
http://wrap.warwick.ac.uk/

Original citation:
Yaghi, A. A. (1983) The compilation of functional language into intensional logic.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-056

Permanent WRAP url:
http://wrap.warwick.ac.uk/60759

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60759
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF COMPUTATION

REPORT NO.56

The eompilafion
oia

Funcfional Language
info

Intensional Logic

by

Rn nG Yagl-u

Com puLer Sci ence DeParLm ent,
Uni v crsi tv oI}Yatrwi ck,
Covenlry-CV4 7AL
Engl an d December 1983

The Compilaliog of a F\:ngtjonal I^anguage- into I-ntensional Logic

Ali AG Yeshi

Computer Science Dept.
University of Yfarwick

Coventry gV4 ?Al,
ENGLAND

ABSTRAST

ln this paper we propose a nerA- imp) emenlation techlique for
funcLiolal languages by compiialion into intensional logic, ICar+g]
Il{on?+] Based on this iogic, we define the concept of rntensional
algebras in which the value of a symbol in the signature rs a famill'
of objects wtuch denoles its value at diflerenl rvorlds rn the
universe. Our target code is the family of languages DE,
definitional equations; it is the family I DE(A) | A is an rntensional
algebraf. A progra.m in a mernber of ttus family is a set of non-
arnbiguous equations defirung nullary variable symbols. One of
these variabies should be the symbol resu-lt.

To shov. both the validity and the efirciency, of our approach
we apply it to the family of languages Isu'um. The source f amill'

lswum= | Iswum(B) | B is an extensional algebral rs the subsel
of Landin's Jswrm which does not aliow higher order functions
Moreover, in lswr.rm we aliot' lswlm's u'here-clause onlf in defining
functions; and we assume that the equations are non-ambiguous.
The exterrsion of our approach to cope with higher order functions
is straightforward and is discussed in [Yag8a].

Finally we give, briefly, two algorithms f or evaluating
inlensional expressions. The first is reductive and based on a set
of rewrite rules, the second is dSrnamic and based on a demand
driven data florr architecture.

This work was supDorted by a
Engineering Research Cormcil

fellowship fron the Science
of the United Kinpdom.

anri

Table of Contents:

0- Introduction

1- The Source Language IStfUM

2- The Target Language DE

3- Intensional Logic

4- Intensional Algebras

5- Example: The Algebra FUNA and Functions wrthout

Nullary globals

6- The Compilation of ISltUM, and the Algebra Flo

6-1 Lists with Back Pointers

6-2 The Intensional Algebra Flc

6-3 Rewrile Rules lor F'Lo

7- The Tfanslation of lS$']JI{ into DE

7-1 The Translation Algorithm

7-2 The Correctness of the Comnilation

B- Conclusion and Implementation

B-i The Reductive Approach

B-2 The Dernand Driven Approach

9- References

Acknowledgments

I wish to thank my friend and supervisor \f . 'Wadge for his

continuous help and encouragment. Thanks are also due to Prof. D. Park

for tbe many helpful comrnenls he has provided during writing thls paper.

G Introduction:

In this paper lre propose a new implementation technique for functional

Ianguages by compilation into intensional logic, [Mon?] fcarag]. This approach,

we believe, will ofier ari efiicient technique for implementing functional

Ianguages. It is not committed to a particular hardware, or to a particular

evaluation technique; nevertheless it lends itself directly to demand driven

tagged data flow architecture.

Interrsional logic is the study of indexical expressions, that is "words and

senlences of which the reference cannot be determined without the knowledge

of Lhe context of use" [I{on?+]. Thus, i-f U rs a collection of contexts and D rs a

domain then the inlensional value of an expression is an indered family denotrng

the'exterrsional'value which lhe expression lakes at drflerent contexts That is,

the rntensional value is a function in lU -->D] 'We shal-l denote the latter by uD

$e call the set of conLerts the trmverse, or the set, of possible worlds.

The marn idea behtnd this approach is to translate programs of a fi.rst order

language, ijke Isrtum, into a nullary order equational language over rnlensional

terms, iike DE. Thls is achreved by introducing a collectron of rnlensional

operators for function application and bindLng, then remove all funclion

defi-nilions from the source program. For example, the function definition

F (X) = X 'X
is translaLed into the nuliary equation

F=X+X

Knowing that the value of the furrctron F depends on lhe value which ils

f ormals take f rom a context to another, we propose the set of f unctton

invocation to be the uruverse of possible worlds. The value of F , then, at lhe

world (or conLext) i should be the value of F at the norld in rvhrch the formal

X takes lhe actual vaiue of the i'th appltcation of F tn the source program

Hence, for bindi.ng actuals to their forrnals we introduce the inlensional

operator act, where for a formal Z and expressions a, b, c,,..
Z=acL(a,b,e,...)

denotes that the varue which the formal Z takes is, a at the first ca]l, b at
the second caII, c at the third, and so on,.. . tr[oreover, we introduce the family
of operators call , where cal\F denotes Lhe i'th call of the non-nullary variable

syrrbol F. Hence the equations

FtX) =XrXy =F{2)+r€)
cal be translated into

F=XrX

Y=calloF+cdl,F

X = act (2,3)

Let us assurne, for the ttme betng, that the unrverse is denoled b;,the set of lsts
of natural numbers. The head of a lisl denotes lhe present function call, rr-Lule

the ta-rl denotes Lhe sequence of calls *-hrch red to the presenr one

f-nnconr rontlrr

if rte define the value of the ex?ression sallr F at a list p

to be the value of F at the list cons(r,p),

and the value oI act(x6, , xn_r) al the hst rl

to be the value of x(hd(ri)) at tarl(r9)

then the value of calll F at a list a will be equal to

Lhe value of F at the list cons(i, a)

rthrch rs equivalent Lo the value of X * X at cons(:, a)

hence, as the value of X at cons(i, a) is Lhe value ol act (2,3) aL cons(_, a)

which is 3 , then the value of F at a is 9

In sectton I of Lhrs paper, we introduce the source iarrguage Iswum. ll l.q

worLh mentioning here that, lhroughout our work, rte follow Lhe termlnologv of

ilan66l, and [HASHB3] and define a language to be a famr]y rn wLuch each

R

member is uniquely determined by an algebra of data types, The language

Isrurn = {Iswurn(B)lB is an extensional algebra] is the subset of Landin's Iswim

which does not allow higher order functions. Moreover, in Iswum we allow

iswirn's where-clause only in deflning functions; and we assurne that the

equations are non-ambiguous. The extension of our approach to cope with

higher order functions is straight forward and is discussed in lYag83]. 'We chose

Iswum becarxe we believe that any lambda-based flrst order equalional

functional language can be translated , simply, inlo a mernber of this farnily.

In section 2, we give a brief and general rrew of rntensional logic. 1{e define

the family L of intensional languages, then we introduce the concepts of

intensional structr:re and intensional environment. Based on tLr-is logrc, we

define in section 3, an intensional algebra to be a triple <U,P,D> where U is a

universe of possible worids, D is a domain of objects, and F is the rntensional

interpretation function which assrgns meaning to different symbols of the

signature. The intensional value of an n-ary symbol in lhe signature is a function

in [(uD)" -- uD]. We call D the extensional domain of the algebra, and uD the

intensional domain.

We have proposed in the above example the set of lists of natural numbers

as a universe for the algebra which rnLerprets the symbols call and act , and

hence function application and actuals binding. In section 3 however, we u.ill

show that such a u.niverse is not suffrcient for compilrng lswum, lle propose, and

define, the set of Usts with back pointers over the natural numbers as a

universe. An element in such a set is a list rrrth two tails; a dSmarnic tail (or a

calling tail), and a staUc larl (or a defining tarl).

We defi.ne then the intensional algebraic function, or the f amily of

intensional algebras FZo. For a conlinuous extensional (classical) X-algebra B,

no(B) is the continuous intensional X'-algebra where X'is X U d and r.9 is the

4

set of constanl syrnbols

[7,act,calf J U Igcall ,ggcatl ,...,dcal|

The universe of F1o(B) is tne set of lists withbackpointers over the naturals.'1{e

denote this by bl(r.r), The intensional rneaning of a constant symbol in X, given

by the algebra FIo(B), is the pointwise extension of its meaning in the algebra B.

The constant symbols of the setTj are assigned some (non-pointwise) intensional

operators; i.e functions in uD-*uD. These operators, as in the exarnple above,

will enable us to resolve some of the complenties associaled wilh functional

ianguages, like caliing global, function cails, binding actuals, ...etc.

Our target code ts the family of languages DE, for definiLional equaUons

and is deflned in section 4. It rs the family IDE(A)]A is an intensional atgebraj A

program in a mernber of thrs family is a seL of non-ambiguous equalions defirung

nullary variable s1'mbols. One of these symbols should be result, For an

extensional aigebra B, the source language Isv,-um(B) is compiled inlo

DE(FIo(B)) The compilaticn algortthm, described rn seclion 5, rs to transiate

the functional equational Ianguage Isin'rlm(B) inLo the nullary equational

Ianguage DE over the interrsronal terms of Lhe algebra FIo(B),

FinaIIy, in seclion 6 rle give, brlefly, trvo algorithrns for evalua[ng lhe

expressions of Flo. The firsl ts reduct'Lue and is based on the sel of rervrite

rules, described in seclion 3 3, for Lhe algebra Flo. The second rs dynanvtc and

based on a demand driven data flow architectwe.

1- Th.e Source l^anguage Isrum

The language Iswum t is the subfamily of Landin's Iswim ff [Lan66] which

does not allow higher order functions. In Iswum, also, we do not allow the xh.ere

clause except in defining functions and as the outer casing for the prograrn.

Hence the following Iswim(Q)-program

f{Z,X) where
('ltnl=A+A+2+B;
X-- Z + Ywhere

Y= 12;
Z= Y +Y;
en*

end

is not in Iswum(Q) because the inner vhere clause is used to define the nullary

variable sl.rnbol X However, the expression

Z + Ywhere
Y= 12;
Z=Y +Y;

end

is a program i.n Isrvum(Q). trioreover, -!ye assume lhat lsrr.upn-ppograms are

already named such that a variable symbol is used only once in the set of all

symbols in the program. For example, the followrng is not a program in

Iswum(Q) as the syrnbol A occurs as a local in the main clause and in the

defirrrtion of F.

F{3)+A where
F(D = if X<= l then l elseX'Afi

where
a = r{X-l) ;

end:
A=4;

end

As Iswum is a farnily, then the syntax and the semantics of each member

f i See What. U [{ea:r
tt I See ll'hat It l{eans

6

Iswum(A) is uniquely determined by the aigebra of data types A. That is why we

decided, here, to give the abstract slnlax of Iswum rather than using BNF

eouations.

Tbe Abstract Syntax of Iswum:

Given an exLensional X-algebra A, a program in lswum(A) is a valid

expression. A valid expression is either simple or a where-clause, and these are

defined recursively as follows:

1- lf a is an n-ary constant symbol in X and

Xs, , Xp-1 ?r€ simple expressions, then a(xs, , x,r-r)

is a simple erpression.

2- If d is an n-ary variable symbol, >i6, , Xn-1 o.t^€ n simple

expressions, then r3(xs, , x',-r) is a sirnple expression.

3- if e is either a simpie expression or a rrhere-clause

and ds, ,dm-r are m valid unambiguous

definitions, lhen

e where

do

vm-1

end

is a rrhere-clause,

Where a valid deflnitron is defi.ned as

1- If ?, is a nullary variable symbol and r is a simple

expression Then

r9 = e is a valid definition,

2- lt lt is a non-nullary variable symbol, and

\o, ' . ' ,?n-r are n nullary variable symbols,

e is either a sirnpie expression or a where-clause. Then

,9(t10,...,?r,-r)=e

is a valid equation,

lTe define the semantics of Iswum(A) to be that of lswLm, i.e. the meaning of

a prograrn in Iswum(A), for an algebra A, is the same as its meaning according to

the sernanlics of lswim.

ftlarnple:

Let QS be the algebra wluch consists of the rationals logether n.ith the usual

mathemaLical operations, and the set of sLrings. Then the fclloiving lswum(QS)-

program calculates the n'th Fibonacci number,.n.hen n is positive; and returns

the string 'Your input is negative' for negative rnputs.

fibb (N) where
fibb(B) = il B)= 0 tJren fib(B)

else 'Your input is negaLive' fl;
nb(A) = if A (= 1 then A

else fib(A-r) + nb(A€) n;
end

2 The Target I-anguage DE:

Introductinn:

lYe introduce here the famity of programming languages DE, for

Definitional Equations. It is the family

DE = { DE(A)IA is an atgebraJ.

Informally speaking, a program written in a member of DE is a set of

compatibie equations deflning nullary variable symbols. Each equation is of the

form variable = expression. The set is compatible rneans lhat each variable is

defined at most once. One of these equations should define the syrnbol result.

Since a program is a set, lhe order in rr'hich the definitions are written rs not

significant So, neither funclion definitions nor lsrtim-like ryhere-slructr.tr^es is

ailowed in DE.

Clearly, DE is a trivial equational language, however, ils rmporlance comes

when we start considering the subfamily of DE in n'hich the equations are over

jnlenstonal terms. Hence, use the language as a targei in our cornpilation

technique.

Since DE is a family, then both the syntax and Lhe semantics of a rnember

DE(A) is determined by the algebra of data types A.

The Symto-r of DE

Let Abe an algebra. Thenthe abstract syntax of DE(-A) rs deflned as follorr.s:

The set of DE(A)-expressions is the smallest set X such thal

- All nullary variable symbols are in X,

- If y' is an n-ary conslant symbol in the signature of A,

and fs, , fn-1 are in X then

,l,G,a , , {"-,) rs in X

A DE(A)-equation consists of a lefL hand side (Ihs) which is a

nullary variable symbol and a right hand side (rhs) which

is a DE(A)-expression

A DE(A)-program is a set of DE(A)-equations. such that

+- Compatibility: each lhs variable symbol is defined at most

once '

*- One of these equations deflnes the symbol result,

hcurrervces of ltarinbles in DE:

CIearly, occurrences of variable symbols in DE(A)-expressions are ali free,

In a DE(A)-program however, an occurrence of a variable symbol ts bound if that

symbol occurs as a lhs of an equation in the program; otherwise it is a free

occurrence.

The semantics of DE

DE(A)-expressions:

Grven an algebra A, and an environment e; the semantlcs of a DE(A)-

expression r, denoted by F o,. t is defi.ned recursively as foilows:

a: if r is a nullary variable symbol, then the value of r in lhe

environmenl e is e (r); i e. Lhe vaiue assigned

to z by Lhe environment r.

Fn,"r = e(;)

b: If r is of the form r/(>6, ' ,x,.,-,)where

!u is an n-ary constant symbol, and >6, Xn-l

are DE(A)-terms, then the value of r in the environment

10

e is the value of ry' assigned to it by the algebra

A applied to the values of x0, ' , Xn-r relative to the algebra A

and the environment e. i.e.

F n," r = A(V) (Fr," xo, , Fa," x,,-r)

Defiwttion:

Given an environment e, and a DE(A)-equation

Y = kpression

lTe say that e satisfi.es the equation if and only if

e (9 = Fr,' (E;rPression)

\{e say that e satrsfies the DE(A)-program P rf and only if c satisfies ali lhe

equatrons of P.

DE(A)-Progrorns:

Given an algebra A, the value of a DE(A)-program P in the environrrrent e , is

the value of the varrable resuft rn the least envrronrnenl r', such thal e' sallsf,es

the equatlons of P and agrees with s except, at rnosl on the values assigned to

the locals of P.

11

3Intensional l,ogic:

Both logicians and formal linguists recognize two theories in the study of

meaning of languages, The theory of reJereruce er dervototion and the theory of

ntearvLng or Fragrnafrcs. The first was developed by Tarski, Goedel, Hilbert and

others; and was later known as the model theoretic approach to semantics. This

is concerned with the relation between expressions and the objects they denole

or refer to, according to a prior denotaLion function. On the other hand,

pragm"atics is the study of the relation between expressions, tLre objects thel'

denote, and the contexts of use or utterance. ln other words, it is concerned

with the study of inderLco) erpresstons, that is "words and sentences of rvhich

the reierence cannot be determined rvithout knowledge of Lhe context of use"

[Mon?a] Hence, if we assume lhat U is a set of contexls, ano D is a domain then

the value of an expression is a fulction from U to D, i.e an element inuD

To cast sorne lrght on intensional logic and pragmatrcs we defi.ne here a

simple family.f, of intensional languages In members of -L, we shall consider -L-

formulas as .L-terms. So in the inlerpretatton of a language we shall tafk about

values of lerms rather than validily and salisfaction of formulas. This in some

sense coincides wrth our intended use of the language as an implementatron

technique rather than as a proof system. Moreover, -t is a family of flrst order

Ianguages, i.e. we allov- flrst order intensional operators orrly.

Synto.r :

Let E be a set of constant symbols with difierent arities, then the set of

terms of I(X) is defined recursively as follows:

lf / is an n-ary corrstant symbol inthe signature X, and

{0. fr, "', {r.,-1 are n terms,

then

L2

/(fo,ft, ",f,'-t) is a Lerm.

- If rl is arr n-ary variable symbol, and

fo, ft, "' ,fn-r are nterrns,

then

d(f0 ,f, , " "f,.,-r)
is a term,

Senwntits:

l1re give here a formal defi.nition of an i,nten-sLcnal structttre in llhich we

define, as weii, Line intensLon function relative to the set of possible worids of the

structure. Then rve deflne line nteaning funclron relative to an inlensional

struclure together rtith an intensional environment. lt is I'orlh noling here that

ari intensional environment rnust be defi.ned relalrve to a cerlatn slructure so

that iL maps each variable symbol lo an element of the intensional domain of the

structure; that is, a function from lhe set of possible worlds of the structwe to

Lhe exLensional domain.

Def"wLtion 1:

Let -L(X) be an intensional language An inlen-si;;noJ interpretaticn, or a

structure, for .L ls a triple <U,F,D> where

U is a nonempty set of possible rtorlds, the uliverse

D is a nonemp[y dornain of oblects, the extensiona] domain,

F is lhe intension function ithtch assigns to everl'

n-ary conslant svrnbol yf, in the signalure I a

function in

[(uD)' --' uD]l

Defiwttion 2:

Let U (=<U,D,F>) Ue an tntenstonal strucLure.

13

A U-intensional environment e is a function

I V -- uD] where V is the sel of variable symbols.

Hence, an intensional environment assigns to each nullary variable symbol a

function in uD

DefinLtinn 3:

Let ,L(X) be an intensional language.

LeL U (=<U,D,F>) Ue an intensional structure for I(X),

Let e be a U-intensional enyironment,

Then the intensinn of an tr(X)-term z relative to the structure U and the U-

intensional environment a is denoted by F u,.(t) and is defined recursively as

f ollows:

If ; is of the form /(fs, f r, ..., {"-r)

where tl'is an n-ary consLant symbol and

fo, {r, ..., f,._, are n terms then

(Fu,.r) = F{9)(Fu,,fo, ..., Fu,"f',-r)

If r is a nullary variable symbol, then

(F u,. r) = c(;)

4- lntensional Algebras:

Before introducing lhe concept of intensional algebras, we shali recall some

definitions of classical algebras- or what we shall call from now on extensional

algebras. For more details on these algebras we ref er the reader to lADjTB].

Defnitions 1:

A signature, or an operalor domain, X is a collectron of constant symbols

I4

with di.fierent arities.

An extensional X-algebra I is an ordered pair <F,D> such that; D is a non-

empty dornain, and F is a function mapping each n-ary constant symbol in X to

an operalion of degree n on the domain D; i.e, a function in [D" -- D]

If A (=ap,D>) is an extensional X-algebra, then D is called lhe domain of "4

and denoted by l/ I X is called Lhe signature of ,4.

A domain is a CPO which, at least, has the truth values ltt,trl and Scolt's

undefined element L

DefinLtian 2:

An intensional l-algebra B upon U is a triple <F,D,U> such that; D i.s a non-

emptl'dornain, lJ ts a non-empt1'seL; and F is a functron mapping each n-ar;,

constant symbol in E to a funcLion in i (uD)n -- uD
]

1f A (=<F,D,U>) is an intensional X-algebra, then D and U are called,

respectively, the extensional domain and the universe of A. The set of all

functions from lhe un['erse U to the extensional dornain D, denoted by uD, is

called the intensional domain of ,,1 and denoted by ll | \te can sa),, then, that

an intensional l-algebra ,4 maps each n-ary operator symbol in the signature X

to a funciion of degree n on its rntensional domain. Hence, r,r'hen we talk about

the domain of an intensional aleebra, from now on, we mean the intensional

domain

Defi.nition 3'

For an)'two (either ertensjonal or intensional erc)usrvel1,) aigebras

,4 and B, A is said to be a subolgebra of 8, denoted by A . B, rt

- the signature of .4 is a subset of the signature of B, and

- the algebra B assigns to the conslanl symbols of the signature

of ,,1 the same functions as those assigned by',4, r.e.

15

B,/ signature of. A = A

Or in other words, for every constant symbol r/ in the signature of ,4,

'lm = '!e

Definifinn 4:

LeL A and "B be two X-algebras, then aE-horuornorVlai.srn /:A--B is a

function such that for any n-ary operation symbol r/ in the signature of ,4 and

anY ao, , a"-1 in 1,4 |

f (a(!))@o,. .,a.,-r) =@(11,))U (ao), , f (u"-,))

Definttinns 5:

Let Ip be the identrty function f or composition rn the class of I-

homomorptlsrns. That is, for any X-homomorplusm /

f olz = Ir o f = f

Ttreng is called the inverse of /, and Cenoled by -f -t, if and only if

g o I = J' o g =7t

Let h be a l-homomorphrsm. Then h rs called a X-tsomcrpLvi-srn rff there rs

a X-homomorphism g such that g = h-r. Any two X-algebras ,4 and.B are

isomorphic, writlen as I = -B ifl lhere exist a X-isomorphism from A Lo B.

hoposttion 1

If the urriverse of an inLensional X-algebra ,4 is a singleton, then there exist

an extensional X-alsebra E such that

A=B

Defiwttion 6:

Let I be an extensional X-algebra, and U be a set. The pointui-se erten-gLcrt

of .4 upon l.l rs lhe tntensional algebra, denoted by ,4u, and defined as f ollows:

for every n-ary operator s)'rrrbol rl in the signature X, Au assigns a

function of degree n on the set u lA I such that

Vi€U, and w fo, . . . , fo-l in ulA
I

au(o(fo,' . ., f'*,))(i) = a(rl(fo(i),"''6"-'(i)))

An intensional algebra B is said to be based on the pointwise intensional

algebra A if A is a subalgebra of B.

)-(

g Exarnple: The Algebra FUNO and F\rnctions without Nullary Globals:

In this section we give a preliminary exarnple of an intensional algebra, and

show how to employ such a concept in cornpiling functions. lTe consider here,

only, the subset of Isuum where function definitions do not have global

oceurrences of nullary variable symbols, Consider the following example

ffi rhere
X = F(2)+ c(3) + c(2) :

FlA)=A*A;
G(B)=2*B;

end

ldeally, whatwe would like to be able to say inslead of f{A) = A+Ais F=A+A

Since the value of F is a function of the value of its formal A , and the value

which A takes varies frorn a cali to another: then we can consider Lhe universe

of the algebra to be the set of f unction cails. Thus, from the equalion F = A + A ,

the value of F in any world is dependent on the value which A takes tn that

sarne world, We shall represent lhe universe of function caIIs by the set of lists

of natural nurnbers, The head of a iisl denotes lhe present (the currenl)

function call, while lhe tail denotes the iist of calls which led to the present one.

From the texl of the program above,

call of F is X and of the second call is 2

act and define the f ormal A of F to be

A = act (X, 2)

we know that the actual of the first

. For Lhrs, we introduce the operator

This equation, in-formaliy, sLates that the value of A at the first call is the value

of X, and at the second cail is the value of 2. For function application, we

introduce the family of operator s1'mbols call where cal\ H denotes the i'th

application of the function H. Hence, lhe expressions FlX) and F.(2) are

translated, resp,, into calle F and call, F Similarly, G has been calied tr'+-tce tn

the program, hence

G = 2 +B

-LO

B=act(B,Z)

and G(3) , G(2) are translated, resp., into callo G a1ld salll G, So, the above

prograrr is translated into

result __ aailo F

X= callr p I sail, G + call, G ;

F=A+A;

A=act(X,Z):

G=2+B;

B=act(B,Z)

To formalize the dtscussion above we introduce the farnily of intensionai

aigebras FL|N0. It is a function which maps extensional algebras to rntensional

ones. For an extensional X-algebra z1 , FUNO (u4) is an intensional X'-algebra. Thrs

is because FUN0(,4), besides assignrng meaning to the constant symbols of l, it

assigns meaning to the new constant symbol act and to Lhe famill, of symbols

call. 11e*'uver, rre can, sirnply, say lhat FU,VO(l) is a D-algebra because X'is a

function of X. It is the union of X and the set [act, call].

The lntensional Algebra F(.WO

Given an err"ensional X-algebra l, the intensional. X-algebra FUNA (,a) is tHe

ieast f lntensional ! -algebra such that:

The signature X'of F[.:VO(,4) = X ; [calll:i€oJ ; [actj

The universe L of FUN0 (.4) is the seL of all lists of

nalural numbers.

The exlensional domain of .trLliV0 (l) is the domain of 21.

t the least u'p Lo rne :eletion subaloebro def,aed beiore

_L i,

FUNO extends A pointrvise upon the universe L, that is

for every n-ary constant symbol ry' in the signature of .r{,

for every n terms fo, . . . , frr-r in FUNO(A),

and for every list p in the universe L,

(ruNo(a)(?(fo. . . . ,f"-,)))r =

A(rl,)((FUN 0 (fo))e,, . .,(F uN o (f"-'))r)

FUNO assigns rneaning to the family of constant symbols call 3s

follows:

for every iec^l

for every variable symbol {, and

for every list p in the universe L

(FUN 0 (,4)(call;(f))), = {cons(i,s)

FUn"0 assigns the follon-ing rneaning to the constant symbol act

for every list p ln the universe L

and for every n expressions fe, . ' ,f',-r

(FUN0(z{)(act(fs, .,fn-r))r = (f(hd(r)))'rrrl

where hd, tl, and cons are the usual head, tail, and

construct functions on lists (resp.)

According to the analysis above and the definition of FLIN0, we can compile

the subset of Iswum where function definitions do not have global occurrences of

nullary varrable symbols to equations over Lerrns of the inlensional algebra

F{/ '/0 In olher words, if we call such a subsel IswumO, then for an extensiona}

X-algebra A, the subseL Isrvum0(A) can be compiled inLo the member

DE(Fi,WO (A)). The lalter of course is a member in our target language DE ln the

follouing example, rve shcw that we can ccmpile and evaluate even recursivc

functions Lo equations ovcr the algebra F(|NO as far as the deflmtton of thc

20

function does not have global occurrences of nullary variable symbols.

ftlarnple :

Consider the following program in Iswum(Z), where Z is the algebra of integers

together with the usual mathematical operations +,-,+, and div.
Fac (2) where

FacfX) = if X le 1 then 1 else X'Fac(X-l) fi;
end

Using the same analysis described above, we can translate this program into

the follon'i.ng program in DE(,FIINO (Z))

result = calhFac;

Fac = if X Ie 1 then 1 else X *call'Fac fi;

X = act (2,X-1);

Note thal, the value of the DE-program should be the value of result at lhe

empty list because no functions had been called yet

The value of result at the lrst i] equals

Lhe value 6f gallc Fac eit [] (by substitution)

whichis equal lo the value of Fac at the hst i0]

(by the inlerpretalion of call)

bv direr.l srrhclil nl ron this is eairal to Lhe value of

(if X te 1 then 1 else X *calllFac fi) at Lhe list i0]

By substituti.on, the value of X at [0] rs equal to the value of

act (2,X-1) at [O] whuch is 2 (by the interpretation of act)

Thus lhe value of resulL at i0] equals the value of

(2 *caltrFac) at i0] t'Luch equals to the value of

2+ (the value of Fac at the list it 0])

(note here that both * and 2 are tnterpreLed porntrvrse)

this is equal to 2*(the value of if Xle 1 then 1 elseX taltr Fac f,) at ii O])

now lhe value of Xat [i C] is equal to the value of

21

act (2,X-1) at [1 0] (by substitution)

*'hich is the value of)Gl at [0] (by the definition of act)

whichis 1 because the value of Xat the list [O] is Z

Hence, the value of result is ?+1.

The above evaluation can be represented in the following tree where lines

denoles equalities:

result at []
I

ealto Fac at []
It-_

Fac at iOJ
I

if Xle 1 then 1 elsex*callr Fac fi at l0]
I
I

2 at [0] salltFac at [0]It
2 Fac at lt 0l

I
if X le 1 then 1 else X * calll Fac fl at il 0]

It_
1 at [10]

I
I

i

22

6 The Compilation of Iswum and the Algebra -FZo

Once we sLart considering Iswum-prograrns and allow function defirrrtions to

have global occurrences of nullary symbols, the algebra FUNO fails to

interpret either function calls or globals. For example, consider the followrng

Iswum(Z)-program:

Y where
y = r{Z);
A=5;

F{t) = a +A + G(A);
G(b)=A*b;

end

If we translate F{a) and G(b) resp. as

F=a+[+calloG and G=A+b

then lhe value of F(2) is Lhe value of the expression

a 'A + cailc G at the list l0] as flZ) is the first call of F. This depends on

the value of A at [0] However, we know that A is not deflned r'r'ittun any

function call It is defined at the outer rnost level (where-clause) but called from

the flrst cali of F . That is, Lhe value of A at [O] sfroUa be r:ndeflned, and we

should evaluale A at i] instead. Moreover, the value of F al [0] depends on

the value of calb G rrhrch is equal to the value of G at the iist [0 0]; tir,rs

depends on the yalue of A at i0 0] and the value of A at i0] n'hich are both

undefined, Such erors occur because the universe of FUNO denote irsts of

furrction calis, hence facilitatrng dynarnic binding only. we need an algebra and a

universe whlch factlttale for static binding as weil as dynamrc btnding'

For Lhis purpose, l,e defi.ne the intensionai algebra FZo The universe of

FZo, is the set of special kind of hsts. We call them lists wilh back pointers The

imporLant property about these lists that lhey have two Lails: the d5marnic (or

calling) tail and the static (or defining) tail

rfe introduce now a forrnal deflnition of the set of b-hsts (lisls l'ith back

23

pointers) together with Lhe partial order initial segment defi.ned on this set. rffe

afso define on the elements of thrs set the operations dtl, stJ and link for the

dynamic (calling) tail, the static (deflning) tail and b-list constructions

respeetively, Next, we introduce a formal definition of the algebra Flo.

6.1 Lists with Back Pointers:

Definition:

Let A be a set. 1{e define the set bl(A) of b-lists, or lists with back pointers

over the set A, together with the relation initiat segment, denoted by { on the

elements of bl(A) as follows:

1- the special symbol A is in bl(A), and

w ae bl(A) A4a

2- if a eA, c,d e bl(A) then

a = (a,c,d> e bl(A) whenever d{,
"

3- V a = <a,c,d> an{F = <a',c',d'> in bl(A)

acp<+a=Fora4d'

DefinLtion:

lTe define the followrng functions on the elements of bl(-{),

for any a = (a,c,d> e bt(A)

hd(a)=3 hd(A)=1

dtl(a)=3 dtl(A)=1

stl (a) = 6 stl (A) = 1

Definttinn:

'\fe define here the b-lists constructor link, which takes an eiemenL a e A,

and two lists a,B e bl(A), where P 1",and constructs a neu b-lisl whose head is

24

a, dtl is a, and stl is p,

For any a€A, and a,p € bi(A) where P 4a, the b-list tink(a,a,p) is the b-Iist

which satisfies the following equalities

hd(link(a,a,F)) = a

dtl(link(a,a,F)) = o

su(Iink(a,a,F)) = F

6.2 The Intensional Algebra Flo

LlefiniLion:

Let I (= <F,D>) bu an extensional I-algebra The intensional l-algcbra

no(A) is the triple <U,F',D> where

a, the universe of possible worlds U ls lhe sel b-hsts of natural

numbers; i e bl(r.')

b; Lhe intensional interpretation tunction F' extends I pointu'ise.

l'hat rs, lor everS'n-ar y constant symbol 1l in I, Lhe sequence

of FTo -expressions x0, , Xn-l, and every ueU

(F'(?)(xc, , xn-r))" = F(9)(F'(x.)("), ,F'(x"-1)(u))

c: The function F' assigns meaning to the folioirings:

The s1'mbol 7:

For every erpression o, and ever)/ u € ll

(F'(Z t))" = tstr(u)

The s1'mbo} act

For every u € t,, and every sequence of

expressions x6, , Xn-l

25

F'(act(xs, ,x,.,-r)),,= x(na(u))6r11"1

The famiiy of operator symbols Icall,Jr."

For every .FZo -expression e

for every i €rr, and for every ueU

(F(cag t)),, = Elink1i,u.u;

The family of operator symbols [gcal\Ji."

For every expression c, every i ec^r

and every ueU

(F' (gcaltl E))., = Elink(i,u,sr1(u))

The f amily' of operator symbols Iggcallii."

For every expression r, every i €a;,

and for every u€U

(P' (ggcall, e)),-, = etjnk(i,u,srl(str(u)))

In general, for every j er:, there is a family of operator symbols Igjcall1J1., such

that

For everl' je a,>, for every expression e in F?o (A)

every l €ci,

and every ueU

(F'(gjcalli s))" = tlink(i,u.srr(s!t(srl(u))

where stl is applied here j Limes

6.3 Rewrite Rules for Ure algebra -trZo:

These are directed equalions for syntactic manipulatron of terms The

difference belrveen usual equations and rewrite rules or directed equations rs

26

that equations denote symmetric equality, i.e. A = B implies B = A whjle in

rewrite rules the equality is directional or the equality implication is one sided.

Moreover, these rules are purely syntactic, and the only substitution allowed

here i.s the one based on pattern matching, \4e shall, nevertheless, use the

semantics to prove their correctness.

These rules are over the terms of F'Lo(a), tor any extensional algebra A;

which means that both sides of each rule ur" no(,A)-terms. Thus proving a rule

correcl is Lo prove thal both sides of the rule denote lhe same object (have the

sarne meani.ng). Since no(A) rs intensional, and the value of a term is a famill'

denoting its value at each rvorld in Lhe universe, then we have to shoil' lhat the

equality holds for all lhe rtorlds in'.he r.rniverse. for e>:ample, to prove the

rerrrile rule A=E}, for the algebra FLo(A) wrth untverse U, we have to prove that

For every lrorld u € U

(rzo (,q)(a)). = (flo (r{)(B))"

Since FZo is a famrly of algebras, '"hen the rern'rite rules for each member,

no(A), is determined by the rewrite rules of both IZo and A Horvever, i'r'hat i+'e

are going to introduce here is the set of rer^irile rules for the rihoie famill FZo no

maLter tvhat ,4 is. The orrly rule which concerns the algebra A ts the flrst one It

states that Lhe operators ol F'Lo are distributive over those of ,4 For example, in

no(Q), where I is the extensional algebra over Lhe rattonals, the following

equation holds

call; (X+Y-3) = calliX a gall; Y - calli 3

lTe give noin'the rewrite rules for the algebra FIo, then jusLrfl' Lhe correctness of

rules i and 3 as examples Such a justification is based on the semantics of

terms given by the definition of. FLo, For the correctness of the other rules see

[YagB3 1]

27

(Ru1e 0) If r/ is an n-ary operator symbol in the signalure of A,

and xe, ' ' ' , &,-r are l-?o (,4)-expressions, then

for every operator s).rnbol t9 in the signature of F'l"o

O(r/(xo, , X'-r)) = ra(tl(xo) t9(x"-t))

If X)6, ,)t-r are I'Lo(A)-terms, then

(Rule 1) calti (act(Xs, ,)L-t)) = X

(Ruie 2) gcaltl (act(ft, ,)G-r)) = X

(Rule 3) cal! (7X) = X

(Rr:le a) This is a f amily of rules concerning the family gncall.

They are;

Bcalli 0E = lX
ggcal! (tE = t^tX

BBBcalIi 0E =7tyX

generally speaking

gncal\ (ZE = Z"X

Proof: For simplicity, we shall denoLe (F-Lo (A)(D)" by lX]"

Assume that U is the universe of f'Io (A)

X)fo, . . ,)L-r are F"lo (,A)-terms,

then for every u E U

(i) | call; (act()fu, ,)Q-')) l.
- [act(\, ,]L-')) h"*1i,".";

= | x ldt](lrnk(i.u.u))

=[x]"

(3) [call; (ZE]..' = iTXlri"r(i,".")

= lX]stt(ti,,t (i,u,u))

= [X],

?B

Erample: From the above rules we can derive many others, For example

calli (gcalli (Z X) = X

".\ (.r,tli (ggcaltu (Z X) = X

29

7 The Translation of Iswum into DE

Y{hile a program in Iswum is either a simple expression or a where-clause, a

prograrn in DE is a set of equations. Hence, the transiation algorithm will be a

function mapplng each Iswum-program into a set of equations in DE(FZo(A)).

The cornpatibility required in the Larget DE-program is captured by the

eompatibilily of the source Iswum-prograln. Syntactically, apart from being a

simple expression, an lswum-program can be a rchere-clause with a structured

set of equations. That is, a where-clause which conlains anolher clause as a

submodule. I{e shall call a set of equations enciosed in a where-clause a

textual level, so the program

X+C where
X=Y(Z,D:

Y(a'b) = Vwhere

uo+
end

consists of two textual leveis. The

function symbol Y. TexLualiy, lhe

conto:Lned in rather than a subsel

set-theoretic terms which does not

marn (ouler) one and the one defining Lhe

lalter rs contained in the former. lire say

o/ because the latter means something in

agree nth Lhe scope cont'entlons,

The important point we want Lo remark here is that translation

(compilalion) will never be done in a vacuum lfhen we compile an expression,

we have to compile it relative to the set of equations, or the terlual levei, it

appears in together with all lhe texlua] ievels rthich contain the present one

This is so thaL we can determine whether the variable symbols rthich occu-r In

the expression are locals or globals; moreover, lte want to be able bind lhe

variable symbols to lheir deflnitions properl,r'. Therefore, we shall talk about the

compilation of an expression e relative to a textual jevel C, we shall denote this

by cornpg (e). Moreover, a variable symbol v is local in a textual level C rf one of

30

the equations of C defi.nes v. 1Te denote that by locals (v). Ottrerwise, it rs

globals (v). tr{oreover, we shall denote the catenation operator on strings by ^.

For example, for the strings xyz and abc, xyz^abc is the stnng xyzabc.

?-1 The lYanslation Algorithm.

Given a prograrn P in Iswum(A), for an extensional algebra A, the target

program P' of DE(FIo (A)) is deflned recursively as follows:

if P is a srmple expressi.on in Iswum(A) then P is the singleton

I result = compexprP j

if P rs of the form

X where D end

where X is an expression and D is a seL of equatrons

then P is

I result = compexpo(X) J g, { compdefp(d) d € D]

where for a textual level C, a variable symbol v, a defi.nition d and an erpression

compex?c(s) =

if c is of the form op(>g, ' v*-r)

where op is an n-ary conslant s.yrnbol and

xo, Xr:-r are n eXpfeSSIonS,

then

op(compexpc(xo), compe>:p6(+-r))

if e is a nullary variable syrnbol Lhen

compvar6(e)

if r is a f ormal then e

rf r is of the f orn-r F(xs, \-r) u'here Fts an

31

n-ary variable symbol and &, ' . . &-r

are n expressions, then

compfun6(F)

compvarg(v) =

if C=Q then v

else if globalg(v) then

7(compvarg'(v))

where C' is the first outer textua] Ievel containing C

else v

compfuna(F) =

ifC=QthenF

else if globalg(F) then g ^ (compfuna,(F))

else cal\F.

where C is the fi.rst outer textual leve} containing C,

and i is the number of limes the funcLion symbol F

has been applied so far

compdefg(d) =

if disof theform Y=e ,rvhereVrsanullary

variable s1'mbol, and e rs an expr essron

in lswum(A), then

[Y = compexpg(e)J

if d is of Lhe form F\x3 ,4'-r)= e

32

\rhere r is a slmple expression in Iswum(A),

F is an n-ary variable symbol, and

rh, ,&.,-r is the list of formal parameters, then

IF= compglexpc0 J U Icompformp(x1) lie nJ

if dis of the form F(x6, ,xlr-r)= e

where e is a where-clause exDression and of the forrn

d where E end

then

IF=cornpexpsdj

g I compformp(x;) i i e n J

;Icompdefp(d)ideE]

cornpforf x) = [x = act(a6 a--r)
J

where for each i in m, a; is Lhe actual of

the i'th rnr.ocation of F

compglexpc (r) =

if e is of the form op(4 x"-r)

where op is an n-ary constant symbol and

)fu, &-r are n expressions, then

op(c ompglexpc(xc), compglexp6(x. * 1))

if e is a nullary variable symbol then

7 compvar6(e)

if c is a f ormal then r

if e is o{ lhe form I{><e, xn-r) rvhere Fis an

D-ar1, variable symbol and x6, \-r
are n expressions, then

g ^ (compfunc (F))

33

Fkample: According to the above algorithm, the

f{3) where
F{X) =Ywhere

Y = HCx) + H(2) ;
H(c)=c+G(A):

end;
G(B)=A+B;
A = 1O;

end
is compiled into

result = galloF;

F=Y;
y = sallcH + callrH ;

H=C+ggcallsG;

G=7A+B;

A= 10;

X=aet(B);

C = act (Xz)
'

B=act(7zA);

following program in Iswurn(Q)

7-2 The Correctness of the CompilaUon Algorithm:

Informally, we have to prove that, for every extensional algebra A, the

meaning of a program P in lsra.um(A) is equal to the meaning of the program

comprog(P) in DE(flo (A)) However, there is a slight falsilf in this argument

because the meaning of a program in jsrr-um is an extensional object, whrle Lhe

meaning of a prograrn in DE is rntensional. That is, if D is lhe domain of lhe

algebra A, then the value of a program in the source is an element tn D, and tn

the Larget is an element in uD where U is the u-rLiverse of FZo (A) To be more

precise, we have t.o prove that the value of a prograrn in Is*rrm(A) is equal to lhe

value of its compilation in DE(FZo (A)) at the b-hst A in t.l rvhich is Lhe home rtorld

or the origin of the universe

34

Furthermore, the meaning of a program in Iswum(A) (or in DE(,rZo (A))

resp.) is dependent on both the algebra A (or FZo (A) resp.) and an environment.

However, while an environment for Iswurn(A) is a functron in [Y -> D], where D is

the domain of A; an environrnent for DE(Fto (a)) is a function in [V --t uD], where

U is the set of b-lists described earlier. Thus, if we are to compare the meaning

of a program in Iswum(A) with the meaning of a program in DE(,r'lo (A)), we have

to make sure that the environment for the f ormer corresponds to the

intensional environment of the latter. ThaL is, the value which the extensional

enl-ironrnent assigns to a variable symbol is the same as the value of that symbol

in the inlenslonal environment at the b-list A Formal}l' speakrng, if o rs the

intensional enr,'ironment then the extensional environment o' shoul d be defined

as X v Io(v)(A)]

l{e st,ate here the theorem which rs lhe central part of the correctness of

the comptlation algorithm However, the proof is too long and Lechncal for this

paper, we refer the reader to -)'agE3]

Theorem:

For every exlensional algebra A, for ever),

and for ever), program P in Israrrm(A)

(Fn,(A),c comprog(P))(A) = Fn,,,P

where 6' = \1,;e(v)(A)]

intensionai FZo (A)-environmenL e ,

35

& Conclusion andImplementation fsshniques for DE:

The approach we have described compiles struetured first order functional

Ianguages into equational nullary order intensional languages. This, we believe,

ofiers a wide range of implementation techniques for functional languages

whether on conventional machines or on ones based on data flow principles. In

this section we view, briefly, two ways of evaluating programs in DE'

B-1 The Reduction MetJrod:

Since the larget code is an equational language, a program induces an

evaluation lree whose root is resul.t, and whose nodes are terms of the

intensional algebra F'Lo. In this melhod we consider a program in DE(flo(A)),

for an extensional algebra A, as a set of drrected equation. Thts set togelher

with the rewrite rules of the algebra F"Lo and those of the algebra A forms a set

of reduction rules for the prograrn. Hence, a reduction on the evaluation tree

representing the prograrn. For exarnple, the followrng Iswum(Q)-program

G(3) where
G(A) = F{z,A)+ x;

X=3+F{2,6);
f'(B,C) = B*B + 2+C ;

Z=5i
end

is translated inLo the DE(.F'/o (A))-program

result=ca1bG;

Q=gcalloF+7X;

X=3+calltF;

F=B+B+Z|C',

Z=5;

A=act(3);

B = act (2,2) ,

C = act (4,0) ;

,JO

Using the rewrite rules for the algebra fZo (Q) described before, we can deduce

the value of result from the above set of DE-equations as f ollows

result = gallo G

= callo (gc"lloF+ zD (Subs'n)

= calb (e"ailo F) + callo 7 X (RuIe 0)

/r\.,..,..\r,f

calloTX=X (Ruie3)

= 3+ callr F (Subs'n)

= 3* callr (B+B + z+c) (Subs'n)

= 3* callr (B*B) + callt (2+C) (Rule 0)

= 3* callr (B) + catl, (B) + calll 2 + calll C (Rule 0)

(z)

calll B = caJlr (act (2,2))

= 1, (Ru-le i)

-5 ,, (3)

calll C = callr (act (A-6))

=g (Rulei)

(4\'.'.,'..,\ */

So calls 7y.= 3 + 5+5 + 2r"6 = 4O (2),(3)&(1)

callo (gcallo F) = callo (e"all€ (n*n + 2"C))

=callo (ecalh (B'B)) + calfu (g.all. (2'C))

calfu (gcallo (B)) = calls (gcaUs (act (2,2)))

= callo 2=2

37

callo (gcallo (C)) = callo (gcallo act (A,6)

= callo [= galto act(B)

=$

henee cnllo (gcnllo D = Z.e + 2rB = 1O

and resull = gallo (gc"fh F) + eallo 7 X

=10+40= 5o

Ib.e Demand Driven Method:

In this rnethod we consider the program as a data flow net where lhe nodes

are processing stations and the arcs are communication channels carrying data

tokens (datons) Each daton consists of two parls; an expression and a b-list as a

tag representing the world rn the universe at which the expression has to be

evaluated.

..-.---.:'
I

expression I tag: b-hst I

I

a daLon (tagged expression)

The data flow model we are proposing here is a demand driven one. In such a

model a demand is generated from the output port of the net and travels

upwards. If such a demand passes through the node - E - representing

addition say, then it splits into two demands. Each demand travels upwards

along the input ports of Lhe node. Thus, we can say that lor any expressions X, Y

and a t.ag a

Dem(X+Y, a) = Dem(X, a) + Dem(Y, a)

Clearly, if C is a constant, then

Dem(C, a) = C

3B

Basically, there are two classes of processing stations. Ttre fi.rst class are

the nodes which correspond to the operators of the object (extensional) algebra,

e.g the operators of Q in FZo (Q). The second corresponds to the intensional

operators of F'|.o, e.g 7, cal\ ,...etc, A node (a processor) of the first class

performs operalions on the expression parl of the daton and needs the tags of

its inputs (if there are rnore than one) to be matching before perforrning any

operation. For example,

"m4and m are two datons

representing the addition operation in Q fi.res if and

then the nei+ daton

then the processor

onlv if a = B. The resu-lL is

r--;-_1
I x+Yla I

On the olher hand, a node represenling

manipulates the tag part of the datons. For example,

passes through the node

resull is a dernand for the

F i unt<(i,a,a)

Clearly, from the defirution of the

operaLor Dem in the follor'r'ing dtrected

an intenstonal operation

if a demand for the daton

representing lhe inlensional operator call1 , lhen the

d aton

Dem(F, irnk(i,a,a))

Dern(F, a)

algebra FLo we can specifl" the meta-

equatrons:

Dern (zX, a) = Dem (X, stl(a))

Dem (act(X, ' ' 'K-,) , ^) = Dem (X(hd(
")) , att(a))

Dem (cat\ X, a) = Dem (X, B)

whereF=ti'nk(i,a,a)

Dem (gcalli X, a) = Dem (X, p)

where F = Iink(i'a' stl(a))

Dem (ggcaltl X, a) = Dem (X, p)

where F = link(i,a' stl(stl(a)))

ftlample:
'l?e consider here the same prograrn discussed in the Iast section

result=calhG;

6=gcallaF+7X;

X=3+caII,F;

F=B+B+2+C;

Z=5:

A= act (3) ;

B = act (2,2)
,

C = act (d0) ;

As we have rnentioned earlier, the value of the program is the value of result

at the empty b-list A. Hence, we start with the demand

Dem(result , A)= Dem(ealla G, A)

= Dem(c, link(o,A,A))

= Dem(gcallo F + 7 X, link(0,4,4))

= Dem(gcallc F, Iink(0,4,4)) + Dem(7X, link(0,4,4))

Dem(gcailo F, iink(0,A,A))= Dern(F, link(0,8,4))

where F = Iink(0,A,A)

= Dem (B+n + 2*C, link(0,8,4))

40

= Dem (8, link(O,p,A)) . Dem (8, link(O,p,A))

+ Dem (2, tink(0,p,4)) - Dem (C, Iink(0,8,4))

Dem (B , Iink(o,p,^)) = Dem(acL(z,z), link(0,8,4))

= Dern (2, F)

=l

Dem (C, Iink(0,8,4)) = Dem (act(A"6), Iink(0,8,4))

= Dem (A, p)

= Dem (act (3) , Iink(o,AA))

=Dern(3,4)

-a

Hence Dem(gcalto F, irnk(O,A,A)) = Z+? + 2+3

- tv

Dem(7X, tink(0,4,4)) = Dem(XA)

= Dem(3 * call, F, A))

= Dem(3 , A) + Dem(call1 F, A))

Dem(calll F, A)) = Dern(F,link(1,4,4))

=Dem(B+B + z+C , Iink(1,A,4))

Dem(B, link(i,A,A)) = Dem(z, A)

-5

Dem(C, Iink(1,4,4)) = Dem(6, A)

Hence Dem(7X, link(0,4,4)) = 3 + 5+5 + 2+6

- /n
-tu

andDem(result, A) = fO + 40 = 50

.t _t

References:

[Car 9]: "Ttre Logical Syntax of la.nguages", R. Carnap,
International Library for Phil., Psy., and Scientific MeLhod 1949

IIMY B3]: "Ttre P-Lucid Programming Manual",
p6uslini, Matthews, andYaghi, Distributed Computing Report 4,
University of lTarwick

[ADJ?B]: "An Initia] Algebra Approach to the speciflcation,
correetness, and Implementation of Abstract Data TYpes",
J, Goguen, J. Thatcher, and E. l{agner,
In Current Tlends In Pr.ogramming Methodology, IV,
Edited by R. Yeh, Prentice HaII Int. 1978

IHenB0]: "Functional Programming, Application and lmplementation',
P. Henderson, Prentrce Hail lnternational i98i

ILan66]: "The Next. ?00 Programrning Languages", Peter Landin,
CACM l'umber 3, Voi 9, i966

[MonZ+]: "Forrnai Philosophy, Selected Papers of R. Montague",
Edited by R. Thomason, Yale University press, 19?4

iTur8i]: "The Compilation of an Applicative Language to
Combinatory Logic", D. Turner, Ph.D. Thesis,
University of Ox{ord, 198i

[\TASHB3]: "Lucid, The Data F]ow Language",
'Vf . \1'adge and E. Ashcroft. Academic Press (to be published)

[YagB3]: "An intensronal Imp]ementation Technique for
Functional Larguages", A. Yaghi, Ph D. Thesis,
Uruversity of Warwick (rn preparation)

[YagB]: "Higher Order Functtons in Lucid", A. Yaghi
University of Warwick Report (rn preparation)

