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MULTIRESOLUTION ESTIMATION OF 2-D DISPARITY
\' 7 USING A FREQUENCY DOMAIN APPROACH
A.D. CALWAY, H KNUTSSON AND R. WILSON
RR196

H An efficient algorithm for the estimation of the 2-d disparity between a pair of stereo images
is presented. Phase based methods are extended to the case of 2-d disparities and shown to
correspond to computing local correlation fields. These are derived at multiple scales via the

[ frequency domain and a coarse-to-fine 'focusing' strategy determines the final disparity

estimate. Fast implementation is achieved by using a generalised form of wavelet transform,

the multiresolution Fourier transform (MFT), which enables efficient calculation of the local

correlations. Results from initial experiments on random noise stereo pairs containing both 1-

d and 2-d disparities, illustrate the potential of the approach.
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Estimating the disparity between a pair of binocular images in order to determine depth
information from a scene has received considerable attention for a number of years. Es-
sentially a problem of finding corresponding points in the two views of the scene, the
complexity of the task is considerable, involving not only the estimation of relative 2-d
displacements, but with the added complication of taking into account such effects as ge-
ometric transformations and occlusions. This is reflected in the wide range of approaches
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Abstract

An efficient algorithm for the estimation of the 2-d disparity between a pair of
stereo images is presented. Phase based methods are extended to the case of 2-d
disparities and shown to correspond to computing local correlation fields. These are
derived at multiple scales via the frequency domain and a coarse-to-fine ‘focusing’
strategy determines the final disparity estimate. Fast implementation is achieved
by using a generalised form of wavelet transform, the multiresolution Fourier trans-
form (MFT), which enables efficient calculation of the local correlations. Results
from initial experiments on random noise stereo pairs containing both 1-d and 2-d
disparities, illustrate the potential of the approach.

Introduction

to solving the problem that have been previously investigated, see eg [1, 2].
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Recently, some of the problems have been successfully addressed by the use of fre-
quency domain methods in the form of phase differencing. Using localised frequency
representations similar to that proposed by Gabor [3], local phase differences between
bandpass filtered versions of the binocular images provide robust estimation of dispari-
ty [4, 5, 6]. In addition, by incorporating such methods within some form of multiscale
framework, efficient solutions to the problem of matching can be obtained by using coarse-
to-fine analysis [4, 6]. Nevertheless, these methods are not without their shortcomings.
To the authors’ knowledge, no straightforward extension to 2-d disparity estimation has
been devised and the use of bandpass filters with constant relative bandwidth over scale
would appear to be an unwelcome restriction: significant events in a scene are in general
broadband and in any case there is no reason why the disparity between the views of a
given object should be directly linked to its size or frequency content.

The work presented here is an attempt to address these problems. It is shown that
the use of local correlations is a natural extension of phase based methods to 2-d and
that these can be efficiently computed via the Fourier domain. Moreover, by making
use of a generalised form of wavelet transform, the multiresolution Fourier transform
(MFT) [7, 8, 9], they can be calculated over multiple scales and enable a fast coarse-to-
fine matching strategy to be adopted. This removes the link between scale and disparity
apparent in previous methods. After outlining the principles of the algorithm and its
implementation, results of experiments using random noise stereo pairs are presented to
illustrate the potential of the approach.

2 Multiresolution Disparity Estimation

The purpose of this section is to outline the main features of the algorithm and to indicate
its relationship with phase based methods. Towards this end, consider a 2-d image :v(f)
at a depth A from the reference (vergence) plane in a binocular system, where £= (&1,&2)
is the coordinate in 2-d space. Ignoring any effects such as scaling and occlusion, the left

and right images in the system are related by
zr(€) = z2(€+ d) (1)

where the 2-d disparity d is proportional to the depth A. This relationship can also be
considered in the Fourier domain as

(@) = £1(&) exp[y.d] (2)

where ‘.’ denotes scalar product, y = /-1 and #(&) is the 2-d Fourier transform (FT) of
z(€). The significance of (2) is that it suggests a means of estimating d using the phase
of the inner product between (&) and Zg(J), ie

e

argl#1()23(@)] = —(@.d) (3)



Thus, providing the direction of d is known (eg when considering horizontal disparities)
and spectral estimates of the left and right images are obtained at some known frequency
&, then estimation of d can be made using (3). This is the basis of phase differencing
approaches. However, the situation is less clear when the direction of disparity is un-
known, as is the case in most natural stereopsis problems [10, 11]. In this instance, single
frequency estimates will mean that dis indeterminate; to determine d requires more than
one frequency estimate in different radial d1rect10ns This then poses the question as to
what is the most appropriate way of estimating d- to use a subset of frequencies or to
devise a method using all frequencies. Given that in most natural scenes it is impossible
to predict a priori in which frequency bands significant events will lie, it would seem that
the latter should be the preferred option. In fact, such a method of solution can be readily
formulated in terms of a least-squares problem and corresponds to selecting d to maximise
the function
1 o0

p(d) = Fa1(@)33(0)) = 15 [ 81(8)33(@) exply.d] 4
where F~! denotes the inverse 2-d FT. The maximisation therefore amounts to finding
the ‘phase correction’ term (JJ) which maximises the inner product between the spectra
of the binocular images, ie arg[Z}(&)] is ‘rotated’ so as to minimise the squared error
between the spectra. Moreover, (4) can be written in terms of the spatial domain as [12]

-

o= [~ w(@en(E+d) dE (5

which is just the cross correlation between :vL(g) and a:R(g). Maximising (4) therefore
corresponds to finding the peak in the correlation field and the connection between phased
based methods and correlation is made clear: the latter provides a natural extension of
the former to deal with 2-d disparities, by making use of the whole frequency domain.

Of course, simply computing the global correlation between the left and right images is
inappropriate except in the most trivial of cases. In practice, the interocular disparity will
be inherently local; objects in a scene are necessarily confined to some finite spatial region
and exist at differing depths, implying that any correspondence measurements must also
be based on local properties [6]. This can be achieved in the present case by considering
local correlations between neighbourhoods in the binocular images, ie find the d, denoted
by J’(é—;,é), which maximises

R 1 [ = o
p6.6,0) = 1 [ 506, 0)3n(E, @) explid.d] di (6)

where the global spectra in (4) are now replaced by the local spectra :cL(gl,w) and
Z R({g, J), centred at {1 and §2 respectively, and defined according to

€)= [ w(@ - Ea(X) exp[—3.7] d¥ (7)
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where w(f) is some appropriate window function, ie :1“:({, @) is a windowed FT reminiscent
of the Gabor representation [3]. It is these equations which underhe the disparity estima-
tion used in the present work: derive local correlation fields p(fl, 52, d) by computlng the
inverse FT of mL(fl,w)w R(ﬁg,w) and find the peak to give the disparity d(ﬁl,&)

The above formulation also suggests a means of overcoming the matching problem, ie
selecting 5 and f—; in (6). If the neighbourhoods used in the correlations are too small,
then finding the best match will involve extensive searching, whereas neighbourhoods
which are too large will be susceptible to error due to the presence of more than one
disparity. As has been previously noted, eg in [4, 6, 2], the solution is to employ some
form of coarse-to-fine analysis so that the disparity estimates can be ‘focused’ over multiple
scales. This approach can be incorporated here by defining the local correlations to be
dependent upon a scale parameter o, ie

P — 1 oo A - A -, - -
p(él’é‘%a’ d) = 4?/ (IIL(f],UJ,U)-’L'R(fz,CU, 0') exp[]w‘Jj do (8)

—00

where the local spectra are now scale dependent and correspond to multiresolution Fourier
transforms (MFT) [7, 8, 9]

#€3,0)=0 [ w(o(X—&)a(¥) expl-s5.1] dX (9)

ie a ‘stack’ of windowed FTs in which the locality of the spectral estimates is varied as
a function of o. Using (8), it is therefore possible to derive local correlation fields, and
thus disparity estimates, at multiple spatial resolutions via the Fourier domain. Moreover,
there is now no longer a link between those disparity estimates and a specific frequen-
cy band as in previous multiscale approaches; in this case, the estimates are based on
information from the whole of the frequency domain.

It is now possible to summarise the multiresolution scheme used to derive the required
disparity field. Starting at some suitably large scale op, local correlations between neigh-
bourhoods centred at the same spatial positions in the left and right images are formed
according to (8) and the disparities d(f, £, 09) found which maximise p(§ £, oo, ) A dis-
parity field D({ ,00) is then generated such that D(§ ,00) = ({ £ 00), ie it represents the
current disparity estimate with respect to the left image at spatial position E and scale oyp.
The scheme then proceeds through smaller and smaller scales (0p < 01... < Om-1 < Om),
deriving disparity fields at each scale according to the following update rule

D(€,0141) = D(€,00) + d(€,€+ D(£,00),0041) O0<k<m (10)

where the first term on the rhs serves as both the previous estimate and the ‘focusing’
term - defining the pair of regions to be correlated - and the second term is the disparity
update at scale 041 based on the current correlation. The local correlations performed at
smaller scales are therefore directed by the disparity estimates obtained at larger scales,
producing a more refined estimate at each stage. The final estimate is then given by the
disparity field 5(5, om) defined at scale oy,.



3 Implementation

3.1 The Discrete MFT
The algorithm described above is based upon the MFT as defined by (9). This is a

generalised form of wavelet transform designed specifically to enable local Fourier analysis
to be performed at multiple scales [9]. A brief summary of the essential properties of the
discrete transform is given here. For a discrete 2-d image z(£)), its MFT at scale a(n),
frequency @;(n) and position {,(n) is given by

3(&(n), @i(n),0(n)) = Ewn & — &i(n))a (&) exp[—g6.34(n)] (11)

where the discrete window sequence wn(f,) approx1mates a scaled version of a suitable
continuous function w(g), ie w,,({.) = a(n)w(a’(n)f,) Thus, for some value of o(n),
m(ﬁ.(n) @;(n),o(n)) is a discrete windowed FT of :z:(f,) and corresponds to local frequency
estimates centred at spatial positions §.(n) As o(n) varies, the spatial and frequency
resolution varies, and thus the transform as a whole consists of local estimates over a
range of scales.

The two most important factors determining the properties of the MFT are the dis-
tribution of the sampling points f_:(n) and &;(n), and the choice of the window sequence.
In the present work, the 2-d transform has been formed as the cartesian product of 1-
d transforms, and the sampling points in both domains distributed on regularly spaced
square lattices of size Ng(n) X N¢(n) and N, (n) X N,(n), where N¢(n)N,(n) = 2N for an
image of finite size N x N [9]. The window functions adopted here are bandlimited ver-
sions of the prolate spheroidal sequences [12]. These provide maximal spatial localisation
and enable efficient computation of the transform using fast Fourier transform techniques
[8]. A useful interpretation of the resulting transform is that of a quadtree structure in
which the individual nodes are assigned the local spectra referring to the neighbourhood
“below” the node and have four associated child nodes whose estimates refer to quadrants
of the father’s neighbourhood (see Fig. 1). It is this hierarchical framework which forms
the basis of the disparity focusing algorithm described below.

3.2 Disparity Focusing

The basic operation employed in the disparity estimation can now be expressed in terms
of the discrete MFT coefficients of two binocular images, ie (cf (8))

p(Ei(n), &(n),o(n),d) = Fgl [#0(&(n),3(n),0(n))ép(€k(n),&i(n),0(n))]  (12)

where Fiy! (n) denotes the inverse 2-d discrete FT (DFT) of size N, (n) X Ny(n) and the

local correlation is performed between neighbourhoods centred at f,(n) and fk(n) in the
left and right images respectively. A correlation field of size N,(n) x N,(n) is thereby

5



obtained, in which the position of the peak indicates the relative 2-d displacement between
the two neighbourhoods. This gives a maximum detectable displacement of +N,(n)/2
along each axis.

The disparity focusing algorithm is best described in terms of the quadtree framework
discussed above. A level of the MFT, n = ng say, is chosen as the starting level (typically
corresponding to N,(n) = 64 in the experiments) and either the left or right channel
selected as the reference channel. The algorithm then proceeds according to the following
steps:

1. Cross correlations between corresponding nodes on level ng are formed and peak
positions in the correlation fields assigned to the relevant nodes in the reference

channel.

2. For a father node in the reference channel on level ng, its child nodes at level ng+ 1
are compared with those on the same level in the other channel according to the
_disparity estimate at the father node. If the estimate is greater than half a block
at level ng + 1 along either or both coordinates, the child nodes are compared with
their relevant “neighbours” in the other channel; otherwise they are compared with
their corresponding nodes. The peak positions in the resulting correlation fields
are used to produce an updated estimate (cf (10)), which is then assigned to the
relevant nodes on level ng + 1 of the reference channel.

3. The process proceeds to level ng+2, nodes are compared according to the disparities
obtained at the previous level (ie to the nearest block interval) and a new disparity
estimate produced. This process then continues through subsequent levels until
some final level ng + m is reached.

The result of this hierarchical scheme is a set of disparity estimates defined at levels
ng < n < ng + m, with the spatial resolution of each estimate being determined by the
corresponding resolution of the MFT level.

4 Experiments

To test the algorithm, experiments were performed on random noise stereo pairs with
horizontal and 2-d disparities. The images were of size 256 x 256 pixels with 8-bit grey level
resolution. The MFTs of each image were generated and the levels with 16 < N, (n) < 64
used in the focusing algorithm.

The test image pairs are shown in Fig. 2. The first of these consists of only horizontal
disparities, linearly increasing in the positive and negative directions to a peak of +16
pixels in the centre of the upper and lower halves of the image respectively, ie forming
inward and outward projecting peaks when viewed stereoscopically. The second pair
incorporates 2-d disparities by varying the relative displacement as a function of the
radius from the centre of the image; the disparity at the edges is 16 pixels.

6



Results of the experiments are shown in Fig. 3 and show the estimates obtained on
each of the four levels. The luminance value in these images indicates the magnitude of
the disparity and the colour its direction, ie green denotes a positive and red a negative
horizontal disparity respectively. These results show clearly the focusing steps of the
algorithm and the final estimates correspond well to the known disparity variation.

5 Conclusions

An algorithm to compute the 2-d disparity between a pair of binocular images has been
presented. The approach is based on the calculation of local correlation fields over multiple
scales using a frequency domain method. This has been shown to be a natural extension
of phase differencing techniques to deal with 2-d disparities. Efficient implementation of
the algorithm is achieved by making use of the MFT. A disparity focusing scheme enables
fast matching of corresponding regions in the two images and the results obtained from
experiments illustrate the satisfactory performance of the approach.

It should be emphasized however, that the work presented here is in its preliminary
stages. The initial experiments suggest that the approach has considerable potential,
although the simplicity of particularly the matching will clearly lead to difficulties when
dealing with more complex natural scenes. Work is therefore under way in extending
the approach, most notably in the areas of deriving symmetrical disparity fields and
focusing from multiple peaks at the larger scales. In addition, future work will concentrate
on incorporating both local transformation and feature information into the algorithm.
Perhaps the most interesting aspect of this work is that due to the flexibility and richness of
representation provided by the MFT, the potential exists for incorporating such extensions
within the same framework. Moreover, when coupled with previous work [13, 14, 9], it
serves as further evidence for the possibility of a unified approach to low-level vision,
based on a generalised wavelet transform.
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Figure 1: The MFT viewed as a quadtree in which the nodes are assigned the relevant
local spectra corresponding to the region “below” the node.



Figure 2: (a) Stereo pair containing horizontal disparities. (b) Stereo pair containing 2-d
disparities.

(a)

L Figure 3: Disparity estimates produced by focusing algorithm from the stereo pairs in
Fig. 2.







