon below h;

3. all candidates from the ceil are the highest ones which satisfy (1) and (2), that is
if by lies between h; and hj, then hy does not belong to the ceil of A,

Such defined set we will denote as Cetl(h;).

We compute the sets Cezl(h;) for each h; independently. From recurrence for the array
¢ follows that one of sons of k; is in its ceil. Thus to compute Ceil(h;) we consider the
subtree of the tree of candidates which is rooted at the second son of h; - hy(;). It is easy to

14

see that if (7, g(2)) = A(7, g(7))+c(g(2), g(7)) then hy(;) exists in an optimal triangulation.
Otherwise, ¢(z, g(7)) < A(2,9(2)) + ¢(g(¢), g(2)) and in this case a son hy of hg;) exists in
an optimal triangulation of the polygon below h; ouly if ¢(7, k) = A(t, k) + ¢(k, k). This
observation gives us the following condition for candidates from the ceil of 7;.

hi € Cerl(h;) if and only if either kg = hygy or

® hp = hygiy or by is a descendant of gy and

o c(hi, i) = A(hi, hi) + c(hg, hi) and

o if h,, lies between h; and hy then h,, & Ceil(h;)

Hence our problem can be reduced to the following one. We are given a binary tree T
(hy(iy 1s the root of this tree). There are some marked vertices in the tree (h; is marked iff
c(hiyhy) = A(hiy hy) + c(hj, hj)). For each marked vertex check whether all its ancestors
are not marked. This problem can be solved in O(logn) time using n/logn processors
on a CREW PRAM as follows.

First we create the Euler tour of the tree of candidates [TaVi-85] in constant time
with n processors on a CREW PRAM. That is, we create a list of directed edges of the
tree in such a way. Let for any vertex v, f(v) denotes its father, /(v) denotes its left son,
and r(v) denotes its right son. Then if v is a leaf we take the edge following (f(v),v)
to be (v, f(v)). Otherwise we follow (f(v),v) by (v,{(v)), and (I(v),v) by (v,7(v)) and
(r(v),v) by (v, f(v)). Additionally if v is the root, then the edge (v,{(v)) is the first
vertex on the list, and (r(v),v) is the last one.

Now we can solve our problem using the prefix computation scheme. If a vertex
v is not marked, then assign for the edges (v,{(v)), ({(v),v), (v,r(v))and (r(v),v)
value 0. Otherwise assign for the edges (v,{(v)) and (v, r(v)) value 1 and for the edges
({(v),v) and (r(v),v) value —1. From the construction of the Euler tour follows that for
every vertex v all its ancestors are not marked if and only if the sum of all edges which
precede the edge (v, f(v)) is equal? to 0. Using an optimal O(logn) time algorithmn for
list ranking [CV-86], we can compute this sum in O(log n) time using n/logn processors
on a CREW PRAM. Hence we can find Ceil(h;) for all candidates in O(log n) time with
O(n?) total work on a CREW PRAM.

5.2 Finding all candidates which exist in an optimal triangu-
lation of the polygon below h;

For each two candidates h;, hj, where h; is an ancestor of hj, define D(z,5) = 1 iff
in an optimal triangulation of the polygon below h; exists candidates h;. Otherwise
D(e,7) = 0. It is clear that the array D denotes the transitive closure of the function
Ceul.

Initialy we set D(z,7) := 0 for all 7,5. We will fill entries of the array D during the
operations PEBBLE and COMPRESS of the algorithm. We will ensure the following

2To be more precise, this value is equal to the number of ancestors of v which are marked.

invariant after each operation. If a candidate h; is pebbled, then we have correctly
computed values D(7,) for all j. '

When we pebble some vertex h;, we can compute values D(z,j) as follows. Let
Ceil(hi) = {hj,, ..., h; }. We start with setting D(i,k) := 1 for all hy € Ceil(hy). All
other candidates which exist in an optimal triangulation of the polygon below h; are
descendants of candidates from Ceil(h;). Thus for every hy which is a descendant of
some vertex hy € Ceil(h;) we may set D(¢,d) := D(k,d). It can be done in O(1) time
and n processors for each pebbled vertex. Thus we can execute all PEBBLE steps in
O(logn) time with O(n?) time-processor product on a CREW PRAM.

When we perform the operation COMPRESS on the chain, we may compute values
D(i,7) in a similar way. From the formula for c(i,), we get ¢(2,7) = fan(i,s) + (s, s),
where either 7 = s (then fan(i,7) = 0) or h, is a descendant of h; from the chain. Using
this equality we can easily find for every ¢ independently, all candidates on the “minimum
path”. That is, we can find all candidates from the chain which exist in an optimal
triangulation of the polygon below h;. Denote them as {f;,, hj,,..., h;, } in such a way
that hj, is always an ancestor of ;. Let us also denote hj, = h;. These candidates can
be casily found in O(logn) time with O(n) total work for each #; independently. It is
easy to see that hj ., € Ceil(h;,). We begin with setting D(z, ;) := 1, for all 1 <r < m.
Now we find the “highest pebbled ceil” of h;. That is, we find the highest candidates
which are not on the chain and exist in an optimal triangulation of the polygon below h;.
We can get them using values Ceil(h;,) for 0 < r < m. The highest pebbled ceil of A; is
the sum over all 7, 0 < r < m, of sets Cetl(h;,)—{h;,,, }. Denote this ceil as HPCezl(h;).
We start with setting D(i, k) := 1 for every vertex hy € HPCeul(h;). Then for every hy
which is a descendant of some vertex hy € HPCeil(h;) we set D(z,d) := D(k,d). Hence
we can compute all values D(¢, ;) for h; on the chain in O(logn) time with O(n) total
work on a CREW PRAM.

Summarizing the discussion above, we can compute the array D in O(log® n) time

using n?/log® n processors on a CREW PRAM?.

5.3 Reconstruction of an triangulation triangulation

Now we can easily reconstruct an optimal triangulation from the arrays D and Cezl.
From values D(0,7), where ho denotes the root of the tree of candidates, we get all
candidates which exist in optimal triangulation of the whole polygon. Let h; exists in
this one. We know that between h; and its ceil there does not exist any candidate. Thus
we may triangulate the polygon between h; and its ceil using Lemina 4.1. We must only
join v; with all vertices from Ceul(h;). Hence we can perform this step in constant time
with O(n) work on a CREW PRAM.

Summarizing all discussions so far, we have the following lemma.

Lemma 5.1 We can reconstruct an optimal triangulation of the convex polygon in

O(log? n) time using n?/log”n processors on a CREW PRAM.

This lemma implies the main theorem.

30ne can also improve this result to O(logn) time with O(n?) total work on a CREW PRAM.

16

Theorem 1

The matrix chain product problem and the problem of finding an optimal triangulation
of a convex polygon can be solved in O(log®n) time using n?/log®n processors on a
CREW PRAM and in O(log® nloglogn) time using n?/log® nloglogn processors on a
CRCW PRAM.

6 Algorithm for an optimal triangulation of a mono-
tone polygon

Define a monotone polygon to be a convex basic polygon with weights (vo,v1,...,v,),
where vy < v; < ... < vg and vy > Vgy1 > ... > v,. One can show that in such a
polygon the tree of candidates is almost a chain. Each vertex is either a leaf or has
at least one son whose is a leaf. Thus after pebbling all leaves, we obtain exactly one
chain. On this chain, all non-chained candidates correspond to sides of a polygon. That
is, using the same notation as in Section 4, all p; are sides (see also figure 5). So, our
problem is reduced to finding an optimal triangulation below hy (the root of the tree).
We can solve it in a similar way as in Section 4 to get an O(n?) total work algorithm.
But since we are interested only in the value ¢(hq, k1), we can reduce our problem to
the single-source minimum path problem. And since in our acyclic digraph the weight
matrix is convex, we can use algorithm from Fact 2.2 [CL-90]. It gives us an O(log®n)
time and n processors CREW PRAM algorithm. But unfortunately, the preprocessing
for this problem (i.e., computing weights in the graph) seems to need O(n?) work.

To compute value bottom(z) we have to compute the sum : EfifH c(hi, pr). But in
this case each value ¢(h;, p,) denotes the cost of a triangle. In fact we can write this sum
in the following way - Z,’f;ﬂl v;w,w., where w,, w. denote the weights on the side p,.
Moreover we get.

k+2 k+2 i
/ ! !
E VW W, = E VW, W, — E VW, W,
r=i+41 r=1 r=1

Thus let us denote LSum(i) = Yi_, wyw!. Now it is clear that
bottom(¢) = v;(LSum(k + 2) — LSum(z))

And since we can compute all values of the array LSum in O(logn) time using n/logn
processors on a CREW PRAM, with the same bound we can compute all values in the

array bottom.
In a similar manner we can compute the array fen. From the definition we get.
J
fan(i,) = O(hiy b))+ Y e(hi, pr)

r=i+1

Let us denote USum(:) = 57, w,w!. This gives us the following formula for fan.

fan(i,7) = A(hi, hj) 4+ vi(LSum(k 4 2) — LSum(z) — USumn(y))

17

Thus we can in sequential constant time with one processor compute the entry fan(z, j).
Hence instead of holding these values in the array we can compute them every time when
they are needed.

To summarize the discussion above, we can compute the cost of an optimal triangu-
lation of a monotone polygon in O(log® n) time using n processors on a CREW PRAM.
And it is easy to see that we can find this partition in O(logn) time using n/logn
processors on a CREW PRAM. This gives us the following theorem.

Theorem 2
The problem of finding an optimal triangulation of a monotone polygon can be solved

in O(log® n) time using n processors on a CREW PRAM.

References

[AHU-74] A.V. Aho, J.E. Hopcroft, J.D. Ullman, “The design and analysis of com-
puter algorithms”, Addison-Wesley, 1974.

[AKLMT-89] M.J. Atallah, S.R. Kosajaru, L.L. Larmore, G.L. Miller, S-H. Teng, “Con-
structing trees in parallel”, Proceedings of the 1st ACM Symposium on Par-
allel Algorithms and Architectures, 1989, pp. 421-431.

[AK-90] M.J. Atallah, S.R. Kosajaru, “An efficient algorithm for the row minima
of a totally monotone matrix”, Proceedings of the 2nd Annual ACM-SIAM
Symposium on Discrete Algorithms, 1991, pp. 394-403, and also Purdue CS
Tech. Rept. 959 (2/28/90).

[Br-74] R.P. Brent, “The parallel evaluation of general arithmetic expressions”,
Journal of the ACM, Vol. 21, 1974, pp. 201-206.

[CL-90] K.F. Chan, T.W. Lam, “Finding least-weight subsequences with fewer pro-
cessors”, Proceedings of the 1st SIGAL International Symposium on Algo-
rithms, 1990, Lecture Notes in Computer Science 450, Springer-Verlag, pp.
318-327.

[CV-86] R. Cole, U. Vishkin, “Approximate and exact parallel scheduling with ap-
plications to list, tree and graph problems”, Proceedings of the 27th Annual
IEEE Symposium on the Foundations of Computer Science, 1986, pp. 478—
491.

[Cz-92] A. Czumaj, “An optimal parallel algorithm for computing a near-optimal
order of matrix multiplications”, manuscript, February 1992, also to appear
in Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory,
1992.

[GP-92] Z. Galil, K. Park, “Parallel dynamic programming”, manuscript, 1992.

18

[GiRy-86]

[GR-88]

[HL-87]

[HS-80]

[HS-82]

[KK-90]

[KR-90]

[MR-85]

[Ry-85]

[Ry-88]

[TaVi-85]

[Wil-88]

[Yao-82]

A .M. Gibbons, W. Rytter, “An optimal parallel algorithm for the dynamic
expression evaluation and its applications”, Proceedings of Symposium on
Foundations of Software Technology and Theoretical Computer Science, Lec-
ture Notes in Computer Science, 1986, pp. 453-469.

A.M. Gibbons, W. Rytter, “Efficient parallel algorithms”, Cambridge Uni-
versity Press, 1988.

D.S. Hirschberg, L.L. Larmore, “The least weight subsequence problem”,
STAM Journal of Computing, Vol. 16, No. 4, 1987, pp. 628-638.

T.C. Hu, M.T. Shing, “Some theorems about matrix multiplications”, Pro-
ceedings of the 21st Annual IEEE Symposium on the Foundations of Com-
puter Science, 1980, pp. 28-35.

T.C. Hu, M.T. Shing, “Computation of matrix chain products. Part I”,
SIAM Journal of Computing, Vol. 11, No. 2, 1982, pp. 362-373.

M.M. Klawe, D.J. Kleitman, “An almost linear time algorithm for general-
ized matrix searching”, STAM Journal of Discrete Mathematics, Vol. 3, No.
1, 1990, pp. 81-97.

R.M. Karp, V. Ramachandran, “A survey of parallel algorithms for shared-
memory machines”, In Handbook of Theoretical Computer Science, North-

Holland, 1990, pp. 869-941.

G.L. Miller, J.H. Reif, “Parallel tree contraction and its applications”, Pro-
ceedings of the 26th Annual Symposium on Foundations of Computer Sci-
ence, IEEE Computer Society, 1985, pp. 478-489.

W. Rytter, “Remarks on pebble games on graphs”, Conference on Combina-
torial Analysis and its Applications 1985, also in Zastosowania Matematyki,

Vol. XIX, No. 5-4, 1987, pp. 569-577.

W. Rytter, “On efficient parallel computations for some dynamic program-
ming problems”, Theoretical Computer Science, Vol. 59, 1988, pp. 297-307.

R.E. Tarjan, U. Vishkin, “An efficient parallel biconnectivity algorithms”,
SIAM Journal of Computing, Vol. 14, No. 4, 1985, pp. 862-874.

R. Wilber, “The concave least weight subsequence problem revisited”, Jour-
nal of Algorithms, Vol. 9, No. 3, pp. 418-425.

F.F. Yao, “Speed-up in dynamic programming”, STAM Journal on Algebraic
and Discrete Methods, Vol. 3, No. 4, 1982, pp. 532-540.

19

