
http://wrap.warwick.ac.uk/

Original citation:
Zheng, Y., Kerbyson, D. J. and Nudd, G. R. (1992) Efficient load balancing techniques
for image analysis on an M-SIMD machine. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-214

Permanent WRAP url:
http://wrap.warwick.ac.uk/60903

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60903
mailto:publications@warwick.ac.uk

Research R.port 274

Efficient Load Balancing Techniques for
Image Analysis on an M-SIMD Machine

Zheng Y*, Kerbyson DJ and Nudd GR

RR214

The computational requirements for the real time proc_essing of imqge sequences is sufficiently
high thaisome form o:f parallel hardware is essential. In the qnalysis-of.a sequence of.11ag9s t]tg.

arEas of interest are moiing objects which usually occupy only small di5li.rct areas within the full
field of view. A single insfrrction multiple data (SIMD) machine has considerable advantages for
these types of operations where there is-a high requirement for data parallel processing.-

.

However, on co-nventional SIMD machines, only the processors to which the moving objegq are

mapped onto have significant work-load.'The remaining processors are idle during most of the

proc-essing perid resulting in significant load imbalance and poor utilisation.

We describe here load balancing techniques for a Multiple-SIMD (M-SIMD) machine, consisting

of a number of small conventional SIMD arrirys (parches) connected together to form a lqgel
M-SIMD aniry. Each SIMD parch can perfomr independent computations. Using the M-SIMD
configurationidle processorJcan be re-allocated to process active regions-of other images from
an imlge sequencd or from multiple sensors, significantly- increasing tttg tfrouqhput alq
flexibifity of-the systenl A 'voting' algorithm is presented_for the calculation of the minimum
number 6f parchei the object is mapped onto along with a heuristic (near optimum) patch

allocation process.

Key words: Load balancing, Irnage analysis, Multiple-SIMD architecture

*Deparunent of Computer Engineering, Shanghai Univenity of Technology, Yangchang Road
Shanghai, 20007 2, CHINA.

Deparfiient of Computer Science

Univenity of Warwick
Coventry CV47AL
UnitedKingdom

lune1992

Efficient Load Balancing Techniques for Image
on an M-SIMD Machine

Yanheng Zhengr, Darren J.Kerbyson, Graham R.

Analysis

Nudd

VLil Architectures Group,
Department of Computer Science,

University of Warwick,
Coventry CV4 7AL,

UK

Abstract

The computational requiremerts-for_the real time processing of image sequences is sufficiently
high that sgpe form of parallel hardware is essential. In the analysis of i sequence of imagel
the areas of interest are moving objects which usually occupy oniy small distinct areas wit[in
the full field of vie*. A single insffuction multiple data (SIMD) machine has considerable
advantages f_o_r these types of operations where there is a high requirement for data parallel
processing. However, on conventional SIMD machines, only the processors to which the
goying objects are mapped olto have significant work-load. The remaining processors are idle
drlltng. most of the processing period resulting in significant load irirbalance and poor
utilisation.

We describe here load balancing techniques for a Multiple-SIMD (M-SIMD) machine,
consisting of_a_nlmber of small conventional SIMD arrays (patches) connected iogether to
f.o.tll^tggg M-S_IMD array.-Each SIMD patclr can perfonir inbependent computatiois. Using
the M-SI}vID configuration idle processors can be re-allocated to plocess active regions of othei
images from an iT?-q" sequence or frgm multiple sensors,-significantly iricreasing the
throughput and flexibility of the system. A 'voting' algorithm is preiented forihe calculati-on of
the minimum number. of patches the object is mapped onto along with a heuristic (near
optimum) patch allocation process.

Key words: [,oad balancing, Image analysis, Multiple-SIMD architecture

1. INTRODUCTION

The computational requireme-nts for the real-time processing of image sequences is sufficiently
high that some form of parallel hardware is essential [L,21. Resdarch has been undertakeir
examining the performance of different parallel computing structures to meet these
requirements, e.g. Qr !,5-,61. One typical requirement is to process moving objects within an
image sequence which first are recognised-and then traclied [7, 8]. Hoivevlr, to utilise a
massively.par{lel-ryachine effectively, strategies have to be developed which take into account
the variationin object densities within the field of view. In this paper we address one such
strategy which has application to the generic problem of efficiently udtlsing massively parallel
hardware.

A sequence of iryqgq lypicallV contains several moving objects occupying only small distinct
areas within the full field of view. Examples include; ftight path analyJii, aitomltic recognition
and g.acking of road vehicles. A Single Instruction Multiple nari (Snfn) architectire has
considerable advantages for these types of operations where

-there
is a high requirement for data

I The author was visiting the Departmant of Computer Science, University of Warwick, U.K. in 1991. He is
permanently with the Department of Computer Engineering, Shanghai University of Technology, Yanchang
Road, Shanghai, 2W72, China.

parallel processing. The case of a processor iuray equal in size to that of the image is
considered such that each image pixel is mapped to a separate processing element (PE).
However, on conventional SIMD machines, only the processors to which the objects of
interest are mapped onto have significant work-load. The remaining processors are idle during
most of the processing period resulting in significant load imbalance and poor utilisation.

A Multiple-SIMD (M-SIMD) architecture, consisting of a number of smaller conventional
SIMD iurays (patches) connected together to form a larger SIMD array, can perform the same
computations as a conventional SIMD architecture but also allows the re-allocation of idle
patches of the processor array. One such M-SIMD architecture familiar to the authors is the
Warwick Pyramid Machine [3, 4]. It consists of a set of 16*16 SIMD patches, each with an
associated controller and an MIMD processor. These units are four way connected at all levels
(between SIMDs, controllers and MIMDs) to form a scalable M-SIMD machine. Each SIMD
patch can operate autonomously or in synchronization with other patches. When an image is
mapped spatially across the set of SIMD patches, those patches containing no objects of
interest can be allocated to some other task, or in the case considered here to active regions
from other images, significantly increasing the throughput and flexibility of the system. The
size of the SIMD patch is generalised, for the following load balancing techniques, to be n*n
PEs and the number of SIMD patches within the M-SIMD machine to be N*N, with the patch
or PE of coordinate (0,0) being in the bottom right comer of the array.

Load balancing on a distributed memory machine has been actively examined in recent years.
Jeng and Seigel [9] have done much work on dynamic partitioning of large-scale computers to
process application's with different computation structures and different degrees of parallelism
while alleviating the fragmentation problem. Li and Cheng [10] are working on job scheduling
in partitionable mesh connected system to increase performance.

The load balancing model used here has some unique features differing from the existing
models. These are:

a) The load pattern is deterministic. This is due to the image of the moving objects not
changing very quickly.We assume that the PEs corresponding to moving objects on
the next frame will remain similar as in the culrent frame.

b) The load pattern can be more complicated than a rectangle (assumed in most of the
recent papers).

c) The processor allocation is very easily implemented using local communications such
that all the pixels on a frame are shifted the same distance in both horizontal and
vertical directions.

d) Real time operation is required hence the time for any load balancing calculations are
limited.

Three important aspects for the effective load balancing of an image analysis application on an
M-SIMD machine are:

1) The extraction of image regions containing the moving objects from an image
sequence. Various techniques are available for this process such as [11, 12, 13]. We
assume that a suitable method is employed and results in the identification of the object
areas.

2) The development of an 'voting' algorithm for calculating the optimum processor patch
area to contain Ore objects.

3) The development of a heuristic allocation process to provide near optimum mapping.

The calculation of the optimum object area is described in section 2 and the heuristic allocation
process in section 3. The improvements in throughput that can be achieved are discussed in
section 4.

2

2. CALCULATION OF THE OPTIMUM OBJECT AREA

For efficient processing on a fixed computation topology, each object area must be optimized
such that the number of occupied processors for any object size is kept to a minimum. For
example an extracted area of an airplane is shown in Figure 1. Each of the smaller squares
represents an SIMD patch joined together forming an 8*8 patch M-SIMD machine. The
number of occupied SIMD patches is reduced to 8 in the optimized case against 16 in the
original. The benefits of this optimization are two fold: a greater number of idle SIMD patches
can be used for the processing of other objects, and the communication overhead in the active
areas is reduced.

(a) Original area (b) Area after optimization
Figure I - The extracted area of an airplane on an M-SIMD machine

The minimum number of SIMD patches used for processing such an object can be found by the
naive method of repeatedly shifting the object area and performing a count of the number of
occupied SIMD patches in each shift. The shift occupying the least number of patches would
be chosen. However a total of n2 shifts are required which is computationally expensive. A
vote algorithm, with much lower computational overhead is described below.

The vote algorithm consists of three stages -

1) The frst is to fill any gaps which occur within the extracted object either internally or
concavities that occur on its boundary which are less than n in diameter. The filling
results in unoccupied areas around or within the extracted object which cannot be used
to free a whole SIMD patch being marked as occupied, simplifying the voting
mechanism.

2) Each SIMD patch calculates a set of shifts that can be performed on the object area
contained within it, to free its patch of the object. This is done for each of eight
directions - North, South, East, West and each of the diagonals (only if such a shift
exists).

3) The shifts are broadcast to the other SIMD patches allowing them to vote on ttre effects
that each shift would produce. A count of the number of patches that would be freed
and the number of new patches which would be occupied is performed. The difference
between the nro is the effective number of SIMD patches freed, the maximum of which
represents the optimum mapping of the object across the M-SIMD array.

The vote algorithm is designed to execute on an M-SIMD machine. Most of the operations for
the calculation are taken from neighbouring SIMD patches keeping the required communication
small. The gap filling procedure and the voting mechanism are described below.

ffi.re
- iiii

',r:'#,

ffi ffi ffir

2.1 Gap filling of the extracted object area

The SIMD processors containing an object pixel is labelled with a '1' (an occupied PE) as a
result of the object detection algorithm and a '0' otherwise (an unoccupied PE). The gap filling
algorithm can be thought of as changing the state of any PE from '0' to 'f if and only if such
changes do not produce any side effects on the number of SIMD patches occupied by the
object. This is achieved by setting unoccupied PEs to be occupied if they lie between two
occupied PEs separated by a distance <n PEs either within a horizontal or vertical line, or both
horizontally and vertically. The unoccupied PEs which are set with this operation could never
result in a whole SIMD patch being freed and does not effect the number of SIMD patches
used.

The case of occupied PEs separated by a distance <n vertically is found by shifting southwards
a one-bit mask from each of the objects southern edge PEs a distance of n, and marking any
overlap between the shifted mask and the object area. These marked locations arc then shifted
northwards, setting each PE visited to be occupied until a similar overlap between the shifted
mask and the object is found. This is very easily performed on an M-SIMD machine when
operating as a conventional SIMD machine. A similar operation to the east can be performed.

The second case of occupied PEs separated by a distance <n both horizontally and vertically is
slightly more complicated, an example of which is shown in Figure 2 for the PEs (xg, y9) and
(xt, yt). These two points could be located within a single SIMD patch after a shift operation.
A check for this case can be made by marking each object corner PE and propagating the
resulting mask to fill an NxN square of PEs cenffed around each PE, and checking for
overlapping of the mask from other object corner PEs.

ffi object area

N ouo (ro be filled)

->
Region growing

Figure 2 - Filling gaps between unconnected occupied PEs

The PEs representing the 'Manhattan path' between any two corner points, within the n*n
square, are set as shown in Figure 2 and a region growing algorithm is performed to fill the
gap,. Note howeyer that the 'Manhattan path' can be marked in one of two ways, either going
horizontally before vertically or vica - versa, forming a rectangle. Both of these possibilitiei
need to be considered by the region growing operation and are shown in Figure 2. Each
rectangle s-ide is used to start the region growing operation. The side finishingthe growing
operation first is assumed to be the internal gap (which is now nlled). The otlier side of the
rectangle would be filling the part of the image external to the object requiring far more
iterations of the region growing operation. Multiple gaps are also dealt with bythis mettrod.

For the object of Figure 2, the region growing from the lower and left sides of the rectangle
would finish first. The filing of this area does not increase the number of occupied SIMD
patches by the object. After the gap filling operation, every pair of occupied objecf PEs which
could be located in the same SIMD patch after a shift operation are linked with the PEs
inbetween in the horizontal or vertical directions marked as being occupied i.e. treated from
now-on as part of the object area.

4

2.2 Calculation of image shifts which will free an SIMD patch.

An SIMD patch may be either partially or fully covered with the object area as can be seen in
Figure 1. The patches which are only partially covered by the object may be transformed to a
free patch, available for the processing of another object, by a suitable shift of the object in one
of 8 directions. The calculation of the shift required to free an SIMD patch with a simple shift is
as follows.

Each object boundary PE is labelled as being on the North, if the PE is on the northern
boundary of the object and is in the bottom half of the SIMD patch (or South if the PE is on the
southern boundary of the object and is in the top half of the PE) and so on for east and west.
Similarly concave corner PEs are labelled their respective corners if for instance a NE boundary
PE is in the SW quadrant of the SIMD patch. Now consider the north object edge PEs, the
maximum of the northern edge PEs, (i.e. the top of the object within the bottom half of the
SIMD patch) represents the required shift south to clear the SIMD patch. Similar operations are
repeated for each of the remaining directions.

The result of these calculations is a table of values representing the shifts (if any) which will
move the object out of the respective SIMD patch boundary. The calculations of these shifts
can be performed on each of the SIMD patches in parallel using their M-SIMD operational
capability. Each of the shifts are then broadcast to the other SIMD patches covered by the
object so each may vote on whether the shift will free itself as well (or not).

2.3 Voting on an image shift

Each SIMD patch receives a requested shift (S^, Su), from the list of calculated shifts within
each of the other object patches, where S* and

-Sn represent the requested shifts in the
horizontal and vertical respectively (both non-zero foi a diagonal shift). Each object patch then
votes on this - either aYES, PASS or NO;

a vote YES means that the shift will free the object patch
a vote PASS means that the shift neither frees the object patch or occupies other patches
a vote NO means that the shift will occupy other pati:hes^as well as is6lf

For the following vote algorithm a notation of '0' and 'f is used to denote the state of an
unoccupied and occupied SIMD patch respectively, and a subscript of '-' and '+' to denote the
situation before and after the requested shift. Each SIMD patch is addressed as (X, Y) within
the M-SIMD machine. The algorithm is illustrated for a requested shift in the North-East
direction (the algorithm may easily be changed for other directions).

The patch (X,Y) could be occupied by part of the object shifted from the patches (X,Y-1), (X-
1,Y) and (X-1,Y-1) for the North-East shift. The possible occupancy can easily be found by
using a masking operation and the associative response within each of these neighbouring
patches. If a neighbouring patch contains part of the object which will occupy the patch (X, Y)
after the shift, a la is sent to the patch (X, Y) otherwise a 0a is senl The masking required is:

For patch (X,Y-l) If PE(a,b) is occupied send a '1.a' where (1< a <(n-S*) & (n-Sy)< b Sn)

For patch (X-l,Y) If PE(a,b) is occupied send a'11' where ((n-S*)< a Sn & t< b <(n-Sy))

For patch (X-1,Y-1) If PE(a,b) is occupied send a'1..' where ((n-S*)S a <n & (n-Sy)< b Srr)

The patch (X,Y) votes dependent upon the values received from its neighbours and its own
occupied status according to the following:

If the patch had status '0-' and only '0.,-' are received then vote PASS
If the patch had status 'l-' and a'1a' is received then vote PAS^9
If the patch had status '0-' and a '1.,.' is received then vote NO

5

If the patch had status '1.-' and a '0..' is received and at least one of the requested shifts
(S*, Su) is contained within one of the calculated shifts for the patch (from
section 2.2) thenvote IES

The votes are calculated for each patch in parallel using their M-SIMD capability. The votes
from each patch are then sent to the patch requesting the shift for accumulation. The difference
between the IES and NO votes is the effective number of patches freed on that requested shift,
the maximum of which (over all requested shifts) gives the shift for optimum object mapping
which can then be used to shift the object data.

sx

:'+

1ff Boundary @efore shift)

.".r''r Boundary (after shift)

Checked PEs for Patch (X, Y)
in Patch:

m (x-l,Y)

ffi (x,Y-l)

N (x-1,Y-1)

Figure 3 - Example of a North-East shift shawing checked PEs for the North-East Patch

An example is shown in Figure 3 with part of an object mapped across three patches. The shift
shown is in a North-East direction with S" > 51. Before the shift three patches are occupied
and after the shift patch (X, Y-1) become-s freed but patch (X, Y) becomes occupied. These
two patches vote YES and NO respectively, as shown in Table 1. The shift results in an equal
number of YES and NO votes for the part of the object shown - there is no change in the
number of occupied patches.

Patch
uccupled sBrus

Befor6 | After Vote

(X, Y)
(x-1, Y)
(x, Y-1)
(x-1, Y-1)

0_

1_

1_

1_

1+
1+
0a
1a

NO
PASS
YES

PASS

Table 1 - Voting of the patches shown in Figure 3.

The main requirements of the vote algorithm is involved in the broadcasting of the requested
shifts and in receiving the vote results. However only the patches which can be freed after a
shift produce such requests. The overhead of the algorithm is negligible compared with the
available processing time within each frame period.

6

(x-1, Y)

liiiiiiiiiffi

3. OBJECT PROCESSOR ALLOCATION

Once the area of the object on a frame is extracted it may be moved to a spttre set of processor
patches for further processing. Two strategies can be adopted for this mapping; a first fit
allocation strategy and a look ahead allocation strategy. The First-fit allocation strategy finds a
set of free patches which satisfies the requirement of the object area and allocates them to the
object. However this can result in poor utilisation, with a fragmentation problem when further
object areas are mapped across the remaining patches. The t ook- ahead allocation strategy uses
the object area information to best allocate further objecs (assuming that the objects are slowly
varying in size). The latter allocation strategy results in greater utilisation.

The exffacted areas are usually irregular in shape and the best allocation strategy is difficult to
determine theoretically - simulation is required. Two simulation methods have been considered
here - an exhaustive and a heuristic method.

3.L Exhaustive method

The exhaustive method tests all possible processor allocations to the objects and selects the one
in which the number of allocated objects is a maximum (the optimum allocation). The algorithm
is composed of:

x The first object area is assigned arbitrarily.
* For the ith area (i >= l), calculate all of the (ith+l) possible, assignments which do

not conflict with previously allocated patches.
* Repeat above until no further assignments are possible.
* Select the best allocation pattern - the one with greatest number of object allocations.

Although this algorithm obtains the optimum processor allocation, it is time consuming. In the
worst case (when the object area occupying only one patch), the computing complexity is (Nz)!
where tl2 is ttre number of SIMD patches in the M-SIMD machine (for the WPM, N = 8). This
complexity makes it unusable within a real-time environment.

3.2 Heuristic method

The heuristic method is designed to reach near optimum allocation but with a linear complexity
and is described in the following steps.

1) The first object area is assigned arbitrarily

2) The second area should be assigned such that it is connected with the first one. A11
allocations which satisfy this condition are candidate assignments for the second area, one of
which is pan of the best allocation possible.

The computing complexity of the step is O(m), where m is the number of the processors in the
rectangle around the first object area composed of the four edges:

X = (Xmin - 1) mod n,

Y = (Ymin - 1) mod n,

1= (2X6sx - Xmin + 1.) mod n,

Y = (2Ymax - Ymin + 1) mod n

where Xmin, X*a*, Y66 and Yma* are the minimum and the maximum patches containing the
object area horizontally and vertically respectively and (n*n) is the number of patches within
the M-SIMD array. No candidate assignments are available beyond this area. The modulus
term is a result of the torus network of the M-SIMD machine.

If a candidate assignment is found at position P(Xz, Y2) then it can be shown that a further
assignment can be made at position P(-Xz, -Y2). This results in the number of possible second
area allocation candidates reduced by one half reducing the search area.

7

3) The third and subsequent areas are assigned for each of the second candidate
assignments with a position of P(Xi, Y) = P((i-l)Xi mod n, (i-l)Yi mod n) where i > 3. This
continues until a conflict occurs bet'ween the next assignment and previously assigned patches.
It can be thought of as forming an extension line of constant gradient originating from the first
object area. For example,

if (Xz = Xt) then the extension line will be vertical, conflicting after one cycle of the
anay (due to the M-SIMD torus net'work).

if (Yz = Yt) then the extension line will be horizontal, conflicting after one cycle
if ((Xz-Xr) = Gz-Yr)) then the extension line will be at a slope of n/4, confltrcting after

one or more cycles.

If the horizontal shift is small e.g. (Xz = X1) the extension conflicts after one cycle, otherwise,
it continues further. An example extension trace is shown in Figure 4 with the allocations of the
first five areas. Note the wrap-around effect of the torus network in the third area. The
extension ends only by conflicting with the first assigned area.

Figure 4 - The extersion trace in the situ"ation (xZ < yz)

The extension line is extended for further cycles across the array by a respective shift of the line
horizontally (when the slope is > nl4) or vertically (when the slope is < n/4) after a conflict
occurs. If no such continuation is possible then no spare patches exist to process further
objects.

An extension line is used for each of the candidate second assignments. The extension line
which produces the maximum number of allocations is the one used for the second and
subsequent allocations of the object across the M-SIMD patches.

3.3 Implementation of the Heuristic method

Simulation results from the Heuristic method have produced results which approach the
optimum number of object allocations found by the exhaustive method. The performance of
regular shaped objects using the heuristic method typically achieves 100Vo of the exhaustive
method and irregular shaped objects typically achieve 807o.

The largest computing time of the patch allocation happens at following situation: both of
(Xma*-Xmiil and (Yma*-Ymin) are lN/21. The computation time for assigning the second area
increases with the search area, and the image size. A rectangular image would produce conflicts
after fewer iterations with the extension line method resulting in decreased computation time.
The computation time required for for the third and subsequent object area assignments is
heavily depended on the number of successful second assignments.

The calculation of the heuristic allocation methd can be performed using binary data - suitable
for efficient implementation within a single SIMD patch. If the number of SIMD PEs within the
patch (n*n) is equal to the number of patches within the M-SIMD machine (N*N) then each PE
is used to represent the allocation of each patch, using the torus network within the SIMD patch
to represent the torus network of the whole M-SIMD machine. If these two sizes vary, a
suitable mapping technique can be employed resulting in slight communication overheads.

4. PERFORMANCE OF THE LOAD BALANCING

The time taken to perform the calculation of the object minimum patch mapping (section 2)
along with the processor allocation method (section 3) is shown in Table 2 for a typical object
of size 4*4 patches. Note that both of these operations use binary data and so are very
efficiently mapped onto an SIMD array.Table 2 also shows the maximum and average increase
in throughput that can be obtained using these techniques. The times given are on the prototype
Warwick Pyramid machine (WPM) [3,4] which is implemented using the AMT DAP, a bit-
serial SIMD processor operating at a speed of 10 MFIz.

Operatron I'rme (ps) lncrease m
throughput

UbJect patch mappmg Uap tillmg
Voting
Result accumulation
Calc. of best result
Imaee shift

4U
4

24
t5
24

4 (Maximum)
2 (Average)

'Ibtal r07
Patch allocation Calc. requested shifts

Calc. allocation strategy
Imaee shift

T2
56

4g*
NzA Gr4aximum)

0.75 N2/A (Average)
'Ibtal lI6
Total Total 223

A = the number of occupied patches
*

per patch shifted across

Table 2 - Performance of the load balancing techniques of section 2 and3.

The time taken for the patch allocation increases with the distance the object is to be shifted.
The time of 48 ps in Table 2 assumes the object is only shifted one full patch within the WPM
and scales linearly with the number of patches traversed. However the time taken to perform
the load balancing is small in comparison to the frame period (typically lvo of the frame
period),'and the throughput of the M-SIMD machine can increase by a factor of Z*(O.ZSM/A)
where N2 is the number of SIMD patches and A is the number of occupied patches.

5. CONCLUSION

For the processing of image sequences, the configuration of an M-SIMD machine can
dramatically increase the flexibility and throughput of the whole system. The results presented
here have shown that the throughput within an M-SIMD machine could be increased by a factor
of 1.5*(N2 / A), where N2 is the number of PEs in an SIMD patch, and A is the object areas
(in terms of whole patches). This increase is achieved by load-balancing techniques requiring
the processing of binary data which can be efficiently and quickly performed on an M-SIMD
arTay.

9

ACKNOWLEDGEMENT

This work is supported in part by the U.S. Innovative Science and Technology grants
N00014-87 -G-024L and N000014-90-J-1919 administered by Dr K. Bromley of the Office of
Naval Research.

REFERENCES

1 R.Cypher and J.L.C.Sanz, "SIMD Architectures and Algorithms for Image Processing and
Computer Vision", IEEE Trans. on ASSP., Yol.37(12), Dec. 1989.

2 M.Maresca, M.A.Lavin and H.Li, "Parallel Architecture for Vision", Proceedings of the
IEEE, Vol. 76(8), Aug. 1988.

3 G.R.Nudd, D.J.Kerbyson, T.J.Atherton, N.D.Francis, R.A.Packwood and G.J.Vaudin,
"A Massively Parallel Heterogeneous VLSI Architecture for MSIMD Processing", in
Algorithms and Parallel VLSI Architectures, Vol. B, Elsevier North Holland, 1991.

4 G.R.Nudd, N.D.Francis, T.J.Atherton, D.J.Kerbyson, R.A.Packwood and G.J.Vaudin,
"Hierarchical Multiple-SIMD Architecture for Image Analysis", Machine Vision and
Applications, 1992.

5 K.Hwang, H.M.Alnuweiri, V.K.P.Kumar and D.Kim, "Orthogonal Multiprocessor
Sharing Memory with an Enhanced Mesh for Integrated Image Understanding" CVGIP:
Image Understanding, Vol. 53(1), pp. 31-45, Jan.l991.

6 C.C.Weems, "Architecture Requirements of Image Understanding with Respect to Parallel
Processing", Proceedings of the IEEE, Vol. 79(4), pp.537-547, April 1991.

7 J.K.Aggarwal and N.Nandhakumar, "On the Computation of Motion from Sequences of
images -- A Review", Proceedings of the IEEE, Vol. 76(8), pp. 917-935, Aug. 1988.

8 H.H.Nagel, "From Image Sequences Towards Conceptual Descriptions", Image and
Vision Computing, Vol. 6(2), May 1988.

9 M.Jeng and H.J.Siegel, "A Distributed Management Scheme for Partitionable Parallel
Computers", Proc. of the Int. Conf. on Parallel Processing, Vol. II, pp. 57 -64,
Pennsylvania, 1989.

10 K.Li and K.H.Cheng, "Job Scheduling in Partitionable Mesh Connected Systems", Proc.
of the Int. Conf. on Parallel Processing, Vol. II, pp. 65-72, Pennsylvania, 1989.

11 T.J.Patterson, D.M.Chabries and R.W.Christiansen, "Detection Algorithms for Image
Sequence Analysis", IEEE Trans. on ASSP, Vol. 37(9), Sept. 1989.

12 Y.Z.Hsuel., "New Likelihood Test Methods for Change Detection in Image Sequencas",
CVGIP, YoL26, pp.73-126, 1984.

13 I.K.Sethi and R.Jain, "Finding Trajectories of Feature Points in a Monocular Image
Sequence", IEEE Trans. on PAMI, Vol. 9, pp. 56-73, L987.

10

