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Abstract: We prove that every outerplanar graph can be optimally edge-coloured in 
polylogarithmic time using a polynomial number of processors on a parallel random access machine 
without write conflicts (P-RAM). 

1. Introduction 

Vizing's well known theorem [15] states that the minimum number of colours required to (properly) 

edge-colour a graph is either A or (A+1) depending upon the graph. Here and throughout the paper, 

A is the maximum vertex-degree of the graph. The problem of checking whether a particular graph 

is A-edge-colourable is NP-hard [8]. However, it is known that bipartite and outerplanar graphs are 

A-edge-colourable and there are polynomial-time algorithms colouring these graphs with the 

minimum (that is, optimal) number of colours [2,3,5,10,12]. In the case of bipartite graphs the 

nonexistence of odd cycles enables us to apply the technique of Euler partitioning (for the parallel 

case particularly, see [10]), and in the case of outerplanar graphs an associated tree structure of the 

graph is employed [12]. 

NC is the class of problems computable in polylog (logks, for some constant k and problem size s) 

parallel time with a polynomial number of processors. It is known [9.13] how parallelisation of the 

algorithm implicit in the proof of Vizing's theorem can provide a (A+1)-edge-colouring of an 

arbitrary simple graph with n vertices in parallel time P, where P is a polynomial in A and log(n). In 

[9] this specifically led Karloff and Shmoys to the result that the problem of finding a 

(A+1)-edge-colouring is in NC for simple graphs which have A=0(loso(1)(n)). It was shown in 

[10] that for bipartite graphs, the tighter problem of optimally edge-colouring is also in NC. We 

show here that the similarly tighter problem of fmding a A-edge-colouring of outerplanar graphs is 

also in NC. This paper is a full version of part of an extended abstract presented in [7]. In [7] it was 

implied that the problems of optimally edge-colouring outerplanar and Halin graphs are both in NC. 

In co-authorship with Amos Israeli and since presenting [7], the present authors discovered an 

improved algorithm for Hein graphs which is described in [6]. 



It was shown in [1] that the problem of optimal vertex-colouring of outerplanar graphs is in NC. In 

the case of vertex-colouring, the minimum number of colours is at most 3. Our parallel algorithm 

implicitly describes a new linear time sequential algorithm for edge-colouring outerplanar graphs. 

For graphs with A=3 the sequential algorithm of Proskurowski and Syslo [12] is parallelized. 

However, for 0>3 we have to design an entirely new algorithm to reduce the problem to the case of 

A=.3. In this reduced case a tree of internal faces of the graph is constructed, each face is 

independantly edge-coloured and a technique similar to that used by Diks [1] can be applied. The 

initial edge- colouring of faces is more subtle than in the case of vertex-colouring, the crucial point 

is to satisfy a certain invariant (property P3 from [12]). The reduction from the case 0>3 to the case 

.6.3 is based on the following properties of outerplanar graphs : there is a node of degree at most 

two, if the graph is biconnected then it has a Hamiltonian cycle and the maximum number of edges 

is 2n-3. Trees and unicycle graphs (see [11]) are special cases of outerplanar graphs. 

Our model of computation is a parallel random access machine without write conflicts (P-RAM). 

Such a machine consists of a number of synchronously working processors (which are uniform 

cost RAMs) using a common memory. No two processors can write simultaneously to the same 

location. On the other hand, many processors can read at the same time from the same location. The 

action of the parallel instruction: 

for each x satisfying a given condition do in parallel instruction(x) 

consists of assigning a processor to each x (for which the specified condition holds) and executing 

instruction(x) for all such x simultaneously. See [4] for further details. 

2. Optimal edge-colouring of biconnected outerplanar graphs with A=3. 

Any biconnected outerplanar graph with at least three nodes has a planar embedding which is a 

polygon with noncrossing (internal) diagonals. Such a graph has exactly one Hamiltonian cycle 

(bounding the polygon). We call the edges of this cycle sides and the remaining edges are called 

diagonals. Following [1], it is easy to find the Hamiltonian cycle using the following observation: 

deletion of an edge (together with its endpoints) disconnects the polygon if and only if it is a 

diagonal. The test for connectivity can be performed in log2n time using 0(n) processors, since the 

number of edges is linear. 0(n) such tests are needed . The edges on the Hamiltonian cycle can be 

consecutively ordered and this ordering can be used to compute the internal faces (the set of edges 

entering a given node can be ordered clockwise, these local orderings can be used to compute the 

internal faces in logarithmic parallel time). This enables us to easily compute a structured form of 

the graph: a graph of its internal faces. In this graph two faces are adjacent if and only if they have 

a common diagonal. This graph is a tree, denoted by TF, and it is the basis of the algorithm in this 

section. The parallel construction of TF together with the computation of the set of faces has been 

fully described in [1]. 



If the faces of the graph G are edge-coloured independently then many edges will be coloured 

inconsistently, because one edge belongs to two distinct faces. Even if each edge is coloured 

consistently in this sense and has the same colour in both faces . .n e whole colouring can be 

improper, because two similarly coloured but distinct edges (in seperate faces) can have a common 

endpoint and this will violate the requirement that edges incident to the same node must have distinct 

colours. We start with a "locally good" colouring of faces and step by step we shall remove the 

inconsistencies described above. The following crucial invariant will enable us to do it. 

Property P: Each face C is properly coloured as a cycle and if there are in C three consecutive 

edges el,e2,e3 such that e2 belongs to some other cycle then these edges are coloured by three 

distinct colours. 

It was shown in [9] that each cycle can be (independently) coloured to satisfy property P. We 

parallelize the method from [9]. 

The first step of our algorithm consists of simultaneously and independently colouring all faces to 

satisfy property P. For a given face we start from the edge joining this face to its father face and 

colour its edges consecutively with 1,2,3 (if the face has no father then we start from any edge 

common with some other face). After that, property P can be violated on edges (a,b), (b,c) and 

(c,d), see figure 1. We recolour these edges depending on the value of k modulo 3 (where k is the 

number of edges on the cycle). If k modulo 3 = 2 then two situations are possible depending upon 

whether (a,b) belongs to some other face. If this is so then we colour edges (a,b),(b,c),(c,d) by 

2,1,3 respectively. Otherwise we colour them 1,3,1. Figure 1 indicates the recoloring schemes. For 

the outerplanar graph G of figure 3, the initial colouring of the faces is presented in figure 4. 

For one face such a colouring can easily be done in log(n) time with 0(n) processors. The length of 

the cycle has to be computed and the edges numbered consecutively by 1, 2, 3, 1,.. . This can be 

done by directing the cycle and breaking it at the point c. Such a numbering can be achieved for an 

(open) list by computing the distances (modulo three) from each element to the end of the list using 

a standard doubling technique. Hence the initial colouring of faces can be done in logarithmic time 

with 0(n2) processors, using 0(n) processors for each face. 

Let C be a face which is not the root of the tree TF and let (e,a), (a,b), (b,f) be consecutive edges 

coloured xl,y1,z1 respectively. Here (a,b) is the edge common to C and its father face C'. The 

edges (d,a), (a,b), (b,c) are consecutive edges of the face C'. We denote their colours by x, y, z 

respectively (see figure 2). 

Let sub(C,h) be a subgraph of the outerplanar graph consisting of all faces which are in the subtree 

(of TF) rooted at C and whose distance from C (measured as a number of faces on the path to C in 

the tree TF) is not larger than h. For example sub(C,1)=C. 
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We define the operation recolour(C,h). This operation consists of simultaneously replacing in 

sub(C,h) each occurrence of colour xl by z, yl by y and zl by x. In other words we perform the 
assignment of colours (xl,y1,z1) f- (z,y,x) in the set of faces which are in the maximal subtree 

of height at most h rooted at C (in TF). For example if we execute recolour(C,1), for one face C 

only, then C and its father face are consistently coloured. Notice that the operation recolour is well 

defined if the invariant P holds. Moreover, this operation preserves the invariant P. Also P 

guarantees that the assignment of colours defined above is a permutation of colours. 

Now we use a divide-and-conquer approach to consistently colour the whole graph G. We 

decompose T7 into smaller subtrees of faces, colour them recursiveiy by the same method and then 

use the operation recolour to agree between colours of these subtrees of faces. The tree TF can be 

decomposed in many ways and some varations of the same schema are possible (for example one 

can find a node which splits the tree into much smaller subtrees). We use the following method. 

First compute the depth of each node (face) of TF, as a number of faces to the root. Let h be the 

height of TF. Assume for simplicity that h is a power of two (some dummy layers can be added if 

necessary). If h=1 then the graph consists of only one face which is already properly coloured 

during the initialization and the algorithm stops. Otherwise we disconnect all faces of depth h/2 

from their sons. TF is decomposed into a set of subtrees, each of depth at most h/2. We colour 

these subtrees recursively. Denote by R the set of faces of depth (h/2+1). After that we execute in 

parallel for each face C belonging to R: recolour(C,h/2). Now the whole tree of faces is consistently 

coloured and this gives the edge-colouring of G and the algorithm stops. 

The recursion has depth log(h)=O(log(n)), and the decomposition and recolouring can be done in 

log(n) time. Thus such an algorithm runs in log(n time with 0(n2) processors. 

An iterative version of this algorithm is provided by implementing the recursion in a bottom-up 

manner (in the recursion tree), by first combining the trees of height 1, then the trees of the height 

2, 4, 8..., as follows: 

for k=1 to log(h) do 

for each face C such that (depth(C) -2k-1-1) mod 2k = 0 

do in parallel recolour(C,2k-1) . 

Figure 5 presents the colouring of faces after performing one iteration with k=1, and figure 6 shows 

the final colouring. Observe how recolour(F5,2) works when proceeding from the colouring of 

figure 5 to that of figure 6. 

The operation recolour(C,q) takes 0(1) parallel time, if we preprocess the tree in such a way that for 

each face we can test in 0(1) time whether it is a member of sub(C,q). It is enough to compute the 

table of distances between each pair of faces of TF. This problem can be generally solved for a tree 
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in log(n) parallel time with 0(n) processors. As the tree of faces can be computed in O(log2n) 

parallel time with n2  processors (see [1] or our discussion above, when describing the tree TF), we 

now have the following result. 

Lemma 1 

Every outerplanar biconnected graph with 0=3 can be edge-coloured using 3 colours in 0(log2) 

parallel time with 0(n2) processors on a P-RAM. 

3. Optimal edge-colouring of general outerplanar graphs. 

Let G be a biconnected outerplanar graph with A>3. The outerplanar graph reduced(G) is obtained 

in the following way. We find a node c of degree two.:Let (a,c),(c,b) be the edges incident with c. 

Let H=(c,b),(b,d),(d,f), (f,g),...,(q,a),(a,c) be the sequence of consecutive sides of the polygon. 

We mark each second edge of this sequence starting with (b,d). Notice that the edge (c,b) is always 

unmarked and that the edge (a,c) is marked if and only if n is even. Each node, except perhaps c, is 

incident with exactly one marked edge, see figure 7(a). The set of marked edges is a maximum 

matching (possibly not matching node c) which we denote by M(G). The graph reduced(G) is 

obtained by removing all the edges of M(G) from G. 

Figure 7(a) shows an example outerplanar graph with 0>3 and the vertices are labelled as described 

in the preceeding paragraph. The edges of M(G) are heavily scored. The first such edge is (b,d) and 

the last is (q,a). In this example both (a,c) and (c,b) are unmarked. Hence the degree of node c in 

figure 7(a) is not decreased in reduced(G). However the degree of every other vertex is decreased 

by one, and the maximal degree of the whole graph is therefore also decreased by one. The graph G 

has 28 edges, but reduced(G) has only 20 edges. Such a high reduction in the number of edges is a 

general property of the operation. 

Lemma 2 

Let A' be the maximal degree and m' be the number of edges of the graph reduced(G), for a 

biconnected outerplanar graph G having maximal degree 0>3 and m edges. Then A' = A-1 and m' 

53/4 m. The graph reduced(G) can be constructed in 0(log n) parallel time with 0(n) processors, 

where n is the number of nodes of G. 

Proof. 

Each node of G is an endpoint of some edge in M(G), except perhaps node c which has degree two. 

Hence the maximal degree decreases, since the degree of every other node is reduced by one. There 

are at least (n-1)12 edges in M(G) and all of them are removed. The maximal number of edges of the 

outerplanar graph is 2n-3. This implies m' 5. 3/4 m. A suitable node c can be easily found in log(n) 

time. The marking can be made in log(n) time with n processors using a standard doubling 

technique. This completes the proof. 	 ❑ 
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Notice that after removing M(G) the maximum degree of G decreases by one, however degrees in 

biconnected components can decrease by more than one. For example the maximal degree of 

biconnected components after deleting edges of M(G) in figure 7(a) decreases by two, as can be 

seen in figure 7(b) which shows the tree of biconnected components. Notice that this tree can easily 

be found within the complexity constaints we require by employing the biconnected components 

algorithm of [14]. Let TB denote the tree of biconnected components. We use the tree TB to agree 

colour inconsistencies between two connected components which we presume to have been 

independantly coloured. The method we use is one of iterating the process of making components at 

odd levels in the tree agree with their fathers and then merging these components with their fathers. 

This halves the height of the tree in each iteration and so a logarithmic number of iterations is 

sufficient. Therefore we just need to see how we can bring about agreement between a biconnected 

component and its father. Let A be the maximum degree of reduced(G) for which TB has been 

constructed. We assume that each biconnected component is already edge-coloured using colours 

from within the set ( 1... A}. Consider a father vertex F in TB and an articulation point v which F 

has in common with the sons S1, S2, ..., Sr. Let P(Si) denote the set of colours present at Si  in F 

and let d(Si) be the degree of v in Si. The problem is to extract from the set (1... A}-P(F) a number 

of disjoint subsets with cardinalities d(Si) for all i, 	Then taking a one to one correspondence 

between colours in the subset with cardinality d(Si) and colours in P(Si) will define a colour 

exchange in Si  which for all i will remove inconsistencies. This is because no colour in ( 1... A) can 

then appear more than once at v. Within a single iteration in which the height of TB is halved, this 

agreeing of colours between all components at odd levels with their fathers can be achieved in 

O(log(n)) time using n2  processors. The details, although tedious, are not difficult and so we omit 

them. Thus we can remove colouring inconsistencies over the whole of TB in O(log2(n)) time using 

n2  processors. 

If we call this process ADJUST, then the procedure for optimally edge-colouring a biconnected 

outerplanar graphs with maximum degree A is: 

procedure edge-colour(G,D) 

begin (A3, G is a biconnected graph, the procedure colours G using colours from [1..D],D5_A) 

if A3 then use the algorithm described earlier for this case else 

begin find M(G) 

colour every edge in M(G) with the colour D 

G reduced(G) 

find the biconnected components of G and construct TB 

for each biconnected component X in parallel do edge-colour(X,D-1) 

ADJUST 

end 

end 
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We illustrate the procedure ADJUST with reference to the tree of biconnected components shown in 

figure 7(b). We take the root of the tree to be the component which is the circuit (a,b,c). Let the 

edges of the biconnected components be coloured as indicated in figure 7(b). In figure 7(c) the 

inconsistencies between components at odd levels in tree have been removed and components at 

these odd levels have been merged with their fathers. In figure 7(d) the process has been repeated 

once more and an optimal colouring of reduced(G) has been obtained, where G is the graph of 

figure 7(a). The edges of M(G) can now be coloured with the colour 6 so that an optimum 

colouring of G is obtained. 

We are now in a position to present our main result : 

Theorem 

(a) Every outerplanar graph can be optimally edge-coloured on O(log3(n)) time with n2  processors. 

(b) If G is a biconnected outerplanar graph with 	then edge-colour(G,A) optimally 

edge-colours G in O(log3(n)) time with n2  processors. 

Proof. 

Of (b). Lemma 2 implies that the depth of the recursion is O(log(n)). The first operation, if A>3, is 

the removal of M(G) and this decreases the number of edges by a factor of 3/4. Within one 

recursive level of edge-colour, for a graph with n vertices, all operations (constructing the tree of 

biconnected components and the operation ADJUST) take O(log2(n)) time with n2  processors. An 

optimal colouring is produced because, as we saw earlier, the base cases of the recursion produce 

optimal colourings and in other cases when A is increased by one (with the addition of the edges in 

M(G)) so is the number of colours used. Thus (b) is proved. 

Of (a). If A3 and the graph is not biconnected then we can decompose G into biconnected 

components and execute edge-colour for each component in parallel. Then we can apply the 

operation ADJUST. Then (a) follows from (b). That completes the proof. 	 ❑ 

Remark. 

Consider replacing in the procedure edge-colour all instructions of the form for each ...do in 

parallel by the corresponding sequential instructions for each ... do. Then edge-colour(G,A) can 

be easily implemented to colour G in linear time. The crucial point is that after each removal of 

M(G) the number of edges decreases by a factor 3/4. The number of edges is linear with respect to 

n (the number of nodes) and the tree TB can be computed in linear time. The operation ADJUST 

can be easily implemented to run in linear time by traversing the tree TB in breadth first manner, 

making suitable recolourings of the biconnected components encountered (nodes of TB). Moreover, 

the sequential colouring of graphs with A=3 can be done much easier than using the approach in 

section 2. The inductive argument used by Fiorini [3] for the case A=3 can be used to obtain a very 

simple linear time algorithm for this case (by removing, inductively, a node with degree two and 

identifying neighbours of such node). This gives, for the general case, quite a different linear time 

algorithm than that presented in [12]. The trick of traversing the tree of faces in a suitable order 

(described in [12]) is omitted. 
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Figure 1.The initial colouring of faces. The edges are coloured 1, 2, 3, 1, 2 ... 
starting with the upper edge (which is shared 'with the father face). Then a 
suitable recolouring of the edges (a,b),(b,c) and (c,d) is carried out. 
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Figure 2. A subtree rooted at the lower face is recoloured by 
executing the assignment (xl, yl, z1)‹--(z, y, x). 

Figure 3. The outerplanar graph G 
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Figure 4. The tree of faces rooted at Fl. 
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Figure 5. The colouring of faces after executing recolour(F,1) for 
F=F2,F3,F7,F8,F9,F10 (in parallel). 
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Figure 6. The final colouring obtained after executing 
recolour(f,2) for F=F5, F6,F4. 

Figure 7(a) 
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Figure 7(b) 

Figure 7(c) 	 Figure 7(d) 


