View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:

Yaghi, A. A. (1983) The compilation of functional language into intensional logic.
University of Warwick. Department of Computer Science. (Department of Computer
Science Research Report). (Unpublished) CS-RR-056

Permanent WRAP url:
http://wrap.warwick.ac.uk/60759

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/29189182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60759
mailto:publications@warwick.ac.uk

The University of Warwick
THEORY OF COMPUTATION

REPORT NO. 56

The Compilation
ol a
Functional Language
info
Intensional Logic

by
Ali AG Yaghi

Computer Science Department,

University of Warwick,

Coventry CV4 7AL

England December 1983

The Compilation of a Functional Language
into Intensional Logic

Ali AG Yaghi

Computer Science Dept.
University of Warwick
Coventry CV4 7AL
ENGLAND

ABSTRACT

In this paper we propose a new implementation technique for
functional languages by compilation into intensional logic, [Car49]
[Mon74]. Based on this logic, we define the concept of intensional
algebras in which the value of a symbol in the signature is a family
of objects which denoles its value at different worlds 1n the
universe. Our target code is the family of languages DE,
definitional equations; it is the family { DE(A) | A is an intensional
algebraj. A program in a member of this family is a set of non-
ambiguous equations defining nullary variable symbols. One of
these variables should be the symbol result.

To show, both the validity and the efliciency, of our approach
we apply it to the family of languages Iswum. The source family

Iswum= { Iswum(B) | B is an extensional algebra} is the subset
of Landin's Iswim which does not allow higher order functions.
Moreover, in Iswum we allow Iswim's where-clause only in defining
funclions; and we assume that the equations are non-ambiguous.
The extension of our approach to cope with higher order functions
is straightforward and is discussed in [YagB4).

Finally we give, briefly, two algorithms for evaluating
intensional expressions. The first is reductive and based on a set
of rewrite rules; the second is dynamic and based on a demand
driven data flow architecture.

This work was supported by a fellowship from the Science and
Engineering Research Council of the United Kingdom.

Table of Contents:

0- Introduction
1- The Source Language ISWUM
2- The Target Language DE
3- Intensional Logic
4- Intensional Algebras
5- Example: The Algebra FUNO and Functions without
Nullary globals
8- The Compilation of ISWUM, and the Algebra Flo
6-1 Lists with Back Pointers
6-2 The Intensional Algebra Flo
6-3 Rewrite Rules for Flo
7- The Translation of ISWUM into DE
7-1 The Translation Algorithm
7-2 The Correctness of the Compilation.
B- Conclusion and Implementation
B-1 The Reductive Approach
B-2 The Demand Driven Approach
9- References
Acknowledgments

I wish to thank my friend and supervisor W. Wadge for his

continuous help and encouragment. Thanks are also due to Prof. D. Park

for the many helpful comments he has provided during writing this paper.

0- Introduction:

In this paper we propose a new implementation technique for functional
languages by compilation into intensional logic, {Mon74] [Car48]. This approach,
we believe, will offer an efficient technique for implementing functional
languages. It is not committed to a particular hardware, or to a particular
evaluation technique; nevertheless it lends itself directly to demand driven

tagged data flow architecture.

Intensional logic is the study of indexical expressions, that is "words and
sentences of which the reference cannot be determined without the knowledge
of the context of use” [Mon74]. Thus, if U is a collection of contexts and D isa
domain then the intensional value of an expression is an indexed family denoting
the 'extensional’ value which the expression takes at different contexts. That is,
the intensional value is a function in [U -->D]. We shall denote the latter by VD.

We call the setl of contexts the universe, or the set, of possible worlds.

The main idea behind this approach is to translate programs of & first order
language, like Iswum, into a nullary order equational language over intensional
terms, like DE. This is achieved by introducing a collection of intensiconal
operators for function application and binding, then remove all function
definitions from the source program. For example, the function definition

F(X)=X*X
is translated into the nullary equation

F=X=*X
Knowing that the value of the function ¥ depends on the value which its
formals take from a context to another, we propose the set of function
invocation to be the universe of possible worlds. The value of F , then, at the
world (or context) i should be the value of F at the world in which the formal

X takes the actual value of the i'th application of F in the source program.

Hence, for binding actuals to their formals we introduce the intensional

operator ac£ . where for a formal Z and expressions a, b, ¢ Ve
Z=act(a,b,c,..)

denotes that the value which the formal Z takes is, a at the first call, b at

the second call, c at the third, and so on Moreover, we introduce the family

of operators call, where caliF denotes the i'th call of the non-nullary variable

symbol F. Hence the equations
FX)=X*X
Y =F@2)+)

can be translated into
F=X*X

Y =callgF+call, F

X = act (2,3)

Let us assume, for the time being, that the universe is dernoted by the set of lists
of natural numbers. The head of a lisl denotes the present function call, while
the tail denotes the sequence of calls which led to (he present one
Consequently,
if we define the value of the expression call; F &t a list ¢
to be the value of F at the list cons(1,¢),
and the value of act(xg, - - , X,_,) at the list
to be the value of %(hd(¥)) at tail(s)
then the value of call; F at alist a will be equal to
the value of F at the list cons(i, a)
which is equivalent to the value of X *X at cons{:, o)
hence, as the value of X at cons{:, a) is the value of act (2,3) at cons{, o)

whichis 3, then the value of Fal o is O

In section ! of this paper, we introduce the source language Iswum. It is
worth mentioning here that, throughout our work, we follow the terminology of

(Lan66], and [WASHB3] and define a language to be a family in which each

3

member is uniquely déterrm'ned by an algebra of data types. The language
Iswum = {Iswum(B)/B is an extensional algebra} is the subset of Landin’s Iswim
which does not allow higher order functions. Moreover, in Iswum we allow
Iswim's where-clause only in defining functions; and we assume that the
equations are non-ambiguous. The extension of our approach to cope with
higher order functions is straight forward and is discussed in [Yag83]. We chose
Iswum because we believe that any lambda-based first order equational

functional language can be translated , simply, into a member of this family.

In section 2, we give a brief and general view of intensional logic. We define
the family L of intensional languages, then we introduce the concepts of
intensional structure and intensional environment. Based on this logic, we
define in section 3, an intensional algebra to be a triple <U,F,D> where U is a
universe of possible worlds, D is a domain of objects, and F is the intensional
interpretation function which assigns meaning to different symbols of the
signature. The intensional value of an n-ary symbol in the signature is a function
in [(YD)® —» UD]. We call D the extensional domain of the algebra, and UD the

intensional domain.

We have proposed in the above example the set of lists of natural numbers
as a universe for the algebra which interprets the symbols call and act , and
hence function application and actuals binding. In section 3 however, we will
show that such a universe is not sufficient for compiling Iswum. We propose, and
define, the set of lists with back pointers over the natural numbers as a
universe. An element in such a set is a list with two tails; a dynamic tail (or a

calling tail), and a static tail (or a defining tail).

We define then the intensional algebraic function, or the family of
intensional algebras Flo. For a continuous extensional (classical) Z-algebra B,

Flo(B) is the continuous intensional Z'-algebra where £’ is £ (U ¥ and ¥ is the

set of constant symbols
f7,act,call] U {gcall, ggeall, ..., g"call}

The universe of Flo(B) is the set of lists with back pointers over the naturals. We
denote this by bl{w). The intensional meaning of a constant symbol in Z, given
by the algebra Flo(B), is the pointwise extension of its meaning in the algebra B.
The constant symbols of the set ¥ are assigned some (non-pointwise) intensional
operators; i.e functions in YD—-VD. These operators, as in the example above,
will enable us to resolve some of the complexities associated with functional

languages, like calling global, function calls, binding actuals, ...etc.

Our target code is the family of languages DE, for definitional equations
and is defined in section 4. It is the family {DE(A)/A is an intensional algebral. A
program in a member of this family is a set of non-ambiguous equations defining
nullary variable symbols. One of these symbols should be result. For an
extensional algebra B, the source language Iswum(B) is compiled into
DE{Flo(B)). The compilaticn algorithm, described in section 5, is to translate
the functional equational language Iswum{B) into the nullary equational

language DE over the intensional terms of the algebra Flo(B).

Finally, in section 6 we give, briefly, two algorithms for evaluating the
expressions of Flo. The first is reductive and is based on the sel of rewrite
rules, described in section 3.3, for the algebra Flo. The second is dynamic and

based on a demand driven data flow architecture.

1- The Source Language Iswum

The language Iswum 1 is the subfamily of Landin's Iswim #t [Lan66] which
does not allow higher order functions. In Iswum, also, we do not allow the where
clause except in defining functions and as the outer casing for the program.
Hence the following Iswim(Q)-program

F(2,X) where

F(AB)=A*A+2*B;
X =Z + V where

V=12;
Z=V*V;
end;

end
is not in Iswum(Q) because the inner where clause is used to define the nullary

variable symbol X However, the expression

Z. + V where

V=12;
Z=V*V;
end

is a program in Iswum(Q). Moreover, we assume that Iswum-programs are
already named such that a variable symbol is used only once in the set of all
symbols in the program. For example, the following is not a program in
Iswum(Q) as the symbol A occurs as a local in the main clause and in the

definition of F.

F(3)+A where
F(X) =if X<=1then lelse X*Afi
where
A=F(X1);
end;
A=4;
end

As Iswum is a family, then the syntax and the semantics of each member

1 I See What U Mean
T [See What It Means

Iswum(A) is uniquely determined by the algebra of data types A. That is why we
decided, here, to give the abstract syntax of Iswum rather than using BNF

equations.

The Abstract Syntax of Iswum:

Given an extensional Z-algebra A, a program in Iswum(A) is a valid
expression. A valid expression is either simple or a where-clause, and these are

defined recursively as follows:

1- If ovis an n-ary constant symbol in 2 and
Xg, . Xp—) are simple expressions, then a{xg, . Xp_1)

is a simple expression.

2- If ¥ is an n-ary variable symbol, x5, -+ , X5, are n simple

expressions, then ¥(xg, - - - , Xp,) is a simple expression.

3- If £ is either a simple expression or a where-clause
and dg, - - .0, are m valid unambiguous
definitions, then

¢ where

Sg

is a where-clause.
Where a valid definition is defined as

1- 1If ¥ is a nullary variable symbol and ¢ is a simple

expression. Then

8 = g is a valid definition.

2- If ¥ is a non-nullary variable symbol, and
To. ' * * Mn-1 are n nullary variable symbols,
t is either a simple expression or a where-clause. Then
B(no. * Mnm1) T 8

is a valid equation.

We define the semantics of Iswum(A) to be that of Iswim, i.e. the meaning of
a program in Iswum(A), for an algebra A, is the same as its meaning according to

the semantics of Iswim.

Example:
Let QS be the algebra which consists of the rationals together with the usual
mathematical operations, and the set of strings. Then the fcllowing Iswum({QS)-
program calculates the n'th Fibonacci number, when n is positive; and returns
the string "Your input is negative’ for negative inputs.
fibb (N) where
fibb(B) = if B >= 0 then fib(B)
else "Your inpul is negative’ fi;
Gb{A) =if A<=1 then A

else fib(A-1) + fib(A-R) fi ;
end

2 The Target Language DE:

Introduction:

We introduce here the family of programming languages DE, for
Definitional Equations. It is the family

DE = { DE(A)| A is an algebra].
Informally speaking, a program written in a member of DE is a set of
compatible equations defining nullary variable symbols. Each equation is of the
form variable = expression. The set is compatible means that each variable is
defined at most once. One of these equations should define the symbo! result.
Since a program is a set, the order in which the definitions are written is not
significant. So, neither function definitions nor lswim-like where-structures is
allowed in DE.

Clearly, DE is a trivial equational language, however, its importance comes
when we start considering the subfamily of DE in which the equations are over
intensional terms. Hence, use lhe language as a target in our compilation

technique.

Since DE is a family, then both the syntax and the semantics of a member

DE(A) is determined by the algebra of data types A.

The Syntax of DE

Let A be an algebra. Then the abstract syntax of DE{4) is defined as follows:

The set of DE(A)-expressions is the smallest set X such that

- All nullary variable symbols are in X.

- If ¥ is an n-ary constant symbol in the signature of A,

and £p, -, €,-; arein X then

Y(€o, - L €n)1sin X

A DE{A)-equation consists of a left hand side (lhs) which is a
nullary variable symbol and a right hand side {rhs) which

is a DE(A)-expression

ADE(A)-program is a set of DE(A)-equations. such that
*- Compatibility: each lhs variable symbol is defined at most
once.

*- One of these equations defines the symbol result,

Occurrences of Variables in DE:

Clearly, occurrences of variable symbols in DE(A)-expressions are all free.
In a DE(A)-program however, an occurrence of a variable symbol is bound if that
symbol occurs as a lhs of an equation in the program; otherwise it is a free

occurrence.

The semantics of DE

DE(A)-expressions:

Given an algebra A, and an environment g; the semantics of a DE{A)-

expression 7, denoted by F . 7 is defined recursively as follows:

a: If 7is a nullary variable symbol, then the value of 7 in the
environment ¢ is £(7); i.e. the value assigned

to 7 by the environment ¢.

Fa:T=¢(7)
b: If 7is of the form ¥(xg, - -+ .X,,)where
4 is an n-ary constant symbol, and x5, - - . Xy

are DE{A)-terms, then the value of 7 in the environment

10

£ is the value of 7 assigned to it by the algebra
A applied to the values of x5, - - - , Xp-) relative to the algebra A

and the environment ¢. i.e.
FaeT=A(W) (FaeXo, - . Faexpy)

Definition:
Given an environment ¢, and a DE(A)-equation
V = Expression
We say that ¢ satisfies the equalion if and only if
e(V) = F 4. (Expression).
We say that & satisfies the DE{A)-program P if and only if ¢ satisfles all the

equations of 7.

DE(A)-Programs:
Given an algebra A, the value of a DE(A)-program P in the environment ¢, is
the value of the variable result in the least environment ¢, such thatl ¢ satisfies

the equations of P and agrees with ¢ except al most on the values assigned to

the locals of P.

11

3 Intensional Logic:

Both logicians and formal linguists recognize two theories in the study of
meaning of languages. The theory of reference or denolalion and the theory of
meaning or pragmalics. The first was developed by Tarski, Goedel, Hilbert and
others; and was later known as the model theoretic approach to semantics. This
is concerned with the relation between expressions and the objects they denote
or refer to, according to a prior denotation function. On the other hand,
pragmatics is the study of the relation between expressions, the objects they
denote, and the contexts of use or utterance. In other words, it is concerned
with the study of indezical expressions, that is "words and sentences of which
the relerence cannot be determined without knowledge of the context of use”
[Mon74). Hence, if we assume that U is a set of contexts, and D is a domain then

the value of an expression is a function from U to D, i.e. an element in UD.

To cast some light on intensional logic and pragmatics we define here a
sitnple family £ of intensional languages. In members of L, we shall consider L-
formulas as L-terms. So in the interpretation of a language we shall talk about
values of terms rather than validity and satisfaclion of formulas. This in some
sense coincides with our intended use of the language as an implementation
technique rather than as a proof system. Moreover, L is a family of first order

languages, i.e. we allow first order intensional operators only.

Syntazx :
Let ¥ be a set of constant symbols with different arities, then the set of

terms of L(Z) is defined recursively as follows:

- If ¥ is an n-ary constant symbol in the signature £, and
€o. &1, . &n-y are nterms,

then

12

Yo &1, - &poy) is a term.

- If ¥ is an n-ary variable symbol, and

(0. & -+ - . €ny are nterms,

then

(o &1, -+ &noy) iS a term.
Semantics:

We give here a formal definition of an intfensional structure in which we
define, as well, the intension function relative to the set of possible worlds of the
structure. Then we define the meaning function relative to an intensional
structure together with an intensional environment. It is worth noting here that
an intensional environment must be defined relative to a certain structure so
that it maps each variable symbol to an element of the intensional domain of the
structure; that is, a function from the set of possible worlds of the structure to

the extensional domain.

Definition 1.
Let L{Y) be an intensional language. An intensional interpretation, or a
structure, for L is a triple <U.F,D> where
U is a nonempty set of possible worlds, the universe
D is a nonempty domain of objects, the extensional domain,
F is the intension function which assigns Lo every
n-ary constant symbol ¢, in the signature L a

function in

[(*D)" => D]]

Definition 2:

Let U (=<U,D,F>) be an intensional structure.

13

A U-intensional environment ¢ is a function
[V—-UD] where Vis the set of variable symbols.

Hence, an intensional environment assigns to each nullary variable symbol a

function in YD

Definition 3:

Let L(Z) be an intensional language.

Let U (=<U,D,F>) be an intensional structure for L(I).

Let £ be a U-intensional environment.,

Then the intension of an L(E)-term 7T relative to the structure U and the U-
intensional environment £ is denoted by Fu.(7) and is defined recursively as

follows:

If 7is of the form ¥(&o. &5, ..., £ny)
where ¥ is an n-ary constant symbol and

£o. €1, ..., £y are n terms then

(Fuer) = F)(Fueo, ..., Fuetnoy)

If 7 is a nullary variable symbol, then

(FueT) = (7).

4- Intensional Algebras:

Before introducing the concept of intensional algebras, we shall recall some
definitions of classical algebras- or what we shall call from now on extensional

algebras. For more details on these algebras we refer the reader to [ADJ78].

Definitions 1:

A signature, or an operator domain, X is a collection of constant symbols

14

with different arities.

An extensional X-algebra 4 is an ordered pair <F,D> such that: D is a non-
empty domain, and F is a function mapping each n-ary constant symbol in ¥ to
an operation of degree n on the domain D; i.e. a function in [D® —- D]

If A (=<F,D>) is an extensional Z-algebra, then D is called the domain of 4
and denoted by |A|. T is called the signature of A.

A domain is a CPO which, at least, has the truth values {tt,ff] and Scott's

undefined element L.

Definition 2:
An intensional Z-algebra 5 upon U is a triple <F,D,U> such that; D is a non-
empty domain, U is a non-emply set; and F is a function mapping each n-ary

constant symbol in ¥ to a function in [(VD)® —» UD].

If A {(=<F,D,U>) is an intensional Z-algebra, then D and U are called,
respectively, the exlensional domain and the universe of A. The set of all
functions {rom the universe U to the extensicnal domain D, denoted by UD, is
called the intensional domain of 4 and denoted by |A!. We can say, then, that
an intensional X-algebra A maps each n-ary operator symbol in the signature T
to a function of degree n on its intensional domain. Hence, when we talk about
the domain of an intensional algebra, from now on, we mean the intensional

domain.

Definition 3:
For any two (either extensional or intensional exclusively) algebras
A and B, A is said to be a subolgebra of B, denoted by 4 ¢ B, if
- the signature of A is a subset of the signature of 5, and
- the algebra & assigns to the constant symbols of the signature

of A the same functions as those assigned by A; i.e.

15

B/ signatureof A = A4
Or in other words, for every constant symbol ¥ in the signature of A,

YB = Ya

Definition 4.
Let A and B be two Z-algebras, then a L—homomorphism f:A—-B is a

function such that for any n-ary operation symbol ¥ in the signature of A and

any ag, - - , 8p-pin |A]
J (AW (a0, -+ L an-1) = (BN (a0) - - S (an-1))
Definitions 5:

let Iy be the identity function for composition in the class of Z-

homomorphisms. That is, for any Z-homomeorphism f

folg=lgof =f

Then g is called the inverse of f, and denoted by f 7!, if and only if

gof=fog=1I

Let A be a Z-homomorphism. Then h is called a Z—isomorphism iff there is
a Z-homomorphism g such that g =h™!. Any two I-algebras A and B are

isomorphic, written as A = B iff there exist a Z-isomorphism from 4 to 5.

Proposition 1
If the universe of an intensional Z-algebra A is a singleton, then there exist
an extensional £-algebra B such that

A=EB

Definition 6:
Let A be an extensional X-algebra, and U be a set. The pointwise extension

of A upon U is the intensional algebra, denoted by AV, and defined as follows:

16

for every n-ary operator symbol ¥ in the signature ¥, AV assigns a
function of degree n on the set UlA4] such that
VicU,and ¥ £ ¢n, in V4]

A%(B(o. . - - EnaN() = A(B(Eo(E). . €na (D))

An intensional algebra B is said to be based on the pointwise intensional

algebra A if A is a subalgebra of B.

17

5 Example: The Algebra FUUNO and Functions without Nullary Globals:

In this section we give a preliminary example of an intensional algebra, and
show how to employ such a concept in compiling functions. We consider here,
only, the subset of Iswum where function definitions do not have global
occurrences of nullary variable symbols. Consider the following example

F(X) where

X = F(2)+ G(3) + G(B) :

F(A) =A*A;

G(B) =2 *B;

end

Ideally, what we would like to be able to say instead of F{A) = A*Ais F=A*A
Since the value of F is a function of the value of its formal A, and the value
which A takes varies from a call to another; then we can consider the universe
of the algebra to be the set of function calls. Thus, from the equation F=A*A,
the value of F in any world is dependent on the value which A takes in that
same world. We shall represent the universe of function calls by the set of lists

of natural numbers. The head of a list denotes the present (the current)

function call, while the tail denotes the list of calls which led to the present one.

From the text of the program above, we know that the actual of the first
call of F is X, and of the second call is 2. For this, we introduce the operator
act and define the formal A of Fto be

A=act (X, 2)

This equation, informally, states that the value of A at the first call is the value
of X, and at the second call is the value of 2. For function application, we
introduce the family of operator symbols call where call; H denotes the i'th
application of the function H. Hence, the expressions F(X) and F(2) are
translated, resp., inte cally F and call; F. Similarly, G has been called twice in
the program, hence

G=2*B

18

B=act(3,2)
and G(3) , G(2) are translated, resp., into call, G and call; G. So, the above

program is translated into

result = cally F

X=ca111F+calloG+ ca]llG;

F=A*A;
A=act (X, 2);
G=2*B;
B=act (3, 2)

To formalize the discussion above we introduce the family of intensional
algebras FUNO. It is a function which maps extensional algebras to intensional
ones. For an extensional Z-algebra A, FUNO(A) is an intensional £'-algebra. This
is because FUNO(A), besides assigning meaning to the constant symbols of 4, it
assigns meaning to the new constant symbol act and to the family of symbols
call. However, we can, simply, say that FUNO{A) is a Z-algebra because ' is a

function of . It is the union of £ and the set {act, call].

The Intensional Algebra FIU/NO

Given an extensional Z-algebra A, the intensional Z-algebra FUNO({A) is the
least { intensional Z'-algebra such that:

The signature £' of FUNO(A) = £ (U {ecall;: i€w] U lact]

The universe L of FUNO{A) is the set of all lists of

natural numbers.

The extensional demain of FUN0O(A) is the domain of A.

T the leest up to the relstion subalgebra defined before

19

FUND extends A pointwise upon the universe 1, that is
for every n-ary constant symbol 4 in the signature of A,
for every n terms &, . . ., £p-1 in FUNO(A),
and for every list ¢ in the universe L,

(FUNO(A)W£o. £n-1)))p =

AY)((FUNO (&) .(FUNO(€n-1))y)

FUNO assigns meaning to the family of constant symbols ecall as
follows:

for every i€w

for every variable symbol £, and

for every list ¢ in the universe L

(FU‘NO(A)(CaHi(S))):; = Scons(i,q:)

FUNO assigns the following meaning to the constant symbol act
for every list ¢ in the universe L
and for every n expressions £g, © * * £n-
(FUNO(A){act{e, €n-1))e = (£(hd(€))u)
where hd, tl, and cons are the usual head, tail, and

construct functions on lists (resp.).

According to the analysis above and the definition of FFUNQO, we can compile
the subset of lswum where function definitions do not have giobal occurrences of
nullary variable symbols to equations over terms of the intensional algebra
FUNO. In other words, if we call such a subset Iswum0, then for an extensional
L-algebra A, the subset IswumO{A) can be compiled into the member
DE(FUNO{A)). The latter of course is a member in our target language DE. In the
following example, we shew that we can compile and evaluate even recursive

functions to equations over the algebra FUNO as far as the definition of the

20
function does not have global occurrences of nullary variable symbols.

Example :
Consider the following program in Iswum(Z), where Z is the algebra of integers
together with the usual mathematical operations +,-,* and div.
Fac (2) where
Fac(X) = if Xle 1 then 1 else X * Fac(X-1) fi;
end
Using the same analysis described above, we can translate this program into
the following program in DE(FUNO(Z))
result = callgFac;
Fac = if X1le 1 then 1 else X *call,;Fac fi;
X = act (2,X-1);
Note that, the value of the DE-program should be the value of resull at the
empty list because no functions had been called yet.
The value of result at thelist {] equals
the value of callg Fac at [] (by substitution)
which is equal to the value of Fac at the list [0]
(by the interpretation of call)
by direct substitution, this is equal to the value of
(if Xle 1 then 1 else X *call;Fac fi) at the list [0]
By substitution, the value of X at [0] is equal to the value of
act (2,X-1) at [0] which is 2 (by the interpretation of act)
Thus the value of result at [0] equals the value of
(2 * call,Fac) at {0] which equals to the value of
2* (the value of Fac at the list {1 0])
(note here that both * and 2 are interpreted pointwise)
this is equal to 2*{ the value of if Xle 1 then 1 else X *call, Fac fi) at (1 0])

now the value of Xat [1 0] is equal to the value of

21

act (2,X-1) at [10] (by substitution)
which is the value of X-1 at [0] (by the definition of act)
which is 1 because the value of X at the list [0] is 2

Hence, the value of result is 2*1.

The above evaluation can be represented in the following tree where lines

denotes equalities:

reisult at []
ca|llo Fac at []

Fac at [0]

|
if Xle 1 then 1 else X*call; Fac fi at [0]

|

*
2 at[0] call;Fac at [0]

| \
2 Fac at [1 0]

if Xle 1 then 1 else X *call; Fac fi at [: 0]
|
1 at [10]

|
1

22

6 The Compilation of Iswum and the Algebra Flo

Once we start considering Iswum-programs and allow function definitions to
have global occu;'rences of nullary symbols, the algebra FUNO fails to
interpret either function calls or globals. For example, consider the following
Iswum(Z)-program:

Y where
Y = F(2):

A=5;
F(a) = a *A + G(A);
G(b) =A*b;
end
If we translate F(a) and G(b) resp. as
F-a*A+cal;G and G=A*Db
then the value of F(2) is the value of the expression
a* A+ callg G at the list [0] as F(2) is the first call of F. This depends on
the value of A at [0] However, we know that A is not defined within any
function call. 1t is defined at the outer most level (where-clause) but called from
the first call of F . That is, the value of A at [0] should be undefined, and we
should evaluate A at [] instead. Moreover, the value of F at [0] depends on
the value of callp G which is equal to the value of G at the list [0 0]; this
depends on the value of A at [0 0] and the value of A at 0] which are both
undefined. Such errors occur because the universe of FUNO denote lists of

function calls, hence facilitating dynamic binding only. We need an algebra and a

universe which facilitate for static binding as well as dynamic binding.

For this purpose, we define the intensional algebra Flo. The universe of
Flo, is the set of special kind of lists. We call them lists with back pointers. The
important property about these lists that they have two tails; the dynamic (or

calling) tail and the static (or defining) tail

We introduce now a formal definition of the set of b-lists (lists with back

23

pointers) together with the partial order initial segment defined on this set. We
also define on the elements of this set the operations dtl, stl and link for the
dynamic (calling) tail, the static (defining) tail and b-list constructions

respectively, Next, we introduce a formal definition of the algebra Flo.

6.1 Lists with Back Pointers:
Definition:

Let A be a set. We define the set bl(A) of b-lists, or lists with back pointers

over the set A, logether with the relation initial segment, denoted by Z on the

elements of bl(A) as follows:
1- the special symbol A is in bl(A), and
v o€ bl{A) A4«
2-if a €A, c,d € bl{A) then
a = <a,c,d> € bl(A) whenever d< c .
8- a = <a,c,d>and 8 = <a',¢c',d'> in bl(A)

cxcﬁ’c»a'—'ﬁorou(d'

Definition:
We define the following functions on the elements of bl{4),
for any a = <a,c,d> € bl(A)
hd(a) = a hd(A) = L

dtl{a) =c¢ dtl{A) = L

stl (o) = d st {(A) = L

Definition:

We define here the b-lists constructor link, which takes an element a € A,

and two lists a,8 € bl(4), where 8 <a, and constructs a new b-list whose head is

24

a, dtl is «, and stlis 8.

For any a€A, and a,8 € bl(A) where 8 L a, the b-list link(a,a.f) is the b-list
which satisfies the following equalities
hd(link(a,«,8)) = a

dti(link(a,«,8))

x

sti{link(a,a.8)) = B

6.2 The Intensional Algebra Fio

Definition:
Let A (= <F.D>) be an extensional Z-algebra. The intensional Z-algebra

Flo (A) is the triple <U,F', D> where
a: the universe of possible worlds U is the set b-lists of natural

numbers; i.e bl{w)
b: the intensional interpretation function I’ extends ¥ pointwise.

That is, for every n-ary constant symbol ¢ in X, the sequence

of Flo-expressions Xg, © ' , Xp—;., and every uelU

F@)(xe o xnm) o = FONF()(w), - F'(xn-1) (W)
c¢: The function ¥ assigns meaning to the followings:

The symbol 7:
For every expression g, and everyu € U

(F'(7 8))1; = Esti{u)

The symbol act
For every u € 1, and every sequence of

expressions Xg, ° -, Xp-)

25
Flact(xo, -\ Xp-1))u = X(hd(u))dtl(u)

The family of operator symbols {ecall}jc,
For every Flo-expression &

for every i €w, and for every ueU

(F'(call; £))y = &jink{iuu)

The family of operator symbols {geall;}ie,
For every expression g, everyi €w

and every ucU

(F(geall; £))y = Elink(iusu(w)

The family of operator symbols {ggealliic,
For every expression g, everyi €w,
and for every uclU

(F'{ggeall; £))y = Elink{iustisti{u))

In general, for every j €w, there is a family of operator symbols {gicall;};c, such
that

For every jew, for every expression £ in Flo{A4)

every i €w,

and every u€U

(F'(gjcaui 5))1: = Elink(i,u.stl{sti{ stl{u))

where stl is applied here j times.

6.3 Rewrite Rules for the algebra Flo:

These are directed equations for syntactic manipulation of terms. The

difference between usual equaticns and rewrite rules or directed equations is

26

that equations denote symmetric equality, i.e. A = B implies B = A while in
rewrite rules the equality is directional or the equality implication is one sided.
Moreover, these rules are purely syntactic, and the only substitution allowed
here is the one based on pattern matching. We shall, nevertheless, use the

semantics to prove their correctness.

These rules are over the terms of Flo(A), for any extensional algebra A;
which means that both sides of each rule afe Flo (A)-terms. Thus proving a rule
correct is to prove that both sides of the rule denote the same object (have the
same meaning). Since Flo(A4) is intensional, and the value of a term is a family
denoting its value at each world in the universe, then we have to show that the
equality holds for all the worlds in the universe. For example, to prove the
rewrite rule A=B, for the algebra Flo (4) with universe U, we have to prove that

For every world u < U
(Flo (A)(A))e = (Flo (A)(B))y

Since Flo is a family of algebras, then the rewrite rules for each member,
Flo (4), is determined by the rewrite rules of both Flo and A. However, what we
are going to introduce here is the set of rewrite rules for the whole family #lo no
matter what 4 is. The only rule which concerns the algebra A is the first one. It
states that the operators of Flo are distributive over those of A. For example, in
Flo(®), where @ is the extensional algebra over the rationals, the following
equation holds

Call]' (X+Y_3> :calle-%- Ca.]liY—CalliB

We give now the rewrite rules for the algebra Flo, then justify the correctness of
rules {1 and 3 as examples. Such a justification is based on the semantics of
terms given by the definition of #lo. For the correctness of the other rules see

[YagB3.1].

(Rule 0) If ¥ is an n-ary operator symbol in the signature of 4,

and Xg, " * ., X are Flo(A)-expressions, then
for every operator symbol ¥ in the signature of Flo

B(Y(Xo, * . En-1)) = P(B(Xo) . .. B(Kn-1))

X X - . Xy are Flo(4)-terms, then
(Rule 1) calli (act(X, -+ X)) =X
(Rule 2) geall; { act(Xp, -+ - X;-1)) = X
(Rule 3) call (yX) = X

(Rule 4) This is a family of rules concerning the family g”call

They are:
geall; (yX) = 79X
ggeall; (7X) = 77X
gegeall; (7X) = 77X
generally speaking
greall; (7X) = y"X
Proof: For simplicity, we shall denote (Flo {4){X)). by [X]..
Assume that U is the universe of Flo (A4)
XX ..., X, are Flo (A)-terms,

then for everyu € U

(1) [call (act(Xo, -+ Ko-1))
[aCL(XCr e 'Xn—l))]].ink(i,u,u)

I

[X Jauginkg uw)
L X

(3> [call; (7’)0]u = [7X]1ink(i,u,u)

[X] st1 tink{i u)

= Xy

27

Ezample: From the above rules we can derive many others, For example
call; (geall; (y X) = X

call; (call; (ggcally (7X§ =X

28

29

7 The Translation of Iswum into DE

While a program in Iswum is either a simple expression or a where-clause, a
program in DE is a set of equations. Hence, the translation algerithm will be a
function mapping each Iswum-program into a set of equatioﬁs in DE(Fio(A)).
The compatibility required in the target DE-program is captured by the
compatibility of the source Iswum-program. Syntactically, apart from being a
simmple expression, an Iswum-program can be a where-clause with a structured
set of equations. That is, a where-clause which contains another clause as a
submeodule. We shall call a set of equations enclosed in a where-clause a
textual level, so the program

X+C where

X=Y(27);
Y(a,b) = Vwhere

end;

end
consists of two textual levels. The main {outer) one and the one defining the
function symbol Y. Textually, the latter is containedin the former. We say
contained in rather than a subsef of because the latter means something in

set-theoretic terms which does not agree with the scope conventions.

The important point we want to remark here is that translation
(compilation) will never be done in a vacuum. When we compile an expression,
we have to compile it relative to the set of equations, or the textual level, it
appears in together with all the textual levels which contain the present one.
This is so that we can determine whether the variable symbols which occur in
the expression are locals or globals; moreover, we want to be able bind the
variable symbols to their definitions properly. Therefore, we shall talk about the
compilation of an expression ¢ relative to a textual level C, we shall denote this

by compg (£). Moreover, a variable symbol v is local in a textual level C if one of

30

the equations of C defines v. We denote that by localg (v). Otherwise, it is
globalc (v). Moreover, we shall denote the catenation operator on strings by ~.

For example, for the sirings xyz and abc, xyz~abc is the string xyzabe.

7-1 The Translation Algorithm

Given a program P in Iswumf{A), for an extensional algebra A, the target

program P of DE(Flo (A)) is defined recursively as follows:

if P is a simple expression in Iswum(A) then P is the singleton

{ result = compexp,P]

if P 1s of the form
X where D end
where X is an expression and D is a set of equations
then P is
{ result = compexpp(X) } U § compdefp{d) d € D}
where for a textual level C, a variable symbol v, a definition d and an expression .

£

compexpe(e) =
if £ is of the form op{xc, ' = Xy-y)

where op is an n-ary constant symbol and

Xg, ' X.., are n expressions,
then
op{compexpc{Xp). - compexpc(X. 1))

if ¢ is a nullary variable symbeol then
compvare(e)
if £ isaformal then ¢

if £ is of the form F(x;, - -~ X,_;) where Fis an

31

n-ary variable symbol and xg, -+ - X,
are n expressions, then

compfunc(F)
compvarg(v) =
ifC=% then v

else if globalc(v) then

7(compvarc(v))

where C' is the first outer textual level containing C.

else v .

compfunc(F) =

ifC=9&thenF
else if globalc(F) then g ~ (compfunc(F))
else callF.

where C' is the first outer textual level containing C,

and i is the number of times the function symbol F

has been applied so far.

compdefc{d) =
if dis of the form V = ¢, where Vis a nullary
variable symbol, and ¢ is an expression

in Iswum(4), then

{V = compexpc(e)}

if dis of the form F{xg, - X,)=¢

where ¢ is a simple expression in Iswam(A),
F is an n-ary variable symbol, and
Xg, ‘' ,Xp— is the list of formal parameters, then
{ F = compglexpc ¢ } U { compformp (x;) |i€n]
if dis of the form F{x,, - - X,)= &
where ¢ is a where-clause expression and of the form
0 where E end
then
{ F = compexpg 6§
U { compformg (x;) | i €n}

U { compdefp (d) | d € B}

compforg(x) = {x = act{ag, - - .am-1) }
where for eachiin m, a;is the actual of

the i'th invocation of ¥

compglexpe (&) =
if £ is of the form op(X;, ~ = Xn-1)
where op is an n-ary constant symbol and

Xg. ' ' Xq-) are n expressions, then

op(compglexpc(Xg), -+ compglexpe(X;-1))
if £ is a nullary variable symbol then
v compvarg(e)
if ¢ is aformal then ¢
if £ is of the form F{xg, - - - X,_,) where Fis an
n-ary variable symbol and x;, - -+ X
are n expressions, then

g ~ {compfunc (F))

33

Example: According to the above algorithm, the following program in Iswum(Q)

F(3) where
F(X) =Y where
Y = H(X) + H(2) ;
H(C) = C + G(A) ;

end ;
G(B)=A+B;
A =10;

end
is compiled into

result = callyF ;
F=7Y,;
Y = callgH + call;H ;

H=C + ggcall,G ;

G=yvA+B,;
A=10;

X = act (3) ;

C = act (X.2) ;
B = act(y v A) ;

7-2 The Correctness of the Compilation Algorithm:

Informally, we have to prove that, for every extensional algebra A, the
meaning of a program P in Iswum{A) is equal to the meaning of the program
comprog{P) in DE(Flo(A)). However, there is a slight falsity in this argument
because the meaning of a program in Iswum is an extensional object, while the
meaning of a program in DE is intensional. That is, if D Is the domain of the
algebra A, then the value of a program in the source is an element in D, and in
the target is an element in UD where U is the universe of Flo{A). To be more
precise, we have to prove that the value of a program in Iswum(A) is equal to the
value of its compilation in DE(Flo (A)) at the b-list A in U which is the home world

or the origin of the universe.

34

Furthermore, the meaning of a program in Iswum(A) (or in DE(Flo(A))
resp.) is dependent on both the algebra A (or Flo (A) resp.) and an environment.
However, while an environment for Iswum(A) is a function in [V --> D], where D is
the domain of A; an environment for DE(FIo (A)) is a function in [V --> D], where
U is the set of b-lists described earlier. Thus, if we are to compare the meaning
of a program in Iswum(A) with the meaning of a program in DE(Flo (4)), we have
to make sure that the environment for the former corresponds to the
intensional environment of the latter. That is, the value which the extensional
environment assigns to a variable symbol is the same as the value of that symbol
In the intensional environment at the b-list A, Formally speaking, if o is the
intensional environment then the extensional environment ¢ should be defined
as A v [g(v)(A)]

We state here the theorem which is the central part of the correctness of
the compilation algorithm. However, the proof is too long and technical for this

paper, we refer the reader to [YagB83].

Theorem:

For every extensional algebra A, for every intensional Flo {A)-environment ¢,

and for every program P in Iswum(A)

(F noay.: comprog(P)){(A) = F, P

where £ = Avie{v){A)]

35

B- Conclusion and Implementation Techniques for DE:

The approach we have described compiles structured first order functional
languages into equational nullary order intensional languages. This, we believe,
offers a wide range of implementation techniques for functional languages
whether on conventional machines or on ones based on data flow principles. In

this section we view, briefly, two ways of evaluating programs in DE.

8-1 The Reduction Method:

Since the target code is an equational language, a program induces an
evaluation tree whose root is result, and whose nodes are terms of the
intensional algebra Flo. In this method we consider a program in DE(Flo(A)),
for an extensional algebra A, as a set of directed equation. This set together
with the rewrite rules of the algebra Flo and those of the algebra A forms a set
of reduction rules for the program. Hence, a reduction on the evaluation tree
representing the program. For example, the following Iswumn(Q)-program

G(3) where

G(A) = F(2,A)+ X
X =3+ F(Z,6);

F(B,C) =B*B + 2*C;

Z=5;

end

is translated into the DE(Flo (A))-program
result = call; G;
G=gecallg F+vyX;

X=3+call, F;

F = B*B + 2*C;
Z2=5;

A = act (3) ;
B = act (2,Z) .

C = act (A,6) ;

36

Using the rewrite rules for the algébra Flo(Q) described before, we can deduce

the value of result from the above set of DE-equations as follows
result = cally G

= cally (gecallg F + ¥ X) (Subs’'n)

= cally (geallp F) + call, yX (Rule 0)

....... (1)
callgy X=X (Rule 3)
=3+ call; F (Subs'n)
= 3+ call, (B*B + 2*C) (Subs'n)

tl

3+ call, (B*B) + call, (2*C) (Rule 0)

1l

3+ Ca].l] (B) + Calll (B) + Calll 2+ Call] C (Rule O)

So call,by X=3+5"%+2% =40 (2),(3)&(4)

callp (geallp F) = callg (geall; (B*B + 2*C)

=cally (geally (B*B)) + call, (gealle (2*C))

callp (geally (B)) = cally (geallg (act (2,7)))

=—callg2 =2

37

call, (geallp (C)) = callp (geall, act (A,6)
= callg A = cally act(3)
=3

hence callg (geally F) = 2*2 + 2*3 = 10

and result = callg {geally F) + callyg y X
=10+ 40 = 50O

The Demand Driven Method:

In this method we consider the program as a data flow net where the nodes
are processing stations and the arcs are communication channels carrying data
tokens (datons). Each daton consists of two parts; an expression and a b-list as a
tag representing the world in the universe at which the expression has to be

evaluated.

expressiong tag: b-list |

a daton (tagged expression)

The data flow model we are proposing here is a demand driven one. In such a
model a demand is generated from the output port of the net and travels
upwards. If such a demand passes through the node ~ ~ representing
addition say, then it splits into two demands. Each demand travels upwards
along the input ports of the node. Thus, we can say that for any expressions X, Y
and a tag «
Dem{X+Y, «) = Dem(X, o) + Dem(Y , o)
Clearly, if Cis a constant, then

Dem(C,a)=C

38

Basically, there are two classes of processing stations. The first class are
the nodes which correspond to the operators of the object (extensional) algebra,
e.g the operators of Q in Flo(Q). The second corresponds to the intensional
operators of Flo, e.g 7, cally ,..etc. A node (a processor) of the first class
performs operations on the expression part of the daton and needs the tags of
its inputs (if there are more than one) to be matching before performing any

operation. For example,

if X‘ al and |Y | B are two datons

then the processor representing the addition operation in Q fires if and

only if & = 8. The result is then the new daton

[x+va |

On the other hand, a node representing an inlensional operation

manipulates the tag part of the datons. For example, if a demand for the daton

F |

passes through the node representing the intensional operator call; , then the

result is a demand for the daton

F { link{i, &, &)

Dem(F ., link(i,a,a))

Dem(F, o)

Clearly, from the definition of the algebra Flo we can specify the meta-

operator Dem in the following directed equations:

Dem (v X, «) = Dem (X, stl{a))

39

Dem (act{Xo. -~ -¥%-1) , &) = Dem (X(hd(&) . dtl(c0)
Dem (call X, &) = Dem (X, £)
where § = link(i,a , a)
Dem (gcall; X, o) = Dem (X, §)
where § = link(i.oc , sti(c))
Dem (ggcall; X,) = Dem (X, 8)

where g = link(i,a , sti{stl(«)))

Example :

¥e consider here the same program discussed in the last section
result = callg G ;

G =gcallg F + v X;
X=3+ call; F;
F =B*B + 2*C,
Z=5;
A = act (3);
B =act (2,7) ;
C = act (A,6) ;

As we have mentlioned earlier, the value of the program is the value of result

at the empty b-list A Hence, we start with the demand

Dem(result , A)= Dem(cally G, A)
= Dem(G, link(0,AA))
= Dem(geally F + ¥ X, 1link{(0,A,A))

= Dem(geally F, link(0,A,A)) + Dem({ ¥ X, link(0,AA))

Dem(geallg F, link{0,A,A))= Dem(F, link(0,8.A))
where 8 = link(0,AA)

= Dem {B*B + 2*C, link{0,6,A))

40

= Dem (B, link(0,8,A)) * Dem (B, link(0,8,A))

+ Dem (2, link(0,8,A)) * Dem (C, link(0,8.A))

Dem (B, link{0,8,A)) = Dem(aét(Z.Z) , link(0,8,A))
= Dem (2, 8)

=2

Dem (C, link(0,8.A)) = Dem (act(A.6), link(0.8,A))
= Dem (A, §)
= Dem (act (3) , link(0.A.A))
= Dem (3, A)

=3

Hence Dem{ geallg F, link(0,AA)) = 2*2 + 2*3

=10

Dem(¥ X, link{0,AA)) = Dem{ XA)
=Dem{3+call, F, A))

= Dem(3, A) + Demn(call, F, A))

Dem(call; F, A)) = Dem(F, link(1,AA))

=Dem{ B*B + 2*C, link(1.AA))

Dem{ B, link{1,AA)) =Dem(Z, A)

=5

Dem{ C, link(1,AA)) = Dem(6, A)

=8

Hence Dem(y X, link{0,AA)) = 3 + 5*5 + 2*6
= 40

and Dem(result , A) = 10 + 40 = 50

41

References:

[Car49]: "The Logical Syntax of Languages”, R. Carnap,
International Library for Phil., Psy., and Scientific Method 1949

[FMY B3]: “The P-Lucid Programming Manual”,
Faustini, Matthews, and Yaghi, Distributed Computing Report 4,
University of Warwick

[ADJ78]: "An Initial Algebra Approach to the specification,
correctness, and Implementation of Abstract Data Types",
J. Goguen, J. Thatcher, and E. Wagner,
In Current Trends In ' programming Methodology, IV,
Edited by R. Yeh, Prentice Hall Int. 1978

[HenB80]: "Functional Programming, Application and Implementation”;
P. Henderson, Prentice Hall International 1981

[LanB6]: "The Next 700 Programming Languages", Peter Landin,
CACM Number 3, Vol 8, 1966

[Mon74): "Formal Philosophy, Selected Papers of R. Montague”,
Edited by R. Thomason, Yale University press, 1974

[TurB1]: "The Compilation of an Applicative Language to
Combinatory Logic”, D. Turner, Ph.D. Thesis,
University of Oxford, 1981

[WASHB3]: "Lucid, The Data Flow Language",
W. Wadge and E. Ashcroft. Academic Press (to be published)

[YagB3]: “Anintensional Implementation Technique for
Functional Languages"”, A. Yaghi, Ph.D. Thesis,
University of Warwick {in preparation)

[YagB4]: "Higher Order Functions in Lucid"”, A.Yaghi
University of Warwick Report (in preparation)

