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Abs tract

The effects of bases of two-input bcolean functions are characterised
ln terms of their impact on some questions ln parallel computation. It is
found that a certain set of bases (called the P-complete set) which are not
necessarily complete in the classical sense, apparently makes the circuit
value prob'lem difficult, and renders extended Turing machines and conglorn-
erates equal to general parallel computers. A class of prob'lems called EP

arises naturally from this study, re'lating to the parity of the number of
solutlons to a pr^oblem, in contrast to previously defined c'lasses concerning
the count of the nunber of solutions (#P) or the existence of so'lutions to a

problem (Hp). Tournanrent isomorphism is a rBnSer of EP.

I, Introduction

Complexity theory seeks to formalize our intuitive notions of computa-
tiona'l difficulty. |Jhilst we are intuitively sure that certain functions
aFe npre difficult to compute than others, very rarely can we actually prove
It (the classica'l examp'le is that of NP-complete problems, see lCook 711,
lKarp 721l. Horever, it is. possibie to classify srnall classes of functions
according to their relative complexity. This re shall do for tlre two-input
booJean functions.

The motivation for our classiflcatlon schem comes frrm examinfng
tlm-boundeo paral lel (space bounded sequential ) computations 'involving
tlre tr*o-input boolean functions. Tne main body of tiis paper ls
cornprised of tliree sections. The first is on the space complexity of
the circuit va1ue problem over tJre hro-input bases, the second the
computing p${er of tim-bounded extended Turing machines over tno-
fnput bases, and tJre t}rird tlre ability of bro-input bases to realise
parallel oachines.

The circuit value problem over basis B (CVp, or mr? precisely CVpB) is
tfe prob'lem of determining, f9r I given conbinational circuit (a ci"cuiirlthout feedback lgop!) over basis B and its iTputs,.the yqlue of its output.
Qr a gircuit over basis B r*e FEan a circuit buiit uiing-gai;J-rhich reallzefunctlons drawn from a boolean basis B.[Lad 75J and-tdf-iii-have shom thatthe ci rcui t val ue probl en- over cornp'!eti 

-bases 
ind thd rrcniiine ci rcui t val ue

Froblem t€sPectively are log space complete for P. Tfris reini *,at cirsutf-



yalue problems over these bases are in a,sense among the most difficult inP. For if they can be computed in 0('logKn) space then so can every nember
of P.

The parallel cornputation thesis ICKS 81J, IGo'l 82] states that time on
any "reasonable" model of parallel cornputation is polynomia'lly related to
space on a deterministic Turing machine. Thus the circuit value problems
over comPlete and monotone bases are unl'ikely to have an exponential speed-
up on a para'llel computer. ble c'lassify the two input boo'lean functions
according to the effect which their presence in a basis has upon the conp
plexity of the circuit va'lue problem over that basis. trle find that for the
bro input bases B, either cvPo is log space complete for P or it can be

computed in 0(log2n) ,0.... 
o

Among the "reasonabJe" models of parallel machine architecture is the
aJternating Turing machine of ICKS 8il. This differs from the standard
nondeterministic Turing mach'ine only in'uhe manner of defining acceptance.
The states of an a'lternating Turing machine may be labelled ttl{D (universa'l),
0R (existential), NOT (negating), accept or reject. This labelling is
extended to configurations in the obvious way. A configuration is deenpd
to be accepting if it has an accept state, or if it ls universal and all
successor configurations are accepting, or'lf lt is ex{stential and sonre
successor configuraticn is accepting, or if it is negating and its
successor is not an accepting configuration. b{e generalize this by allowing
the states to be'labe'lled with a larger range of functions, in particular
the two input boolean functions. l.Je prove that these extended Turing machines
.over trxo input boolean bases B are as pcwerful as para'l'le'l machines iff the
circuit value problem over basis B is log space comp'lete for P.

-F Furthermore, there are four language classes recognised by po'lynomial
tlnre bounded extended Turing machines over the bases whose CVP can be
computed in logz space. The first three are the familiar classes P, NP

and C0 -NP. The fourth is a previously undiscovered c'lass whlch we shall
eall EP. Problems in the latter can be thought of (at the abstract
Frtblem level) as the parity of the nunber of solutions to problems in NP,
ln the sane liay that problems in C0 -NP can be thought of as the complenrents
of problems in NP.

Another previously studied model of parallel machine architectures are
the conglorcrates of [Go] 821. These are essentially conrnunication nebtorks
of synchronous finite state machines. lle restrict these rnachines to bases of
two input boo'lean functions. These restricted machines over basis B are as
powerful as parallel machines iff the circuit va'lue problem over basis B is
log space comp'lete for P.
2. The Circuit Value Problenr

t{e shall use the standard definitions of space and tira on a Turing
nachine (see for example [A]lU 741, tJL 75U. Let P be the class of languages
rccognizable in tine polynomia'l in the lengtlr of the input by a determinis-
tfc Turing nachine.

Definitions A language A is log space transfomab'le to B (written A lloq B)
1T t[ert exists a function t such tjrat for aTi-;,
?4 iff J(n)eB. A language B is log splce complete for P if BaP and for all
A€P, A :tog&
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Lernna 1 (i) If B !s 1og space comp'lete
Tslog space conplete for P, tii) If B

recognizable in space 0(logKn) for some
be recognized in space 0(logKn).

Definition B., = {f:{0,1}n*{0,tiJis the
tl

for P, B <too A and A e P then A

is 'log spEce tomp'lete for P and js
constant k . 1 then every A e P can

set of n-input boolean functions.

is a sequence C = .91r...,9n)Defini tions A circuit over basis B $ Bt

rhere each g, is either a variab'le xl,xz, ... (ln which case it is cal'led

an input) or f(j,k) for some function feB (in which case it is called a

F.t" 
'. j.-[: ' 

The va]ue of a circuit C at gate 9i, v[C'9i] is given
Dy

v(C,xr) = xj

v(c,tti,k)) = f(v(c,gi), v(c,9k)).

The va'lue of a circuit C is defined to be v(C) = v(c,91).
probTEm

ctJPg= ic 1v(c) = 1i .

Lenmg 2 (ilad 15)) If B is a complete basis then CVP, is
conFlEe for P.

Lenrna 3 t tGol 771) If B contains t&,V] then CVPt is log
TEF-F.

+e*1j If B contains {*t,tf,},{*i or {l} then CVP, ls log'space conplete
TOr r.

The ci rcui t va'lue

log space

space complete

Lenma 5 If B contains i&' **1, tv,**}, {a'61 or tv$i ttren cvPt is los
EpaEe-coorpl ete for P,

Froof: {*,-t} is complete, and hence by'lenma ?'

complete for P. Furthermore CV-tt*r-] 16-g LUrB

{y'} stnce -tx can be replaced by x * 0'^1 f x, 0

and x +y cdr be repiaced by X *J, I I tx / y),
respecti ve'ly. El

Proof: cvPt&,v] i log CvPe where B = {&,*},

aVb = (a.* b) ** (a&b)
a&b = (a+-r b) ++ (a\tb)
aVb=(41b) @ta&b)

and a&b = tath) @ taVb)

respecti vely-E

Definltion Let C = (gt,...,9n) be a clrcuit.

trcn gi to gj as follors. There ls a path of

there erlsts k S n suci that 9j = f(9i,9p) or

Iength u > I from gt to 9j ls a path of lengtJt

Ftth of length 1 from gt to 9j

CVPl*-tis log sPace

where B = {*}, {f}, {*} or

+xorxflrespectivelY
.y+xor(yfxlft

tv,.*], t&S}} or {v,O} since

hfire a PatJr of length u

lengtlr I frosr 9i b 9j lf
9j = f(9p,9i). A Patlt of
u-l frorn gt to q and r



.*-- - .. 
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Definitions Let C = .91r..,,9n> be a circuit. Define the function
oddu(9irg3) to be true iff there are an odd nurber of paths of length u

o
ln C frorn g, to gj. Further define odd(9i,9;) = O. oddu(gi,9j) to berrrU=l e

true iff there are an odd nunber of paths (of any length) from g* to g*.
rJ

Lenma6LetC-<91,.",9n)beacircuitoverthebasis{@}'For
J = 11...1h the value of the circuit at gate 95 is given by

vts5) = ,R,, Iodd(s. 'sr)&v(st )I

-- 9i

Proof By induction on j, noting that & distrlbutes over @ (i.e. a&(b@c)
;TFb) @ (aac)) tl
Lenma 7 Let C =.g1r...rgn>be a clrcult over {@}. If u >dil then

n
oddu(9i,95) = @ toddo(9i,91) & oddu_o (gi,gj)I

Proof By lnduction on u. O

Con-slder the fo'lloi+ing procedure:

boolean procedure path (ili,k)
ffis true iff there exists an odd nun&er of paths

ffir ,i to 9j of length k.

lf k = I
- _then 3_odd no. of connectlons from gi b gj

n
el se O ipatnt l ,l , lk//l ) s path(l ,i , tk/d )l

- 
xFl

Lenna 8 path( l , j,u) = odd,,( 9.i ,95 )

Proof 8y induction on u, using lerma 7 witJr A = .[u/a]. F
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Lenma 9 CVP;611 can be so1ved by a determlnistic---T t \l/ r
0(1og'n) space.

Proof Let C = .glr... r9n> be a circuit over {O}.
which computes

e 6. lpath(i,n,u)&v(gr)] 
.lnputs u=1

9i2
This uses space 0(log'n) and

. @. O- Ipat}r(t,n,u)&v(gr)J =.O ItO-oddu(sg,sn)&v(sr)J lenrna 8
lnputs u=l I lnputs u=l

9i 9i

= vln) lenma 6 B
CVPtCIi' CVP1.-*i' CVP{O,*} dnd CYPI9-<-+* are all log space

as in the proof of lerma 3, wlth the
*+b

n be solved by a deterministlc Turing

f(x,y) is monotone if for all x., < x.,
f(x,y) is Tinear if it can be^ - L

Turing machine in

Conslder the program

Lerma 10

equl va1 ent.

Proof Uses double rail loqic
illenEity a@b =-(a**b) = (-a)

Lenma 11 CVP,.., dnd CVP,.,.' catAJ T Y.|

machine in 01logzn) space.

lroof A simplified version of the proof of 1enma 9 will sufflce, since a
circuit built from 0R gates is true pr;cisely when there eixists a path to

'the output from a true input, and a circuit built from AND gates is false
precise'ly nhen there exlsts a path to the output from a false input"[l

Qetjnitions [t'lcc 811 A function
and y, < yZ f(xyy1't . f UZ,!2),
expressed in the form

.o@(at&x)@trz&y)

rhere a0, al, a, e {0, 1}.

The bro-input boolean functions fall into four classes induced by the
Properties of llnearity and monotonicity (see tabJe 1). The functions
which are both linear and nronotone bre shall call 'triyial'I, those which are
Jfnear only "easy", those which are monotone only'rnderate" and those
rtich are neither'linear nor npnotone'hard". If t}re gates ln basls B are
all easy or trivial, then cvP, is easy (i.e., can be sitved ln logz space).
If B contains at most one rnderate gate (and the rest trivial) then CVF, is
easy. If B contains b*o nroderate gates, or a moderate and an easy gate, or
a hard gdt€, then CVPg is hard. This is sunnpd up by the following theorem,
xftich follows from thE earlier lerrnas.
Theorem 12 cvP, is log space complete for p lf either:

tf) B contalns a gate vhlch ls not llnear and a gate rtrich is not mnotone;
or

(fi ) {&,y}g B

and ls solvable in 0('logqT:pice otjreniise.
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Table I
Complexity classes of
gate g 'indicates that

functions ln BZ. An entry
g has property p (wherr p

of 1 under property p of
ls rpnotonlclty or linearity).

functi on I I near cJ ass

0

I
x

v

fal se

true
left identlty
right i denti ty

I
1

I
1

tri vi al

-x
-y
e

+

left negat.|on

right negatlon

equl va1 ence

excJ usi ve or

0

0-
0

0

and

or
0

0

0

0

0

o
0

0

\
t
.+

\

\

nand

nor

lmpl I es

not inrpl ies

ls lmplled by

ls not lmplled by

0

0

0

0

0

0
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3. Extende{_Turing Machines

The definition of alternating Turing machine ICKS 81] can be generalized
to al'low the labelling of nonfina'l states with any reasonable function.

Definition An extendeo Turinq *a (ETl,t) is a nine-tupleFIT;E; k, Q

D ls a problem domain [0, I e D; I / D).
B = {fr,...,fn} is a finite set (Uasis) of flxed-arlty functions f, of

ar{ly ai f0, fi : D' *D 1 < i 5n.
k ls the number of work tapes.
Q is a finite set of states.
E is a finite input a'lphabet (//L is an endmarker).
I is a finite work-tape alphabet (#ef is the blank synrbol).

d g tQ r rk r tru {4ii' tq' ii- i*rk ' {tJ,-JnJrlr*tt is tbe next--
nove reJat{on.

gn e Q is the initial state.
g": Q * B u D

Deflnitions A configuration of an ETlt l-l = tD, B, k, Q, X, I,6, Qg, 91)
ls an elenrent of Cn = Q x E*x((f - t#])r)k , ttk*lj If o and B are configura-
tlons of l'l we say that B is a successor of c (written fB) if g follows
from a in one step according to-tEe transition functlon-6. The initial
confisuration of t'l on input x is or(xi = (Qg, *, 

\-y', Upt
k k+l

rhere I denotes the empty string.

The sernant'lcs of an extended Turing machine are analogous to those of
an alternating Turing machine. lle insist tlrat the transition function 6 is
such that, for all states q e Q, every configuration containing q has
exactly arity b(q)) successors, *rhere eJements of the domain D are interpreted
as functions of arity zero.
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For f:Do*D where OeDJ\D we define

?: (Du[i;a*outli of f as fol'lows:

the monotone extension

and

all

aF 8., I ( i < a.
T-

d e D then Y has a- least

=

the

= 0,

rluE, tnk )

grfini tions AP

NP

- co-NP

If leDa then ?(I) = f(.U and for I < m 5 a, it.5.O*1 andye(Duilif-m

ft1,,-J, = 

tlo;:;ii]l.ro, 
.,, oeD f(x,0,r) = t(r,o,r)

For example, the rnonotone extensjons of sone functions in B^ are
shown in table 2. z

A labelling of configurations is a map

I : C, * DU{J-i.

Let T be the operator mapping labe)lings to labellings defined as follows.
Let M = (0, B, Q, E, fr 6, Q0, 9) and q be a configuration of H t+ith state
g. Assume a total ordering on the e'lements of 6, so that we can order tJrose
B such that a F B. Then

1g(q) if e(qieD
r(l)(a) = ?o.- \f(l(8t),...,1(Ba)) if g(q) = f

If we define the re'lation ".u bJ I < d for
fixed point lr with respect-to <.

gefinitions An EiH H gccepts x iff t*tfn.'(x))
il1

1, l{ reiecis x iff l*tdr(x))
I anguage accepted by ltl,l.l halts on x iff l'l accepts or rejects x, and

L(n =-{x e E* [M accepts x].

Theorem 13 The extended Turing machlnes with computable bases accept
preeisely the r.e. sets.

Note that extended Turing machines with domain the natural nurrbers and

basis t+] are the counting Turing nrachines of [Val 79J; and if we choose the
domain to be the boo'lean set t0,1i, ETll's with basis {&,v''-} are alternating
Turing machines, those with basis tV] are nondeterrninistic Turing machines,
and tjrose with basis {&} are co-nondeterministic Turing machines. Since our
interest'lies with the two input boo'lean functions, we will henceforth
restrict ourselves to extended Turing machinei with D = t0,lj and Bg BZ.

Definition PTIf'tE = UB k>o

PTII'IE {&,V r-r}
PTIl,lE iv]
PTII'lE{&}
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v rI0

iffi

Taule 2

Extenslons of sor,e functions in B. to domain {0,I, 1}.
I

&

I
t
0

+

1

I
0

r.L0

ffi
o
I
.L
0



- 10-

Detlqtjg! A basis B is calJed P-complete iff CVPB is log space complete
T6T T.
Theorem 14 For ail P-complete bases B, B' c B,

TIt'lErtT(n)) g TImrt, (or(n) )

SPACEB(S(n)) c SPACET, (S(n))

for some constant d.

Proof: Theorem 2.5 of [CKS 811 Proves the resu'lt for B = t&,V,-] and.

tr = {&,V}. The technfque used'ls similar to the one used to show that
Urc monotone circuit value problem is log space cornplete for P (lermra 3).
De Morgans1aws are used to push the neEations down to the final states in
the sane manner that they are used to push the negatlons back to the inputs
ln the monotone- circuit value prob'lem. A similar nrod'ification to the proofs
di ifr. i-completeness of all such B gives the required resu'lts'E

Thus extended Turing machines cver the P-complete two input boolean
bases are just as pcwerful, within a constant factor, as alternating Turing
machines. ICKS 811 have shown that alternating Turing machines are as

poi+erful , to within a po'lynomial , as any parallel machine. Theorern 14

imp]ies ijrat the conplbxily results on aliernating Turing-machines (notably
thlorems 3.1-3.4 and corollarjes 3.5-3.6 of ICKS 81ll app'ly equally well to
extended Tur ing riachines over P-conplete bases.

.Jheorem 15 TIttE,ei (T(n)) = TIME,.*n(T(n)) = TIHErr,.-*1(rtn)) = Tii',lECI,*r.)(T(n))

Proof A sinple modification to the prcof of lenma 10 suffices to give tlris
ffiuTt. E
Def f ni tion ETIME(T(n) ) = TIHEr*, (T(n) )

EP = PTIME,3]

At this stage we have four interesting c'lasses of languages accepFd by

polyranial time-Sounded extended Turing ma-hines. The raost por,rerfu'l class
is inat recognized by machines over a P-complete basis,_exemplified by

alternating Turing mlchines" In the light of theorem 15, i*e see that
itre-remaining lanluages fali into the t6ree classes accepted.by po'lynomial

tinre bounded-exteidei Turing machines over the bases {&}, tV} and {@1.

t'tachines over the first two bases aFe nondeterministic and co-nondeterministic
Turing machines r€spectively. Languages in the corresponding polyngryLll:--
ttm Sounded classei NP and-co-NP aie wel'l-studied (see for example IAIIU 741

IG&J 791 ).
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The'last class is EP, the class of languages accepted in polynomial
tine by extended Turing machines over basis @] [E for Equivalence or
Exclusive-or). The classjcal open prob'lenrs regarding the relationships
between P, NP and co-NP can be extended_to inc'lude EP. For erample, one
mlght wonier whether or not NPfi co-NPnEP = P?' (See figure l.) As with
the question P I NP? there are complete problems for the questlon P f EP?

Definitions A 'language A is (many-one) reducibJe toB(writtenA<B)lf
F

there exists a function f computable in polynomial tim such that for a1l w,
w e A iff f(w) e B. A'lanEuage B is said to be EP-complete if BeEP and for
all AeEP, A <8.

tr
Defini tions Let
asaiTnr,effor x

-r-

a varlable x or
asslgnnent t is

f, = {x' ,.. . rx-} bg
is a fdnction"'t :

its complement f.
given by

-[t(x) if I = x.,
bt(x) lf I = f

a set of boo'lean variables. A truth
X * {0,1}. A litera] over x is EJTEET
The value of a-fiteral I under truth

v( I ,t)

A clause over x is a set of litera'ls over x,
tr[th assignnent t is v(c,t) = V v(l,c). A

lec
set of c'lauses- over x. The value of a fornula f under truth asslgnnent t
ls v(f ,t) = /l v(c,t). The-satJsfiabll'ity problem
sAT = tbooleifi'formulae flv vm

t

The value of a clause C under
boolffiisa

narity-SAT = {boolean formulae v(f ,t)].

Theorem 16 parity-SAT is EP-complete.

Proof Clearly parity-SAT e EP. tie fo1low the proof of Cook's theorem (see
T6FTxanp'le tAflu 741). G'iven an extended Turing machine l'l with L(MleEP, we

can encode it as a boolean formula, as if it Here a nondetenninistic
Turing rnachine. tlit}rout loss of generallty, assum that lil has only exclusive
-or states. Then t'l accepts input x iff there are an odd number of accepting
computation paths of x lff there are an odd nurber of satisfying:ssignnents.
to the boo'lean formu]a of M. El

Simi'larly, determining the parity of the nurser of solutions to t{P-
complete problems is EP-complete provided the reduction from SAT is
solution-preserving. The generalized Ladner's theorem IKS 80J

tells us that (provided P I EP) there are problems in EP which are nelther
In P nor EP-complete. A candidate ls tournanEnt isonqrphism, wfrich is not
knoyn to be in P [tJre best kno*n algorithm is the nc. lo$n1i* algorithrn of
{Luk 80J), Tournarent isomorphism is in EP since the autonnrphism group

of a tournanent has odd order (hence the nunter of isornorphism bebreen bro

tournarpnts ts either zero or odd).

fle
t
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Ficure I The Class EP

FL ff-JI-

Fiqure 2 fi*o-phase lion-overla

9z
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4. Conq'lomrates

Conglomrates consisting of synchronous finite state macbines

co,*uniciting via an interconnectiiln network are another mdel of para'|1el 
^

machines. If th; pitt.rn of the interconnections is computable_ in polynomial

sp.l. ioi porynoriii parallel tim) then the resulting class. of 'cglg]onrerates

IF"-it'powlrtirt, to *ithin a polyn6mial, as any parallel machine [Gol 82].

Definitions Conglomerates, and the notion of computation' accePtance and

Ex€cuTion-fine aie defined as in [Gol 82J.

Definition A conglomrate over basis B consists of gates of B conmunicating

ffi..con t the networl may_be cyclic, unlike
the combinational circuits in ivn". There is also available a regular "tt{o
phase non-overlapping c1ock" tMC 811 (see figure 2) whose period is no greater

than a finite nunber of gate Oelays. Thus the computations of the gates-can

be made synch.onorr, and exe.uiiJi,-li* is defined to be the number of clock
prfl.i. -in. i.;;i-ionvention is that the input bits bt'b2,...,bn are

represented at time zero by having the inputs to gate i equal to bt and the

lnputs to gate It equal to -bi. Acceptance and the complexity of the

interconnection network are defined analogously to conglorerates.

Definition coNG-TIHtr(Ttn)) (coNclOMEMTE-TIME(Ttn))) denotes the class of

languages accepted by conglomerates over basis B (conglomerates) in_time
f(nl wittr the interconneclion network computable in po'lynomial parallel time.
Stnce conglonrerates over a finite basis ar€ a soeclal case of qeneral

songlornrit"s, i t is obvious tnai iolro-rimi*[r(nt)scorueromEMTE-TInrtT(n) ).
l{e shal I now investi gate the converse of thi s resu'l t.

Theorem 17: For all complete bases B,

cONGLoHEMII-TIME (T(n ) ) cC0NG-Tlrcr(dT( n) )

for sone constant d.

Proof Each finite state machine in the conglorerate can be replaced by an

Effiaient conbinational circuit over basls B, and a finite nurber of mmory
elements. These merrpry elements can be clocked by the regular_clock pulses
and theii outputs fed Lack into the inputs of the conbinational circuit in
order to simulate tlre flnite state machines in the standard way. If B is-
iomplete, the nErpry elenrnts rnay be constructed using a 9{c]ic netr*or* of
gatis of B as in the normal "fli-p-f]op" circuits. E.4., if B = t&ryJ the
fllp-flop could be as shown in figure 3.

i"7"|

Fi eur€ 3_ - Stan da rd F'l i P-fl oP

e. [p.l
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Note that consecutive flip-flops will need to be clocked with opposite phases
(0., and 6r) of the clock in order to prevent race conditions. Because tbe
coAglomerEte consists of finite state machines, only a finite nunfer of gates
from B are required to simu'late each one and so the execution tirp will be
lncreased by at rpst a constant factor d. Simil4rlJ, the comp'lexity of the
interconnection pattern wi1'l not be increased by nore than a constant factor.

Theorem 18: For a'l I P-compl ete bases B,

C0NGLOMERATE-TIl'tE (T(n)) c CoHe -TIMEB(dT(n) )

for sone constant d.

Proof: Consider the case when B = {&,V}. Again using the "doubJe rail logic"
l-dea in lenrna 3, it is straightforrtard to replace the combinational circuits
in the proof of theorem 17 wjth gates from B by pushing the negations back
to the inputs. Thus each edge of the interconnection network wil'l be
slmu'lated by two edges of the {&,VJ network, one carry'ing the negation of
the other. Now the memory elenents can be simulated as in figure 4.

in7"l

oul7"|

Figure 4 -_'"Monot "

Thus the theorem ho'lds when B = t&,V), neither the execution tinp nor the
conrplexity of the interconnection neiwork increasing by more than a constant
factor. l{ow the theorem foJlows for all other P-complete B using the
technlques of lenmas 4 and 5. D
Theorem 19: If scnp basis B is not P-complete, then congloroerates over
SasiTTEnnot in general simulate conglonerates (or any other general
purpose paral lel. cornputer).

Proof: Assune to the contrary that some basis B which is not P-complete can

5G- used to simulate an arbitrary conglomerate. Then in particular, it can
simulate ttre conglomerate which computes the IIAND function NAND (bl'OZ) =

f(bl,-bl, bZ,-'bZ). Thus a (possibly cyclicJ network of gates from B can

simulate t}e I{AHD function in some particu'lar tim t. ilow such a netrork
can be 'unrolledn into a conbinational circuit with deptlr at most dt for
sorp constant d ISav 721. Note also that any clock signals coming into a

gate in the unrolled circuit can be set to a constant value representlng
fhe value of that clock signal at the particu'lar tinre in the computation
rhich the depttr of tfrat gale represents. Thus there is a fixed conbinational
circuittver basis B whiitr compirtes the NAND function frorn the values of bn
lnputs and tJreir negations. llence CVP.$ : CVP', contradiction.[l

Loosely speaking, we can sunmarise this section by saying that a
particular basis B 9_BZ can be used to build general purPose parallel
foachines iff B is P--cofiplete.

f,
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5. Conc'lusions

Ue have exanined bases of two input boo'lean functions, and defined the
notion of a basis being P-comp'lete. i.Jith reference to table 1, a basis is
F-comp'lete if it contains at ieast one "hard" function, or two "moderate",
Or a i'mOderate" and an "easyt'. The remaining baseS Of two input bOO'lean

functions are not believed to be F-complete lun]ess P = SpACEllbSkn) for
some constant k).

If a basis is P-complete, then the circuit value problem over that basis
ls probably inherently sbquentia'1,-and extended Turing machines and conglom-
era'tes ovei that basil are powerful para'l'le'l machines. The remaining bases

are not suitab'le for building general purpose pala]lel machines',and the-
iircult value problem over t[et can be'so]ved quickly on a parallel machine.

However the bases which do not appear to be P-complete can be further
classified into four groups according to their apparent e_ffect on the
computational power oi extended Turing rnachines. These four groups are
exeinplified by'{V}, {&}, the one-inpui functions, ald p' qotresponding
to nbn-deterministic, co-nondeterministic, deterministic and the new cJass

of "parity" computations.

6. Further work

How do PTanar circuits
appears that {&,V} is not a

iGol 80J.

behave over different bases?
powerful computationa'l basis

For examp'le, i t
for planar circuits

' It wou'ld also be nice to know more about the class EP. Is this
ldentj cal to a previously studied cl ass? l.lhat is the relationship between-

Ep and p, NP anb co-NP? 
-Is 

there a "natural" problem nhich ls EP-complete?
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