
http://wrap.warwick.ac.uk/

Original citation:
Joy, Mike and Axford, T. H. (1987) A standard for a graph representation for functional
programs. University of Warwick. Department of Computer Science. (Department of
Computer Science Research Report). (Unpublished) CS-RR-095

Permanent WRAP url:
http://wrap.warwick.ac.uk/60791

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60791
mailto:publications@warwick.ac.uk

A Standard for a Graph Representation for Functional Programs

Mike Joy

Department of Computer Science,
University of Warwick,

Coventry,
CV4 7AL.

Email: M.S.Joy@dcs.warwick.ac.uk

Tom Axford

Department of Computer Science,
University of Birmingham,

Birmingham,
B15 2TT.

Email: T.H.Axford@cs.bham.ac.uk

June 1987

© Copyright 1987 M.S. Joy and T.H. Axford. All Rights Reserved.

ABSTRACT

The data structures used in the authors’ functional language graph reduction imple-
mentations are described, together with a standard notation for representing the graphs in
a textual format. The graphs employed are compatible with FLIC and with the functional
languages in use at Birmingham and Warwick. The textual format is designed to be trans-
mittable easily across networks.

1. Intr oduction

Work is progressing at Warwick and at Birmingham into graph reduction techniques for functional
programs. In order to facilitate cooperation between the establishments it has been necessary to standardise
the data structures used and certain aspects of their implementations, as well as a format for transmitting
them across networks. At Birmingham, a functional language currently used for teaching purposes [1]
resembles the languagesSASL[6] andPifl [3] currently in use at Warwick. Both are translated into graphi-
cal form before evaluation. In the case of the SASL interpreter, the intermediate code [5] produced is
FLIC. The forms of the graphs eventually produced were found to be almost identical. Therefore the need
was isolated for a standard definition for the graphs. It is envisaged that any functional language could be
translated to such a graph and then executed by either the Birmingham or the Warwick machine. In order to
move graphs between the two machines a standard for describing the graphs in a machine-independent and
printable way was also found to be necessary.

The graphical representation described in this paper may be thought of primarily as an internal repre-
sentation of the intermediate code, FLIC. It is more general than that, however. Although the FLIC opera-
tor set is preferred, other sets of basic operators may be used if required.If portability is to be achieved,
definitions of these operators in terms of FLIC operators should be provided. Alternatively, it is often not
difficult to write a translator program to transform a graph using one set of operators into an equivalent
graph using another set of operators (partial reduction of the graph incorporating the definitions of the old
operators in terms of the new operators is usually quite effective).

2 UW-DCS-RR-95/UB-CSR-87-1

For these reasons we consider it more important to standardise the structure of the graph and the
types of nodes allowed and their meaning.The basic data types and structures also follow FLIC, except
that we allow the data structures of cartesian sum and product domains (i.e. unions and tuples, respectively)
to be used separately, while FLIC permits products and sums of products only. It is not possible for the
user to extend this set of basic types: they must represent their own data types and structures purely in terms
of those provided. They can, however, annotate objects so that additional information is not lost (the anno-
tation must not affect the meaning, but it can provide guidance as to efficient implementation and other
pragmatic information).

2. TheGraph

A functional program is represented as a connected, directed, and possibly cyclic, graph in which
each node has out-degree 0, 1 or 2. There are eleven different node types, described below.

2.1. NodeTypes

2.1.1. Integerand Real

Nodes of typesinteger andreal represent known constants of the usual types integer and real, respectively.
The value of the constant is stored in the node, which has out-degree 0.No limits are specified for maxi-
mum integer size or accuracy of real numbers, although a particular machine implementation will, of
course, have such limits.

2.1.2. Operator

Nodes of typeoperatorrepresent basic operators which are predefined as part of the language, for example,
the ordinary arithmetic operators.A code for the operator is stored in the node, which has out-degree 0.
See the appendix below for a description of some of the standard operators.

2.1.3. Apply

Nodes of typeapplyrepresent function application. These nodes have out-degree 2, the left pointer is to the
function and the right pointer is to the argument. Functions are assumed to be curried if they take more than
one argument.

2.1.4. Lambda

This type of node represents lambda abstraction and has an out-degree of 2.The left pointer is to the bound
variable and the right pointer is to the body of the lambda abstraction (which may be of any type).

2.1.5. Variable

Nodes of typevariable represent the bound variables of lambda abstraction, but can also be used to repre-
sent free variables (if the programming language which is being represented allows completely free vari-
ables). They hav ean out-degree of 0.

2.1.6. Sum

These nodes represent cartesian sums (discriminated unions), and have an out-degree of 1. The integer tag
is kept in the node, together with a single pointer to the value associated with the sum (which may be of any
type).

2.1.7. Product

These nodes represent cartesian products (tuples) and have an out-degree of 2. The left pointer is to the
first element of the product (which may be of any type) and the right pointer is to the rest of the product
(i.e. anothernode of typeproduct), or it is a null pointer. The number of elements in the product is also
stored in the node.A 0-tuple is represented by a null pointer, which has the address 0.

UW-DCS-RR-95/UB-CSR-87-1 3

2.1.8. Undefined

Nodes of this type represent⊥ (bottom). They hav eout-degree 0.

2.1.9. Unique

Nodes of typeunique represent unspecified primitive values. Thusa test for equality between aunique
node and any other well-defined object will always give false. Eachuniquenode is equal only to itself.It
is useful for representing objects such as "nil" (list terminator) explicitly.

2.1.10. Recursive Reference

A node of typerecursive referenceis used whenever a pointer introduces a cycle into the graph (i.e. in
recursive definitions). Semantically, the recursive referencenode (with out-degree 1) simply denotes the
node to which it points.Its presence is solely a label that the pointer here is different (we call it a weak
pointer). Graph traversal and memory management algorithms that would not work on cyclic graphs can
then be implemented simply by ignoring weak pointers (see next section).

2.2. GraphStructure

One of the authors [2] has shown that a simple reference counting scheme for cyclic graphs of func-
tional programs is practicable. The graph structure supports this scheme of reference counting (although it
does not require it: mark-scan garbage collection schemes could be used if preferred, and the reference
counts ignored).

If the reference counting scheme is to be used, the graph must satisfy certain requirements, the main one
being:

(i) If weak pointers (i.e. pointers fromrecursive referencenodes) are ignored, the graph is acyclic and
connected.

A further condition is required to ensure that graph reduction operations do not generate graphs which
break this rule:

(ii) Theremust be exactly one point of entry to any cycle, which will be the node pointed to by one or
more weak pointers. That is, there must be only one node in the cycle pointed to by weak pointers
and that node must also be the only node in the cycle which is pointed to by any nodes outside the
cycle.

Axford has shown that these conditions are not difficult to satisfy and that, provided they are satisfied, refer-
ence counting of strong pointers only is all that is needed for safe memory management.

2.3. Portability

Since the operators used in GCODE may be supplemented by locally defined operators, it is suggested that
GCODE may be thought of at two distinct levels - (i) with only the standard operators defined, so that user-
defined functions must be defined by lambda abstraction, and (ii) with "other" operators defined, so that it
can be used to communicate between machines with a common knowledge of non-standard operators.

2.4. Example

Consider the graph representing "factorial 3"beforeany graph reduction has taken place. Assuming we
have

def fac = λn. if n ≤ 1 then 1 elsen * fac (n-1)

the graph becomes (orcouldbecome - it is not unique, due to possible code-sharing):

4 UW-DCS-RR-95/UB-CSR-87-1

apply

λ

var
n

apply

apply

apply

op
if

apply

apply

op
≤

var
n

int
1

apply

apply

op
*

var
n

apply

apply

apply

op
-

var
n

int
1

int
3

rec
ref

The nodes representing the variable "n" are shared, but for clarity we have shown them as separate in this
diagram.

3. The"Printable" Format for Describing a Graph

The structure for the textual representation of a graph is a sequence of lines, each representing a separate
node in the graph, of the form:

address type usage_count annotation"name" [other fields]

where the fields are separated by blanks or tabs. The fieldaddressis an unsigned integer representing the
storage location of the node. The fieldtype is an unsigned integer representing the type of the node (inte-
ger, real, application, etc.). The fieldusage_countis an unsigned integer used for garbage collection pur-
poses (reference counts, etc.), and represents the number ofstrongpointers to that node in the graph.The
field annotationis an integer currently not assigned, but may be used in the future by particular implemen-
tations. The meaning of a program should be unchanged if all the annotations are ignored. The "name"
field is a character string naming the node, usually null.

For example, the node at address 111 which is an apply node called "fred", with left and right descendants
at addresses 222 and 333 respectively, usage count of 1, with no annotation, would be represented by:

111 5 1 0 "fred" 222 333

Standard C language [4] conventions apply in the name, thus for example a node called
"aSilly\012\013\n\tName" would be acceptable.Similarly all other fields use the appropriate "C" lexical
conventions.

The available types are

UW-DCS-RR-95/UB-CSR-87-1 5

Undefined 0
Integer 1
Real 2
Sum 3
Product 4
Apply 5
Recursive Reference 6
Operator 7
Variable 8
Lambda 9
Unique 10

3.1. TheType "Integer"

address1 usage_count annotation"name"value_of_the_integer
wherevalue_of_the_integer is a (signed) integer. No restriction on the size of the integer is imposed, though
machine dependencies will naturally come into play.

3.2. TheType "Real"

address2 usage_count annotation"name"value_of_the_real_number
wherevalue_of_the_real_numberis a real number written using "C" conventions.

3.3. TheType "Sum"

address3 usage_count annotation"name"tag address_of_value
where a sum domain is considered as associating with a node an unsigned integer tag in a finite range, and
address_of_valueis the address of the node which is tagged.

3.4. TheType "Product"

address4 usage_count annotation"name"size first second
where a product domain is thought of as a tuple, implemented as a linked list.sizeis the size of the tuple,
first is the address of the head of the tuple andsecondis the address of the tail.The address of the null
tuple is 0, rather than an explicit 0-tuple node.

3.5. TheType "Apply"

address5 usage_count annotation"name"left right
whereleft andright are the addresses of the descendants of the apply node. We can think ofleft as a func-
tion taking one argument (right).

3.6. TheType "Recursive Reference"

address6 usage_count annotation"name"recref
whererecref is the address of the node which is used recursively, that is, which is pointed to by aweak
pointer.

3.7. TheType "Operator"

address7 usage_count annotation"name"operator qualifier
whereoperatoris an integer (at least 16-bit) representing a predefined operator, and the last field is an inte-
ger for use in the case where there is a family of operators all of the same name (such as the "SELECT-i" of
FLIC).

3.8. TheType "Variable"

address8 usage_count annotation"name"
and is used for bound or free variables.

6 UW-DCS-RR-95/UB-CSR-87-1

3.9. TheType "Lambda"

address9 usage_count annotation"name"bv body
wherebv andbodyare integers which are the addresses of the bound variable of the lambda node and the
body respectively.

3.10. TheType "Unique"

address10usage_count annotation"name"
which is an unspecified primitive value different from all other values.

3.11. TheType "Undefined"

address0 usage_count annotation"name"
which is a non-strict⊥.

3.12. Example:The Factorial Function

1 5 1 0 "" 3 21
2 6 1 0 "" 3
3 9 1 0 "factorial" 11 4
4 5 1 0 "" 5 13
5 5 1 0 "" 6 12
6 5 1 0 "" 7 8
7 7 1 0 "" 16176
8 5 1 0 "" 9 12
9 5 1 0 "" 10 11

10 7 1 0 "" 8978
11 8 4 0 "n"
12 1 2 0 "" 1
13 5 1 0 "" 14 16
14 5 1 0 "" 15 11
15 7 1 0 "" 8466
16 5 1 0 "" 2 17
17 5 1 0 "" 18 20
18 5 1 0 "" 19 11
19 7 1 0 "" 8465
20 1 1 0 "" 1
21 1 1 0 "" 3

4. Execution

0-Tuples are not used - all 0-tuples have address 0. Logical and character nodes follow the FLIC conven-
tions in which they are represented as sums of products.At the start of a program execution, the node with
address 1 is assumed to be the ’root-node’. Lazyevaluation is assumed, unless applicative order is (a) spec-
ified by an operator such as "STRICT" in FLIC, (b) implied by an operator such as integer plus, or (c) spec-
ified by an annotation.

5. Conclusions

A graphical representation of a functional program in the FLIC intermediate code, or a similar lan-
guage, has been suggested as a standard internal form for functional programs.Full details of the internal
format have not been specified because they are likely to be somewhat machine dependent and, in any
ev ent, communication of programs between different sites is not likely to take place via direct memory
dumps! Instead,a precisely defined printable format for the graph has been given and this is the level at
which communication is expected.

UW-DCS-RR-95/UB-CSR-87-1 7

The graphical representation can be used with various different sets of basic operators. The FLIC
operator set is preferred, but alternative sets can be defined if required. The representation also permits (but
does not require) all nodes of the graph to be named and annotated with additional information (which must
not affect the meaning of the program in the functional sense).

The aim of this standard graphical representation is to encourage the use of compatible representa-
tions in work on functional programming languages which is being carried out at many sites, rather than the
proliferation of many incompatible representations which differ in arbitrary, but often quite trivial, ways.

References

1. T.H. Axford, “Lecture Notes on Functional Programming,” I nternal Report CSR-86-13, Department
of Computer Science, University of Birmingham, Birmingham, UK (1986).

2. T.H. Axford, “Reference Counting of Cyclic Graphs for Functional Programs,” Computer Journal,
33, 5, pp. 466-470 (1990).

3. D. Berry, The Pifl Programmer’s Manual,Department of Computer Science, University of Warwick,
Coventry, UK (1981).

4. B.W. Kernighan and D.M. Ritchie,The C Programming Language,Prentice-Hall, Englewood Cliffs,
New Jersey (1978).

5. S.L. Peyton Jonesand M.S. Joy, “FLIC - a Functional Language Intermediate Code,” Research
Report 148, Department of Computer Science, University of Warwick, Coventry, UK (1989). Revised
1990. Previous version appeared as Internal Note 2048, Department of Computer Science, University
College London (1987).

6. D.A. Turner, SASL Language Manual, University of Kent, Canterbury, UK (1979). Revised 1983,
1989 and 1990.

6. Appendix: FLIC-Compatible Predefined Operators

We present the operators currently supported, all of which agree with the semantics of FLIC. They are
assumed to be Curried operators.

Arity Type of Result Description Code(hex) FLIC Name

1 Integer integer unary minus 1110 INT_
2 Integer integer plus 2110 INT+
2 Integer integer minus 2111 INT-
2 Integer integer multiply 2112 INT*
2 Integer integer divide (truncation) 2113 INT/
2 Integer integer remainder 2114 INT%
1 Real realunary minus 1220 FLOAT_
2 Real realplus 2220 FLOAT+
2 Real realminus 2221 FLOAT -
2 Real realmultiply 2222 FLOAT*
2 Real realdivide 2223 FLOAT/
1 Real squareroot 1221 SQRT
1 Real sin(radians) 1222 SIN
1 Real cos(radians) 1223 COS
1 Real inverse tangent (range±π/2) 1224 ARCTAN
1 Real exponentiation ex 1225 EXP
1 Real naturallogarithm 1226 LN
2 Sum integer < 2310 INT<
2 Sum integer > 2311 INT>
2 Sum integer <= 2312 INT<=
2 Sum integer >= 2313 INT>=
2 Sum integer equality 2314 INT=

8 UW-DCS-RR-95/UB-CSR-87-1

2 Sum integer != 2315 INT!=
2 Sum polymorphicequality 23F0 POLY=
2 Sum polymorphic< 23F1 POLY<
2 Sum polymorphic> 23F2 POLY>
2 Sum real< 2320 FLOAT<
2 Sum real> 2321 FLOAT>
2 Sum real<= 2322 FLOAT<=
2 Sum real>= 2323 FLOAT>=
2 Sum realequality 2324 FLOAT=
2 Sum real!= 2325 FLOAT!=
1 Real integer to real conversion 1210 INT->FLOAT
1 Integer realto integer conversion 1120 FLOAT ->INT
2 (unknown) sequentialevaluation 2FF0 SEQ
2 (unknown) applicative order evaluation 2FF1 STRICT
1 Product inputfrom a file 1440 INPUT
3 (unknown) conditionalif..then..else 3F30 IF
1 Sum negation 1330 NOT
2 Sum logicalinclusive OR 2330 OR
2 Sum logicalexclusive OR 2331 XOR
2 Sum logicalAND 2332 AND
(variable) Sum create sum-product domain F310 PACK-n
(variable) (unknown) extract elt. from sum-product FFF0 CASE-n
2 (unknown) extract elt. from sum-product 2F11 SEL-SUM
1 Integer extract tag from a sum=product 1130 TAG
2 (unknown) changetuple to curried application 25F0 UNPACK
2 (unknown) extract element of tuple 2F10 SEL-TUPLE
(variable) Product create a tuple F4F0 TUPLE-n
2 (unknown) changetuple to curried application 25F2 UNTUPLE-n
2 (unknown) asUNTUPLE-n, but strictly 25F3 UNTUPLE!-n
1 Apply combinatorY 15F0
3 Apply combinatorS 35F0
2 (unknown) combinatorK 2FF2
(variable) (unknown) FLIC operator K FF10 K-n
1 (unknown) combinatorI 1FF0
3 Apply combinatorB 35F1
3 Apply combinatorC 35F2
4 Apply combinatorS’ 45F0
4 Apply combinatorB’ 45F1
4 Apply combinatorC’ 45F2

