THE UNIVERSITY OF WARWICK

Original citation:

Novak, L. A. and Gibbons, A. M. (1989) Double independent subsets of a graph. University of Warwick. Department of Computer Science. (Department of Computer Science Research Report). (Unpublished) CS-RR-152

Permanent WRAP url:

http://wrap.warwick.ac.uk/60846

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.For more information, please contact the WRAP Team at: publications@warwick.ac.uk

__Research report 152

DOUBLE INDEPENDENT SUBSETS OF A
 GRAPH

Ladislav Novak*
 Alan Gibbons

(RR152)

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom
*Department of Electrical Engineering
University of Novi Sad
Yugoslavia

Double Independent Subsets of a Graph

Ladislav Novak
Department of Electrical Engineering, University of Novi Sad, Yugoslavia and
Alan Gibbons
Department of Computer Science, University of Warwick, England

§1 Introduction

It was pointed out by Amari [1] that the set of edges of a graph can be divided into two distinct subsets such that the sum of the rank of one subset and the corank of the other may give a number which is less than both the rank and the corank of the graph. Not long afterwards, this number was formally defined by Ohtsuki, Ishizahi and Watanabe and called the hybrid rank [2]. In the same paper the notion of a minimal hybrid rank taken over all possible partitions of the edge set of a graph was introduced and called the topological degree of freedom. That paper together with the paper of Kishi and Kajitani [3] in which maximally distant pairs of trees and principal partition were introduced provide the foundation of the so-called hybrid approach in graph theory. Since 1967 many papers were published in this area, mostly by Japanese authors [8]-[22].

The appearance of new concepts can be a spurious process and it may not at first be clear which are of value and whether the most useful definitions have been made. In this paper we introduce a concept, that of double independent subsets of a graph.This concept, although it has never been given a specific name, has featured from the begining of the hybrid approach in graph theory. In matroid theory it is called matroid intersection [6]. The concept of double independent subset inherently has a hybrid flavour. In a previous paper [7] we introduced a concept, that of a perfect pair of trees of a graph which is closely related to the concept of double independent subset. We hope that both concepts provide excellent intuitive insight within this area of study. Throughout this paper we shall be concerned only with 2-connected graphs.

§2 Preliminaries

This section is devoted to some definitions and assertions related to material that follows. We presume that the reader is familiar with the following basic notions in graph theory : graph, edge, circuit and cutset. We take these to be primary notions that need not be defined. However we will define all other notions on the basis of these. Throughout we denote a graph by G and its edge set by E. The terms circuit, cutset, tree, cotree, forest and coforest will be used here to mean a subset of edges of a graph. A forest is a maximal circuitless subset of edges while a coforest is a maximal cutsetless subset of edges. If the graph is connected then a forest is a tree and a coforest is a cotree. In what follows, a tree will be denoted by t and a cotree by t^{*}. Given a tree t, any edge in the corresponding cotree t^{*} forms exactly one circuit with edges in t. Such a circuit is called a fundamental circuit of G with respect to t. Similarly, any edge of the tree t defines exactly one cutset with the edges in the corresponding cotree t^{*}. Such a cutset is called a fundamental cutset of G with respect to t^{*}. If E^{\prime} is a subset of E then the rank of E^{\prime} is the cardinality of the largest circuitless subset of E^{\prime}, the co-rank of E^{\prime} is the cardinality of the largest cutsetless subset of E'and the complement of E is the set difference E E'denoted by E^{*}. By $\left|E^{\prime}\right|$ we denote the number of elements in (that is, the cardinality of) the subset E^{\prime}.

The distance [4] between two trees t_{1} and t_{2} of a graph, written $\left|t_{1} \backslash_{2}\right|$, is the number of edges which are in t_{1} but not in t_{2}. A tree t_{2} is said to be maximally distant from another tree t_{1} [5] if $t_{1} \backslash t_{2} \geq\left|t_{1} \backslash\right|$ for every tree t of G. A pair of trees $\left(t_{1}, t_{2}\right)$ is defined to be a perfect pair of trees [7] if both t_{2} is maximally distant from t_{1} and t_{1} is maximally distant from t_{2}.

Assertion 1 [5]

Given a tree t_{o} of a graph $\mathrm{G},(\forall \mathrm{t}) \mathrm{t}_{\mathrm{o}} \backslash \mathrm{t} \mid \leq \operatorname{rank} \mathrm{t}_{\mathrm{o}}{ }^{*}$

Assertion 2 [7]

The following five statements are equivalent:
i) t_{2} is maximally distant from t_{1}
ii) the fundamental circuit with respect to t_{2} defined by an edge in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$ contains no edges in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$.
iii) the fundamental cutset with respect to $t_{1}{ }^{*}$ defined by an edge in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$ contains no edges in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$.
iv) $\left|t_{1} t_{2}\right|=\operatorname{rank} t_{1}{ }^{*}$.
v) the number of edges in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$ is equal to the maximal number of independent cutsets of the graph that belong entirely to the tree t_{1}.

Assertion 3 (theorem 1 of [7])

The following five statements are equivalent:
i) $\left(t_{1}, t_{2}\right)$ is a perfect pair
ii) fundamental circuits with respect to t_{1} and t_{2} defined by edges in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$ contains no edges in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$
iii) fundamental cutsets with respect to $t_{1}{ }^{*}$ and $t_{2}{ }^{*}$ defined by edges in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$ contains no edges in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$
iv) $\operatorname{rank} \mathrm{t}_{1}{ }^{*}=\left|\mathrm{t}_{1} \backslash \mathrm{t}_{2}\right|=\left|\mathrm{t}_{2} \backslash \mathrm{t}_{1}\right|=\operatorname{rank} \mathrm{t}_{2}{ }^{*}$
v) the following three numbers, associated with the pair of trees $\left(t_{1}, t_{2}\right)$ are equal:

- the maximal number of independent cutsets of the graph that belong to t_{1}
- the maximal number of independent cutsets of the graph, that belong to t_{2}
- the number of common edges in t_{1} and t_{2}.

§3 Double independent subsets

A subset of edges of a graph G is said to be a double independent subset if it contains no circuits and no cutsets of the graph G

According to the preceding definition, we can consider a double independent subset to be a subset of a tree that does not contain cutsets of the graph or (in dual fashion) as a subset of a cotree that does not contain circuits of the graph.

Remark 1

Because a double independent subset does not contain cutsets, removing all the edges of a double independent subset from a graph the rank of the graph remains the same.

Assertion 4

A subset of edges of a graph is a double independent subset iff it can be represented as a set difference of a pair of trees of G .

Proof

\Rightarrow Let d be a double independent subset of a graph G and let t_{1} be a tree that contains a double independent subset d. The subgraph G^{\prime}, obtained by removing all edges of d from G , has the same rank as G (Remark 1). Hence any tree t_{2} of the subgraph G^{\prime} is a tree of G. Therefore $d=t_{1} t_{2}$.
\Leftarrow Let $\left(t_{1}, t_{2}\right)$ be a pair of trees of a graph G. Then, $t_{1} \backslash_{2}$ is a subset of both t_{1} and $t_{2}{ }^{*}$. Therefore, $t_{1} \backslash t_{2}$ is a double independent subset of G.

Figure 1

A double independent subset d of edges of a graph G is a maximally double independent if, for an arbitrary edge e in the complement of $d, d \cup\{e\}$ is not a double independent subset of G.

Figure 1 shows six copies of a graph and for each copy a different subset of edges is indicated by the use of bold edges. The subset of edges d_{1} is a double independent subset and so is d_{2}. However, d_{1} is not a maximally double independent whereas d_{2} is. Notice also that $d_{1}=t_{1} \backslash t_{2}$ and that $d_{2}=t_{3} \backslash t_{4}$, wnere ι_{1}, t_{2}, t_{3} and t_{4} are all trees of the graph G.

Assertion 5

A double independent subset d of edges of a graph is a maximally double independent iff every edge in the complement of d form a circuit or/and a cutset with the edges in d only.

Proof

\Rightarrow Given a maximally double independent subset d of G , suppose that there exists an edge e in the complement of d such that for every circuit C_{e} that contains $e, C_{e} \backslash(d \cup\{e\})$ is nonempty, and for every cutset S_{e} that contains e, $S_{e} \backslash(d \cup\{e\})$ is nonempty. Conseqently, $d \cup\{e\}$ is also a maximally double independent subset which contradict the assumption that d is a maximally double independent subset of G.
\Leftarrow Suppose that, given a double independent subset d of edges of a graph, every edge in the complement of d forms a circuit or/and a cutset with edges in d only. Then, for every edge e in the complement of $d, d \cup\{e\}$ is not double independent due to the fact that it contains a circuit or a cutset.

According to Assertion 4, for any double independent subset d of a graph, there always exists a pair of trees $\left(t_{1}, t_{2}\right)$ such that $d=t_{1} \backslash t_{2}$. The next two assertions provide a link between a maximally double independent subset and a perfect pair of trees.

Assertion 6

Let $\left(t_{1}, t_{2}\right)$ be a pair of trees of a graph G. If $t_{1} \backslash t_{2}$ is a maximal double independent subset of G, then $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is a perfect pair of trees.

Proof

If $t_{1} \backslash t_{2}$ is a maximal double independent subset of G then, according to Assertion 5, each edge from its complement (including the edges in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$) makes a circuit or/and a cutset with the elements of $t_{1} \backslash t_{2}$ only. But $t_{1} \backslash t_{2}$ together with $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ belongs to $t_{2}{ }^{*}$ and hence the edges in $t_{1}{ }^{*} \cap t_{2}$ cannot make cutsets with the edges $t_{1} \backslash_{2}$ only. Therefore the edges in $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ make circuits with edges in $t_{1} \backslash{ }_{2}$ only and consequently rank $t_{2}{ }^{*}=\left|t_{1} \backslash{ }_{2}\right|$. That means that tree t_{1} is maximally distant from the tree t_{2}. On the other hand, according to Assertion 2, rank $t_{1}{ }^{*} \geq\left|t_{1} \backslash t_{2}\right|$. We shall now prove that for the case under consideration, equality must occur. That is, t_{2} is also maximally distant from t_{1}. Suppose that this is not true. Then, according to Assertion 1, there exists an edge $e^{\prime} \in t_{1}{ }^{*} \cap t_{2}{ }^{*}$ such that a fundamental circuit with respect to t_{2}, defined by that edge contains an edge $c \in t_{1} \cap t_{2}$. Consequently, $t_{2}^{\prime}=\left(t_{2} \backslash e\right) \cup\left\{e^{\prime}\right\}$ is again a tree and such that $t_{1} \backslash t_{2} \subseteq t_{1} \backslash t_{2}^{\prime}$. But subset $t_{1} \backslash t_{2}^{\prime}$ is, according to Assertion 4, also a double independent subset that contains as a proper subset the maximal doublc inde-endent subset $t_{1} \backslash t_{2}$. According to Assertion 5, this is a contradiction.

Thus we have proved that t_{1} is maximally distant from t_{2} and vice versa. Hence $\left(t_{1}, t_{2}\right)$ is a perfect pair.

Figure 2

Remark 2

The converse of Assertion 6 is not generally true. That is, if $\left(t_{1}, t_{2}\right)$ is a perfect pair of trees then their set difference is not necessarily a maximally independent subset. To see this consider figures 2 and 2 . Figure 2 shows four copies of the same graph and within each a subset of edges is indicated using bold lines. Now ($\mathrm{t}_{1}, \mathrm{t}_{2}$) is a perfect pair and (by inspection) $\mathrm{t}_{1} \backslash \mathrm{t}_{2}$ is a maximal double independent subset while $t_{2} \backslash t_{1}$ is not. Figure 3 shows four copies of the same graph and again various subsets of edges are indicated using bold lines. Again $\left(t_{1}, t_{2}\right)$ is a perfect pair while neither $t_{1} \backslash t_{2}$ nor $t_{2} \backslash t_{1}$ is a maximal independent subset. The marked edges form neither circuits nor cutsets.

t_{2}

$\mathrm{t}_{1} \mid \mathrm{t}_{2}$

$\mathrm{t}_{2} \mathrm{ht}_{1}$

Figure 3
It is obvious that any double independent subset can be embedded in a maximal double independent subset. Also, any subset of a maximal double independent subset is double independent.

Remark 3

Suppose that for a given perfect pair of trees $\left(t_{1}, t_{2}\right), t_{1} \backslash t_{2}$ is not a maximal double independent subset and that we want to enlarge this subset until we obtain a maximal double independent subset. Let ($\mathrm{t}^{\prime}, \mathrm{t}^{\prime} \mathrm{t}_{2}$) be another perfect pair such that $\mathrm{t}_{1}^{\prime} \mathrm{t}_{2}^{\prime}$ is a maximal double independent subset and let $t_{1} \backslash t_{2}$ be a proper subset of $t_{1}^{\prime} \backslash t_{2}^{\prime}$. Then $t_{2} \backslash t_{1}$ does not belong to $t_{2}^{\prime} \backslash t_{1}^{\prime}$ as a proper subset. To prove this let us consider a set of edges that have to be added to $t_{1} \backslash t_{2}$ in order to obtain $t_{1}^{\prime} \backslash t_{2}^{\prime}$. Due to properties of perfect pairs (Assertion 3, parts ii) and iii)) we cannot enlarge $t_{1} \backslash t_{2}$ with elements of $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$ or $\mathrm{t}_{1} \cap \mathrm{t}_{2}$. So, we have to take some edges from $\mathrm{t}_{2} \backslash \mathrm{t}_{1}$. This means that $\mathrm{t}_{2} \backslash \mathrm{t}_{1}$ partly belongs to $t_{1}^{\prime} \backslash t_{2}^{\prime}$. But $t_{1}^{\prime} \backslash t_{2}^{\prime}$ and $t_{2}^{\prime} \backslash t_{1}^{\prime}$ are disjoint and consequently $t_{2} \backslash t_{1}$ only partly belongs to $t_{2}^{\prime} \backslash t_{1}^{\prime}$ which completes the proof.

To describe more closely the situation when the set difference of a perfect pair of trees is not a maximal double independent subset we establish the following assertion

Assertion 7

Given a perfect pair of trees $\left(t_{1}, t_{2}\right)$, the following three conditions are equivalent.
(i) $t_{1} \backslash t_{2}$ is not a maximal double independent subset.
(ii) There exists an edge in $\mathrm{t}_{2} \backslash \mathrm{t}_{1}$ that belongs to a fundamental circuit with respect to t_{2} defined by an edge in $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ and at the same time forms a fundamental circuit respect to t_{1} in which at least one edge is in $t_{1} \cap t_{2}$.
(iii) There exists an edge in $t_{2} \mathrm{t}_{1}$ that belongs to a fundamental cutset with respect to $\mathrm{t}_{1}{ }^{*}$ defined by an edge in $\mathrm{t}_{1} \cap \mathrm{t}_{2}$ and at the same time forms a fundamental cutset respect to $\mathrm{t}_{2}{ }^{*}$ in which at least one edge is in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$.

Proof

(i) \Leftarrow (ii)

Suppose that condition (ii) holds. That is, there exists an edge $e \in t_{2} \mathrm{tt}_{1}$ that forms a fundamental circuit with respect to t_{1} in which at least one edge is in $t_{1} \cap t_{2}$ (call this conclusion 1). On the other hand, this edge belongs to the fundamental circuit with respect to t_{2} defined by an edge in $a \in t_{1}{ }^{*} \cap t_{2}{ }^{*}$. Because the pair $\left(t_{1}, t_{2}\right)$ is a perfect pair, each edge from $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ forms fundamental circuits with respect to t_{2} only with edges in $t_{2} \backslash t_{1}$. So, the fundamental circuit defined by a contains only edges from $t_{2} \backslash t_{1}$, including the edge e. As is well known from general graph theory, the intersection of a cutset and a circuit always contains an even number of edges. Therefore, any cutset that includes the edge e, includes at least one more edge from $t_{2} \backslash t_{1}$. Thus, we conclude that edge e does not form a cutset with edges in $t_{1} \backslash t_{2}$ only (call this conclusion 2). According to Assertion 5, conclusions 1 and 2 imply that $t_{1} \mathrm{t}_{2}$ is not a maximal double independent subset.

(i) \Rightarrow (ii)

Suppose that condition (ii) is not true. That is, suppose that each edge in $t_{2} \backslash t_{1}$ that belongs to a fundamental circuit with respect to t_{2}, defined by an edge in $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ defines a fundamental circuit with respect to t_{1} with edges in $t_{1} \backslash_{2}$ only (call this conclusion 3). The remaining edges in $t_{2} t_{1}$ that do not belong to fundamental circuits with respect to t_{2} defined by an edge in $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ necessarily form cutsets wiii. ed d_{0} ss in $t_{1} t_{2}$ only (call this conclusion 4). From conclusions 3 and 4 we see that all edges in $t_{2} \backslash t_{1}$ form circuits or cutsets with respect to t_{1} with edges only in $t_{1} \backslash_{2}$. On the other hand, for each perfect pair we have that all edges in $t_{1}{ }^{*} \cap t_{2}{ }^{*}$ form circuits with edges in $t_{1} \backslash t_{2}$ only and all edges in $t_{1} \cap t_{2}$ form cutsets with edges in $t_{1} \backslash t_{2}$ only. According to Assertion $5, t_{1} \backslash_{2}$ is a maximal double independent subset. Using reductio ad absurdum we conclude that $(\mathrm{i}) \Rightarrow$ (ii). (ii) \Leftrightarrow (iii)

This is evident from the following well known statement: two edges belong to a circuit iff they both belong to a same cutset.((ii) and (iii) are dual statements) Note also that $\mathrm{t}_{2} \backslash \mathrm{t}_{1}=\mathrm{t}_{1} * \mathrm{t}_{2}$ *.

As an immediate consequence of Assertions 6 and 7, we have the following theorem.

Theorem 1

A subset of edges d (of a graph G) is a maximal double independent subset iff the conjunction of the following two statements hold.
(i) There exists a perfect pair $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ such that $\mathrm{d}=\mathrm{t}_{1} \backslash \mathrm{t}_{2}$.
(ii) Each edge in $t_{2} \backslash t_{1}$ that belongs to a fundamental circuit with respect to t_{2}, defined by an edge in $\mathrm{t}_{1}{ }^{*} \cap \mathrm{t}_{2}{ }^{*}$, defines a fundamental circuit with respect to t_{1} with edges in $t_{1} \backslash_{2}$ only.

Assertion 8

If $\left(t_{1}, t_{2}\right)$ is a maximally distant pair of trees then both $t_{1} \backslash{ }_{2}$ and $t_{2} \backslash_{1}$ are maximal double independent subsets.

Proof

Suppose that one of the subsets $t_{1} \backslash_{2}$ or $t_{2}{ }_{t_{1}}$ is not maximal double independent, for example the subset $t_{1} \searrow_{2}$. Then there exists a maximal double independent subset d that contains $t_{1} t_{2}$ as a proper subset. According to Assertion 6 there is a perfect pair of trees $\left.\left(\mathrm{t}^{\prime}, \mathrm{t}^{\prime}\right)_{2}\right)$ such that $\mathrm{t}_{1}^{\prime} \mathrm{t}_{2}^{\prime}=\mathrm{d}$. Because $\mathrm{t}_{1} \backslash \mathrm{t}_{2} \subset \mathrm{~d}=\mathrm{t}_{1}^{\prime} \backslash \mathrm{t}_{2}^{\prime}$, we conclude that $\left|\mathrm{t}_{1} \backslash_{2}\right| \subset|\mathrm{d}|=\left|\mathrm{t}_{1}^{\prime} \backslash \mathrm{t}_{2}^{\prime}\right|$ which contradicts the assumption that $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is a maximally distant pair of trees.

Remark 4

The converse of Assertion 8 is not generally true. That is, if $t_{1} \backslash t_{2}$ and $t_{2} \backslash_{1}$ are both maximal double independent subsets, then (t_{1}, t_{2}) is not necessarily a maximally distant pair of trees. In order to see this consider figure 4 . This figure shows four copies of the same graph with different subsets of edges indicated with bold lines. Now $t_{1} \backslash \mathrm{t}_{2}$ and $\mathrm{t}_{2} \backslash \mathrm{t}_{1}$ are both maximal double independent subsets but $\left(t_{1}, t_{2}\right)$ is not a maximally distant pair of trees.

Figure 4

Conclusion

In this paper the notion called maximally double independent subset is considered and related to the concept of perfect pair of trees. Several assertions were stated in order to closely characterise its properties. Also, several examples were included in order to help the reader gain intuitive insight.

References

[1] Amari, S, "Topological foundation of Kron's tearing of electrical networks", RAAG Memoirs, vol 3, pp. 322-349, 1962.
[2] Ohtsuki, T, Ishizaki, Y, and Watanabe, H, "Topological degrees of freedom and mixed analysis of electrical networks", IEEE Trans. on Circuit Theory, CT-17, pp.491-499, 1970.
[3] Kishi, G and Kajitani, Y, "Maximally distant trees and principal partition of a linear graph", IEEE Trans. on Circuit Theory, vol.CT-16, pp.323-330, 1969.
[4] Hakimi, S L, "On trees of a graph and their generation", J. Franklin Inst., vol 272, pp.347-359, November 1961.
[5] Deo, N, "A central tree", IEEE Trans.on Circuit Theory, vol CT-13, pp.439-440, 1960.
[6] Welsh, D J A, Matroid Theory, Academic Press, London, 1976.
[7] Novak, L and Gibbons, A M, "On perfect pairs of trees in a graph", Research Report 151, Department of Computer Science, University of Warwick, October 1989.
[8] Bruno, J and Weinberg, L, "A constructive graph-theoretic solution of the shannon switching game", IEEE Trans. on Circuits and Systems, CAS-17, pp.74-81, 1970.
[9] Chen, W K, and Chan, F N T, "On the unique solvability of linear active networks", IEEE Trans. on Circuits and Systems, pp.26-35, 1974.
[10] Ozawa, T, "Topological conditions for the solvability of linear active networks", Int. J. of Circuit Theory and Appl., pp.125-136, 1976.
[11] Shinoda, S, "A minimization problem in network diagnosis", Trans. IECEJ, vol.53A, pp.569-570, 1970.
[12] Tomizawa, N, "An algorithm for determining the maximally suspended pair of bases in a semi-munoid with applications to the diagnosis of networks", Paper of Tech. Group on Circuit and System Theory of IECEJ, CST74-80, pp.19-22, 1974.
[13] Tomizawa, N, "An algorithm for determining the maximally distant pair of bases with matroidal constraints - generalized versions of Menger's theorem for matroids", Papers of Tech. Group on Circuit and System Theory of IECEJ, CST74-33, pp.17-24, 1974.
[14] Kajitani, Y, and Kawamoto, T, "Graph theoretical degree of freedom in network analysis and all-central-tree graphs", ibid, CST76-94, pp.65-70, 1976.
[15] Kawamoto, T, Kajitani, Y, and Shinoda, S, "New theorems on central trees described in connection with the principal partition of a graph", ibid, CST77-109, pp.63-68, 1977.
[16] Kawamoto, T, and Shinoda, S, "Theorems on central trees in connection with the principal partition of a graph", ibid, CAS80-49, pp.41-45, 1980.
[17] Kawamoto, T, Kajitani, Y, and Shinoda, S, "Eccentricity of the tree set", Proc. of the IEEE Int. Symp. on Circuits and Systems, paper R14-1, 1981.
[18] Gao, S, and Chen, W K, "The hybrid method of network analysis and topological degree of freedom", ibid, pp.158-161, 1982.
[19] Gao, S, and Chen, W K, "On graph classification with application", Proc. 25th -Midwest Symp. on Circuits and Systems, pp.244-248, 1982.
[20] Lin, P M, "Complementary trees in circuit theory", IEEE Trans. on Circuits and Systems, CAS-27, pp.921-928, 1980.
[21] Harary, F, Mokken, R J and Plantholt, M J, "Interpolation theorem for diameters of spanning trees", IEEE Trans.on Circuits and Systems, vol CAS-30, pp 429-431, 1983.
[22] Novak, L A, "A few small theorems concerning pairs of matroid bases", to appear in Int.J of Circuit Theory and Appl. in 1990.
[23] Swamy, M N S and Thulasiraman, K, "Graphs, Networks and Algorithms", John Wiley and Sons, 1981.

