View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Joy, Mike and Axford, T. H. (1987) A standard for a graph representation for functional
programs. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-095

Permanent WRAP url:
http://wrap.warwick.ac.uk/60791

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60791
mailto:publications@warwick.ac.uk

A Standard for a Graph Representation for Functional Programs

Mike Joy

Department of Computer Science,
University of Warwick,
Coventry,
CV4 7AL.

Email: M.S.Joy@dcs.warwick.ac.uk
Tom Axford

Department of Computer Science,
University of Birmingham,
Birmingham,
B15 2TT.

Email: T.H.Axford@cs.bham.ac.uk
June 1987
© Copyright 1987 M.S. Joy and T.H. Axford. All Rights Reserved.

ABSTRACT

The data structures used in the authors’ functional language graph reduction imple-
mentations are described, together with a standard notation for representing the graphs in
a textual format. The graphs empied are compatible with FLIC and with the functional
languages in use at Birmingham and Warwick. Thtutd format is designed to be trans-
mittable easily across networks.

1. Introduction

Work is progressing at Warwick and at Birmingham into graph reduction techniques for functional
programs. In order taatilitate cooperation between the establishments it has been necessary to standardise
the data structures used and certain aspects of their implementations, as well as a format for transmitting
them across netwks. At Birmingham, a functional language currently used for teaching purposes [1]
resembles the languag84SL[6] andPifl [3] currently in use at Warwick. Both are translated into graphi-
cal form before ealuation. Inthe case of the SASL interpretéine intermediate code [5] produced is
FLIC. The forms of the graphventually produced were found to be almost identical. Therefore the need
was isolated for a standard definition for the graphs. It is envisaged thétiactional language could be
translated to such a graph and theecated by either the Birmingham or the Warwick machine. In order to
move gaphs between the bnmachines a standard for describing the graphs in a machine-independent and
printable way was also found to be necessary.

The graphical representation described in this paper may be thought of primarily as an internal repre-
sentation of the intermediate code, FLIC. It is more general than thetydroAlthough the FLIC opera-
tor set is preferred, other sets of basic operators may be used if redipedability is to be achieed,
definitions of these operators in terms of FLIC operators should b&l@do Alternatvely, it is often not
difficult to write a translator program to transform a graph using one set of operators intovalergqui
graph using another set of operators (partial reduction of the graph incorporating the definitions of the old
operators in terms of theweperators is usually quite effeat).

2 UW-DCS-RR-95/UB-CSR-87-1

For these reasons we consider it more important to standardise the structure of the graph and the
types of nodes allowed and their meanifidhe basic data types and structures alsovfolRIC, except
that we allev the data structures of cartesian sum and product domains (i.e. unions and tuples/algspecti
to be used separatelyhile FLIC permits products and sums of products .oifyis not possible for the
user to extend this set of basic typesytimeist represent theimon data types and structures purely in terms
of those preided. Thg can, havever, annotate objects so that additional information is not lost (the anno-
tation must not affect the meaning, but it can provide guidance as to efficient implementation and other
pragmatic information).

2. TheGraph

A functional program is represented as a connected, directed, and possibly cyclic, graph in which
each node has out-degree 0, 1 or 2. There arenalidferent node types, described belo

2.1. NodeTypes

2.1.1. Integerand Real

Nodes of typeinteger andreal represent known constants of the usual types integer and real, rehpecti
The value of the constant is stored in the node, which has out-degiée Ibnits are specified for maxi-
mum integer size or accusaof real numbers, although a particular machine implementation will, of
course, hee aich limits.

2.1.2. Operator

Nodes of typeperatorrepresent basic operators which are predefined as part of the languagamiolee
the ordinary arithmetic operatoré code for the operator is stored in the node, which has out-degree 0.
See the appendix be&ldor a description of some of the standard operators.

2.1.3. Apply

Nodes of typepplyrepresent function application. These node&tmat-degree 2, the left pointer is to the
function and the right pointer is to the argument. Functions are assumed to be curriethieti@re than
one argument.

2.1.4. Lambda

This type of node represents lambda abstraction and has an out-degrédéefi&t pointer is to the bound
variable and the right pointer is to the body of the lambda abstraction (which may lyetypie)n

2.1.5. \ariable

Nodes of typerariable represent the bound variables of lambda abstractidrgdn also be used to repre-
sent free ariables (if the programming language which is being represented allows completelgriree v
ables). Thg havean out-degree of 0.

2.1.6. Sum

These nodes represent cartesian sums (discriminated unions)yverai bat-degree of 1. The integer tag
is kept in the node, together with a single pointer to the value associated with the sum (which may be of an

type).

2.1.7. Poduct

These nodes represent cartesian products (tuples) sadahaut-degree of 2. The left pointer is to the
first element of the product (which may be of &ype) and the right pointer is to the rest of the product
(i.e. anothemnode of typeproduc), or it is a null pointer The number of elements in the product is also
stored in the nodeA O-tuple is represented by a null pointehich has the address 0.

UW-DCS-RR-95/UB-CSR-87-1 3

2.1.8. Undefined
Nodes of this type represditbottom). Thg haveout-degree 0.

2.1.9. Unique

Nodes of typeuniquerepresent unspecified prinvii values. Thusa test for equality between anique
node and another well-defined object will alays give false. Eachuniquenode is equal only to itselfit
is useful for representing objects such as "nil" (list terminator) explicitly.

2.1.10. Recursie Reference

A node of typerecursive eferenceis used whener a pointer introduces a cycle into the graph (i.e. in
recursve cefinitions). Semanticallythe recursive eferencenode (with out-degree 1) simply denotes the
node to which it pointslts presence is solely a label that the pointer here is different (we call it a weak
pointer). Graph tngersal and memory management algorithms thatilds not work on cyclic graphs can
then be implemented simply by ignoring weak pointers (see next section).

2.2. GraphStructure

One of the authors [2] has shown that a simple reference counting scheydifographs of func-
tional programs is practicable. The graph structure supports this scheme of reference counting (although it
does not require it: mark-scamrage collection schemes could be used if preferred, and the reference
counts ignored).

If the reference counting scheme is to be used, the graph must satisfy certain requirements, the main one

being:

(i) If weak pointers (i.e. pointers froracursive eferencenodes) are ignored, the graph is acyclic and
connected.

A further condition is required to ensure that graph reduction operations do not generate graphs which
break this rule:

(i) Theremust be exactly one point of entry toyasycle, which will be the node pointed to by one or
more weak pointers. That is, there must be only one node irythee pointed to by weak pointers
and that node must also be the only node in ylakeavhich is pointed to by gmodes outside the
cycle.

Axford has shown that these conditions are ndicdif to satisfy and that, provided there satisfied, refer-
ence counting of strong pointers only is all that is needed for safe memory management.

2.3. Portability

Since the operators used in GCODE may be supplemented by locally defined operators, it is suggested that
GCODE may be thought of at dwdistinct levels - (i) with only the standard operators defined, so that user
defined functions must be defined by lambda abstraction, and (ii) with "other" operators defined, so that it
can be used to communicate between machines with a common knowledge of non-standard operators.

2.4. Example

Consider the graph representing "factorialb@&foreary graph reduction has taken place. Assuming we
have

deffac =An.if n< 1then1elsen * fac (n-1)

the graph becomes (oouldbecome - it is not unique, due to possible code-sharing):

4 UW-DCS-RR-95/UB-CSR-87-1

The nodes representing the variable "n" are shared, but for claritywsedtn them as separate in this
diagram.

3. The"Printable" Format for Describing a Graph

The structure for the textual representation of a graph is a sequence of lines, each representing a separate
node in the graph, of the form:

address type ug® _count annotatiofiname" [other fields]

where the fields are separated by blanks or tabs. Theafidléssis an unsigned inggr representing the
storage location of the node. The figjgheis an unsigned inteer representing the type of the node (inte-

ger, real, application, etc.). The fieltsage countis an unsigned integer used for garbage collection pur
poses (reference counts, etc.), and represents the nungimngfpointers to that node in the graphhe

field annotationis an integer currently not assigned, but may be used in the future by particular implemen-
tations. The meaning of a program should be unchanged if all the annotations are ignored. The "name"
field is a character string naming the node, usually null.

For example, the node at address 111 which is an apply node called "fred", with left and right descendants
at addresses 222 and 333 respelsti usage count of 1, with no annotation, would be represented by:

11151 0 "fred" 222 333

Standard C language [4] ommtions apply in the name, thus for example a node -called
"aSilly\012\013\n\tName" would be acceptablsimilarly all other fields use the appropriate "CXital
corventions.

The aailable types are

UW-DCS-RR-95/UB-CSR-87-1 5

Undefined 0
Integer 1
Real 2
Sum 3
Product 4
Apply 5
Recursie Reference 6
Operator 7
Variable 8
Lambda 9
Unique 10

3.1. TheType "Integer"

addressl usaye_count annotatioriname"value_of the_intper
wherevalue_of _the_intger is a (signed) intger No restriction on the size of the integer is imposed, though
machine dependencies will naturally come into play.

3.2. TheType "Real"

addres2 usagye_count annotatiofiname"value_of the_real _number
wherevalue_of the real numbés a real number written using "C" amntions.

3.3. TheType "Sum"

address3 usaye_count annotatiofiname"tag address_of value
where a sum domain is considered as associating with a node an unsigyerdadgte a finite range, and
address_of valuis the address of the node which is tagged.

3.4. TheType "Product"

address4 usagye_count annotatioriname"size first second

where a product domain is thought of as a tuple, implemented as a linkesizkss. the size of the tuple,
first is the address of the head of the tuple secbndis the address of the taillhe address of the null
tuple is 0, rather than an explicit O-tuple node.

3.5. TheType "Apply"

addressb usagge_count annotatioriname"left right
whereleft andright are the addresses of the descendants of the apply nedanwthink ofleft as a func-
tion taking one argumentight).

3.6. TheType "Recursive Reference"

address6 usagge_count annotatioriname"recref
whererecref is the address of the node which is used reggysithat is, which is pointed to by weak
pointer.

3.7. TheType "Operator"

address7 usagye_count annotatioriname"operator qualifier

whereoperatoris an intger (at least 16-bit) representing a predefined opeeaatbithe last field is an inte-
ger for use in the case where there is a family of operators all of the same name (such as the-I"'SELECT
FLIC).

3.8. TheType "Variable"

address8 usagye_count annotatioriname"
and is used for bound or free variables.

6 UW-DCS-RR-95/UB-CSR-87-1

3.9. TheType "Lambda"

addres9 usagye_count annotatioriname"bv body

wherebv andbodyare integers which are the addresses of the bound variable of the lambda node and the
body respectiely.

3.10. TheType "Unique"

addresslOusage _count annotatiofiname"
which is an unspecified primie value different from all other values.

3.11. TheType "Undefined"

addres90 usagye_count annotatioriname"
which is a non-stricfl.

3.12. Example:The Factorial Function

1 5 1 0 ™ 3 21
2 6 1 o ™ 3
3 9 1 0 ‘factorial" 11 4
4 5 1 o0 ™ 5 13
5 5 1 0 ™ 6 12
6 5 1 0o ™ 7 8
7 7 1 o0 ™ 16176
8 5 1 o ™ 9 12
9 5 1 o0 ™ 10 11
o0 7 1 o ™ 8978
11 8 4 0 n"
2 1 2 o ™ 1
13 5 1 0o ™ 14 16
14 5 1 o0 ™ 15 11
5 7 1 o ™ 8466
6 5 1 o0 ™ 2 17
7 5 1 o ™ 18 20
8 5 1 o0 ™ 19 11
9 7 1 o ™ 8465
20 1. 12 o ™ 1
217 1. 1 o ™ 3

4. Execution

O-Tuples are not used - all O-tuplesvbaddress 0. Logical and character nodes foltbe FLIC conen-

tions in which thg are represented as sums of produésthe start of a progranxecution, the node with
address 1 is assumed to be tim®t-node’. Lazyevduation is assumed, unless applicatarder is (a) spec-

ified by an operator such as "STRICT" in FLIC, (b) implied by an operator such as integer plus, or (c) spec-
ified by an annotation.

5. Conclusions

A graphical representation of a functional program in the FLIC intermediate code, or a similar lan-
guage, has been suggested as a standard internal form for functional prdguirdstails of the internal
format hae ot been specified because ytteee likely to be somewhat machine dependent and, yn an
event, communication of programs between different sites is not likely #® dake via direct memory
dumps! Insteada precisely defined printable format for the graph has beesn gnd this is the ledl at
which communication is expected.

UW-DCS-RR-95/UB-CSR-87-1 7

The graphical representation can be used with varioferatit sets of basic operators. The FLIC
operator set is preferred, but altermatiets can be defined if required. The representation also perntits (b
does not require) all nodes of the graph to be named and annotated with additional information (which must
not affect the meaning of the program in the functional sense).

The aim of this standard graphical representation is to encourage the use of compatible representa-
tions in work on functional programming languages which is being carried out wfsiteen rather than the
proliferation of mag incompatible representations which differ in arbitrégt often quite trivial, ways.

References

1. T.H. Axford, “Lecture Notes on Functional Programmirgternal Report CSR-86-13, Department
of Computer Science, Urarsity of Birmingham, Birmingham, UK (1986).

2. T.H. Axford, “Reference Counting of Cyclic Graphs for Functional Progfta@smputer durnal,
33, 5, pp. 466-470 (1990).

3. D. Berry, The Pifl Pogrammers Manual, Department of Computer Science, \msity of Warwick,
Coventry, UK (1981).

4, B.W. Kernighan and D.M. Ritchieglhe C Pogramming Languge, Prentice-Hall, Engleood Cliffs,
New Jerse (1978).

5. S.L. Pgrton Jonesand M.S. Jg, “FLIC - a Functional Language Intermediate Cbdiesearch
Report 148, Department of Computer Scienceyésity of Warwick, Ceentry, UK (1989). Reised
1990. Previous version appeared as Internal Note 2048, Department of Computer ScigacstyUni
College London (1987).

6. D.A. Turner, SASL Languge Manual, University of Kent, Canterry, UK (1979). Revised 1983,
1989 and 1990.

6. Appendix: FLIC-Compatible Predefined Operators

We present the operators currently supported, all of which agree with the semantics of FLyGrérhe
assumed to be Curried operators.

Arity Type of Result Description Codéhex) FLIC Name
1 Integer intger unary minus 1110 INT_

2 Integer intger plus 2110 INT+

2 Integer intgger minus 2111 INF

2 Integer intger multiply 2112 INT*

2 Integer intger divide (truncation) 2113 INT/

2 Integer intger remainder 2114 INT%

1 Real realunary minus 1220 FLQAT _
2 Real realplus 2220 FLOAT +
2 Real realminus 2221 FLOAT-
2 Real reaimultiply 2222 FLOAT*
2 Real realdivide 2223 FLOAT/
1 Real squareoot 1221 SQRT

1 Real sin(radians) 1222 SIN

1 Real cogqradians) 1223 COoSs

1 Real inverse tangent (rangenf2) 1224 ARCTAN
1 Real &ponentiation & 1225 EXP

1 Real naturalogarithm 1226 LN

2 Jum integer < 2310 INT<

2 Jum integger > 2311 INT>

2 Jum integger <= 2312 INT<=
2 Jum intgger >= 2313 INT>=
2 Jum integer equality 2314 INT=

8 UW-DCS-RR-95/UB-CSR-87-1

2 JUm integer = 2315 INT!=

2 Jum polymorphicequality 23F0 POLY=

2 JUm polymorphic< 23F1 POLY<

2 JUm polymorphic> 23F2 POLY>

2 Jum realk 2320 FLOAT<

2 Jum real> 2321 FLOAT>

2 Jum realk= 2322 FLOAT<=

2 Jum real>= 2323 FLOAT>=

2 JUm realequality 2324 FLOAT=

2 Jum reall= 2325 FLOAT!=

1 Real intger to real coversion 1210 INT->FLOAT
1 Integer realto integer cowersion 1120 FLOAT->INT
2 (unknown) sequentiavduation 2FFO0 SEQ

2 (unknown) applicatve ader e/aluation 2FF1 STRICT

1 Product inputirom a file 1440 INPUT

3 (unknown) conditionalf..then..else 3F30 IF

1 JUm neyation 1330 NOT

2 JUm logicalinclusive OR 2330 OR

2 JUm logicalexclusive OR 2331 XOR

2 Jum logicalAND 2332 AND
(variable) Sum create sum-product domain F310 RCK-n
(variable) (unknarn) extract elt. from sum-product FFFO CASE-n

2 (unknown) extract elt. from sum-product 2F11 SEL-SUM

1 Integer tract tag from a sum=product 1130 G

2 (unknown) changeduple to curried application 25F0 UNRCK

2 (unknown) extract element of tuple 2F10 SEL-TUPLE
(variable) Product create a tuple F4F0 TUPLE-n

2 (unknown) changeuple to curried application 25F2 UNTUPLE-n
2 (unknown) asUNTUPLE-n, but strictly 25F3 UNTUPLE!-n
1 Apply combinatory 15F0

3 Apply combinatoiS 3BFO

2 (unknown) combinatoK 2FF2

(variable) (unknavn) FLIC operator K FF10 K-n

1 (unknown) combinatot 1FFO

3 Apply combinatoB 35F1

3 Apply combinatoiIC 3BF2

4 Apply combinatoiS’ 45F0

4 Apply combinatoB’ 45F1

4 Apply combinatoiC’ 45F2

