
http://wrap.warwick.ac.uk/

Original citation:
Wadge, W. W. (1982) Classified algebras. University of Warwick. Department of
Computer Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-046

Permanent WRAP url:
http://wrap.warwick.ac.uk/60754

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29189177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60754
mailto:publications@warwick.ac.uk

The Univensity of Warwick

THEORY OF COMPUTATION

REPORT NO.46

CLASSIFIED ALGEBRAS

BY

}l. l'|. }lADGE

Department of Computer Science
Univensity of Wanwick
COIENTRY CV4 7AL
ENGLAND.

October 1982

Abstraet

We present a new fonnal systm for the speeificatj-on and verification

of abstract clata types, one which aJ-lows subtypes and polynorphism.

The new systan is basecl on a rnod.ifiecl notion of algebra, namely that of

classified algebra. A elassified a^lgebra (our terminolo$r) is essentially

a single sorted al6pbra together with a classification (tanify of subsets)

of its universe. Ttre classification, wlrich is not neeessarily a pa.rtition,

ls 1abel1ed by sort (tfpe) simbols; the subset of the universe labe11ed by

a sort synbol s are the objects of -type- s.

An assertion in the new systen is either an equation, rftieh asserts that

two expressions always have the same value, or a cleclaration, wirich asserts

that the value of a particular expression is ahvays of a particular type.

&uations and cleelarations have equal status antl the rules of inferenee

(substitution and replaeement) can be appliecl to both.

We show that ar\y specification (set of assertions) tras an initial model,

unique up to isomorphisn, whieh we ean take to be the fanlIy of data types

and operations specified. fhe deelarations in a specificatlon act as the
-generators- of the types, and this prineiple forns the basis for an

induetlon nrle of inference for proving a.ssertions about initial nodels.

1 . Whv 11 n,trr hr,rpeil s1.1'6r 11111; (-irrsrt) mnnv fiortor] 'tlgpbrns

T'he basic princinle of the "abstraet" approa.ch to da,ta types (see, for

example, f6ll js the follo.u,llne: a, riata type is determined by the opei'ations

allowe,l on the rlata objects in question. Frorn the nathematieal point of view,

the ba^sic prineipl,e is usua'rl3r"i;aken ;{-- nern that the formal sturiy cf Cata

t,lrpes is not just the strrdv of sets of r1a.ta objects, but rather the study of

aJgebra^s - nn algebra heing a set together r,rrith a. coll-eetion of operations

orrer the set.

For example, we cor-r],,l strrny the rrotion of "list" (in ttre sense of T,Tsp)

bv str.lclyj.ng a.n alg-ebra. of lists tosether with r;he operations CAR, Offi, CON|I

etc. One great arlrrantage nf thj.s method is the fa.ct that a^ssertions about

clata t-rr,oes a.n,l opera,t;i-onn {in par"i;ieular, specifica-t.ions) ean be formulat;ed in

the simnle equaticnal iangu{€e cr* universai a}gBbra. Prope:lties ean be

expressed bv equatir:ns: srrch as

cAR(colIs(x.Y)) == x

in'1 angra€e ver\i eloser f,3 -l;fpf, ::l:ti:ri-i;1i l-isod ilif nroql"anaers, ratire:: r:han in

s;ome abstnrqe nef,ana.lhemai:.cr,l- fornalis,m intei.ligib-!.e only to specialists.

Tn nos'h cs.cies, hnirrer/ei", i-l is riot pc,ssi-irl-e to define a Cata tirpe in terms

o.i nf,er:r.tions ri','?i the sll'is:l-,.r ,1:rtr +,r/to il qr;estilri. lf we are coneerne'i wjth

s1.:lckl: of integci's, foi- ex:,irflrrl-r,), rue must deal',,,rith cper,g.tions like PiI-rH and

TOP -come of whose a.;fiu,nen'i;s znllcr res,.ilts are inte,gerso not stacks. Fo:: this

reaijon it is rr:rral t,o "use nanSr--sor*;ed (or "heteros.enoustr; see [1 l) algebras

(USts) ratherihrin sinnle rinqle sorterl a-lgebras.

The inij;in-l sitcr:ess cf 1;rre ll'iSA f':malis-rn rnade it seern for a tine i,hat the

basic for.rncla.tional pro"blerns harl been solvedn that Cata. ty-oes rral:etr l4SAs.

Ilnfortuna.tel-V ilris ha*c not nroverl tc "ne the c:rse; a nr.mber of rrroblsns'*hich

at first apneared tc be minorlla.ve erierged to ce-u-se enorrnous difficulties.

The fjrst objectlon .is rea-1lv .iust a matter of terminoloqrr- '!he

objection is tj.ln"i' nrr },1SA. j.s nct a sittgie rlerta"tnpe, but rather a collectlon

(or t'e1uster") of data. ty,nes and assoeiated rlata operations. This objection

-2-

nay seern trivial' but impor:tant issues are involved. In our opinion, the

nalve vlew of what i,g a data type (rta eolleetion of sinilar data objects") is
basically eomeet. The trouble with naive (ie set-theoretical) approaches to
speci'fleation is that they lgnore the tlata operatlons. In other words, data

types are sets, but the study of clata types cannot be just the study of sets.

We must study sets together with operations on their elaoents, ie algebras.

The secontl problen, this time a serious one, is that of 'error- values

resuJ-ting frcrn nonsensical combinations. It arises in aI1 but the simplest

tlata types. Tn speeifying stacks, for example, we quiclcly d.iscover that we

must inc}lde an equation lrLrich gives us a value for the expression pop(Mf)

(vhieh, according to the type systm, must be a stack). In general there are

two ways of dealing with the problern: by assigning healthy -default- values to
the problern cmbinations, or by introducing special error objects. Neither is
very satisfactory. The first tries to ignore the problm of errors and roakes

it very difficult even to fomulate the idea of a safe progran, eg one rihich

does not attempt to pop empty stacks. The second greatly ccmplicates the

specifications beeause it is necessar1r to qualify sone equations with
preconditions to the effect that the variables involvetl ilenote non-error

values.

A second serious problan w'ith tvLSAs is the lack of polyuorphism. In real
prograruning languages it is common practice to use the same srmbol for
operations with clifferent argr-ment ancl result types (ttre synbol rr+r' is the

usua-l example). If we want to rmain within the MSA fonnalism,however, we

must employ a different symbol for eaeh sepa.rate use. T'or exanple, if we are

dealing with lists of tlifferent kinds of objects (eg lists of nunbers and

lists of charaeters) we neecl distinet versions of the list operations - an

operation NCAR for taking the head of a nrmerie list, an operation CCAR for

taking the head of charaeter 1ist, NCONS for construeting mrmerie Iists, and

so on. Worst of all, we need a vrLrole family of fF-THffirI-ELSE elones, one for

each type of data which might be involvetl in a choiee. tr\rrthermore each of

these operations needs its own copgr of the -generic- specifying equations.

-3 -

A third serious probl€rn, related to the p:revious truo, js that of

subtypes. The wlSA forrnalism requires that the rrarior:s ea.ruiers be disjojnt

sets. Tn nra.ctice, however, there often a.rise sitri:ltions in i,llrjch one ty1n

(a^s a slet of va.h:es) is nah;ra^lly considererl a^s a subtype of a.nother. The

classjca1 example is given by the types integer and rea1. Refore FOR.IRAN,

everyone agreed that integers were rea^l nrmibers of a, spcsis_l klncl. l{ow rnanir

langrages force us to distingrish beb,reen the integer T and its close eousin,

the real nrrnber J.0. Some of these languages have qone erren frtrther ancl

enlarged the farnilv r:f three-ish ohjeets to inelude 3.0DO0 (double preeision

three) , (.7.0,0.o) (comp] ex three) , (7.ODOO,o.Onoo) (double precision comp]-ex

three), (l,o) (integer comrrlex three) etc. etc. rn the same way, we mirst

distingrlish between an r'.mnty iist of inteqers, an emnty list 61 eharaeters,

and an empty I ist of boo-l.eans. l,rle a.re forbidden from ta-lking ahout a general

type list and eannot even conte.mplate -mixed- lists of (say) booleans anrl

eharaeters a-l-.lspnating.

Another shortcorning of the IVTSA systern is the lack of what we migJrt eall
-parametrised- typ,es. Supu:se. fcr example, th.at rtre r,,rished tc axiomatise the

tlpe -hel,-olt ba--ia;"rceo binary tree-. The problen ls that we cannot eombine tvc:

a.rbitra.rl' heiejrt balaneerl-t;r'ees (hv mal<ing them the two immecliate subtrees of

a new tree) an,i expect t,ire resuli to be height bafancerl. It is neeessarv tha.t

the br^ro trees be of almost the sarne helght. irilhat we need is a. forma^lisrn wirich

allows sorts with paraneters, for example hbt(n). The ciosest we ean eone to

this idea. in the l4S-:A syste-m is to have an infinite eolleetion hbto, hbtl ,

hbt2, ... of sorts, one for each pnssible heiglt. This approa.ch, however,

rp,lil'i rc.s infinite signatrrres nnd infinite snenifieations- and so is fa.r frornt 'ur\/ ri\

satisfa,ctory.

Th'. find eomplaini; aga'inst the lvlSA fonnaiism, 'oerhaps the most serious,

is that its treah'nent of tr,ees is not reaJ-ly algebra.ic. The basic principle

of the n"lgebraic approa,eh is that it is not the ob.jeets wttich are inportant,

but rather the operations on them. If we aDnly this principle to the study of

-4-

drtt;n l;yprtrl, w'l rt.r'c f'orerld 1;o r:onel-rirle thn.t the impnrtant thlngs to gtudv a.re

the operations on data types. ft is very easy to lmagine usefrrl operations on

data types: for example, the union of two types (atI- otjects of either type),

or the cross product (a11 ordered pairs of objects with the first component of

the first type, the second eomlnnent of the second type). Even so-caIled

'tty'pestr l-ike stack are really (unary; operations on trTpes; if t is a t5rpe,

staek(t) is the coll-ection of stacks'wtrose components are of type t. However,

the MiiA fonna^lisrn simply rloes not allow operations on types (sorts) in any

forrn, and no amount of metanathernatieal maniprrlations (eg studying fanil-ies of

MSAs) ean compensate for this firnrlamentat defieiency.

The shortcomings of the IvISA forrnalism, in particular the lack of subtypes

and polymorphism are well lcrown. Such problems arise in ar\y 1an64rage or system

based on a simple-minded -pigeonholing- approach to data types. Anyone who

has tried to implment lists in PASCAI, for example, will rinderstand the neecl

for polyrnorphisrn. Subtypes and polymorphism, as well as paranetrised t34res an

operalions on types, were already discusserl by the author and A. Shamir in

l-l]. fn that work, however, we did not take up the problm of format

speeifieation.

2. General.iza,tions of the notion of sienature

fhe rnost natural- way to solve these problans is to general ise the notion

a signa.ture and of the type of an operation. In an MSA the the sorts form

rmstmchrred set, ffid eaeh operation has only one t54re, consisting of a

sequence of sorts - one for each arg.unent place and one for the result. Tf we

want poll4norphisrn, for exanple, we could al-low an operation syrnbol to have

more than one type; and if we want subtypes we a11ow a partial order on the

sort s14nbo1s. Gogren has tleseribed an "ord.er-sortetl algebra" approacn in l-2]

which incorporates these two generalisations (tri.s system dweloped out of

earlier efforts to solve the error problem).

of

-5-

Gogrren-s suggestion is eertainly valuable, and ord.er sortetl algebra^s r1o

in-frr.et solrre s(rme of the nroblerns raiged here. Ilowever onee ther".t rie
,rr 1|1 1.,'1p4;,; rl rrew pro'ti--l {yn Rnnr-:rits:r, ,)na rrh i. ch rj i d not a.ri. s:e r^ri th the cl i'l

-piilecn-hol inq' V.,aA arrnrl-.qr:h. 'he 'qA ('-'",,i..r
-or{,pri y'l lzrthra) frrrnalism i:l

'l jmitci] 'l:ri 1l:c' f:;"n'i, {'ir:it fhe t.yle of an e.xpress'ion is stj.t1 4etemineC brr J;h;-r

typx:s of the suhp'xnressionl" As a rrsul i,, it is r'ioa: tenl 1.,' 1p:-:sib-i* t,r r.j.l;on

a.bout the ,:',."r,,t} of tiic: rra.i rir: r€ art exnressioii, jc abcr;t sr;ecjal rri.lue'l an

expression cle-v har,re heea-rise oo sner:ie"-i proper+j,€,,s nf thc :3,1 ,qpi-rpr.

Sunrnse, for example, that r,te hale a slnna-t;o-re w'!.th t;.',.rx:s i-n'1 eqe: :rnrl

rea-]. wj t;t, i,i;c, 1'1-;y'111,,ir :1. lill.i1lt\rpe Of the latte:-. n']re eor.]ai.iOn

xa-"i- - {a*,,i '-= ()

(here X,"-_.-. ilJ ,: '.rnriablp of tlrnr: :"eal) is I'ell t.,rced (O :-s of +,-rrne i.nteger
I"(l'1 i

and thercflorc a-i irl o-f i,1,n:c: rr.:z)l brlL the i;vce srrstem pi-eveni.s us fi"orn

strbstjtutinii soinr: c..cil'rpn.rs of the r:ig'nl hand r:r{e bv the lef! ha"r.id tide.

Wo eannot dodrii:i-l the eqiiat;itn

\r-"fY-Y)--v
'in'l;rl'l..-,r ' 't'ctl -- ''i'?ai' -* 'iir-';q{i}l

llrOn i.lt:.-: r;q;t1t j;--,1

'i- -". i) ..-._ \r
i'r,+,r-.jfer* ilt'11t.{:.1

ljC_,r.ltt.:;tr. .|.?1,,, t.i.iai1()i., l::i :: :;r.l i;1.'r., rrri: Wt j.l_._t,iir:,e,1 .

{.:1.,.:.;.,.".'1.{]!:'"ii:,i.l.,.,':::l)iii.)!]jl:l1.i,t,'.iwehq,\r.::..i'

A.n,j :j-,?r:rr t f',1" 1 r1r-;:,iir',1" I * i.1ip. r:i.'l
'1 -l'f.tOW" 1.h.:11 ;1at nl{.11!'-r-,g5-i.(-)fr

I J Fi "ll' ?r.r,c.kj "{rFjlti 5 nr'-'q' n^p'j
--.,.-,-)

'i S iitfe ,t.nrl .,rj r.l rlc :;.y1 ;.y1lq;.r.r.' V.?l ije "
,lthe .1...;-14 3r,r1ilr.lltj. Llol\,,{iv5:1., ,i s,l ttnafrlfe tf

titir: r-lt'f 1.,:r,-"1ir<1':: f.i i{,rtoits thi. nntlr.l"e nf "t he test and abgllrlets onlv i-is

t,.,pe ilr,-,,'.lr:..1rr'r " 'Tt'o lteci '1;hll: we corrlrl eoncli-td{- -ising a1; 1l-.A f or,ler'- ilnrted

al gchra) 3,'7311;11 is i.lil'i ',1-;€ eirorre exlression is lf a supert-r.-trr cf inteser"

whifh j ric'i ttrr-osr (lfr':rl' Ch,:ji:iil '1.s ',.fc-1 l "

Gn,r.lii',1 ititsol',' :e.:ngni,,i.r,i [.il.is lrc]l€n. ?.n ox:,t--n'1s his s"irnnlr'; l3A b;q

allOW-ing nir',.i.,-.,r6111ii^ ahitrats r:a-l-ler1 rle:la.ratiOnS. A ier:larq.tion is a

expre.)rj.cn il;1i'-l,her wil;ir :; Ro!11., flcr" exanp'l l, (in Gogren-s: no-,:rt,ion)

int: rreal - Xreal

*6-

whieh is interpretecl as asserting that value of the expression in question is
always of the indicated type, for al-l comectly typed assignnents of values to
variables- Goguen-s deelarations have an i.musual status, however, and seern to
be eonsidered nore as part of the signature than as part of the specifieation.
They complicate the systern even further without decisively resolving the

problan of -special ease- types.

3. Classified Aleebras

fhe eonventional MSA systan and the new OSA sl/stem (even the extended

version with ileclarations) al1 share a fundamentat assimption (witf, mar\y other

languages and systerns as well) wyricfr we feel is at the root of sone of the

most seriorrs problerns in the field of data types. Roth the r'{sA and OsA systens

are based on a eoncept of type which is primarily syntaetic: a type system is
seen as being above all a classifieation of syntactic objeets, ie of
expressions. The elassifications permitted by the 0SA systern are nore

sophisticated than those allowed by the IvTSA one, but the principle remains the

same. he OSA fonrnalisrn can (ancl shouJ.a) be generalised even further, say to
Aa$s (Afgebra Sorted Algebras) to handle operations on tJrpes. yet the blind
sf)ot (the inability to talk of the type of the value of an expression) will
rsoain. With more elaborate signatures, the problan will get worse. For

example, it should be quite norrnal practice to write a program that produces a

height balanced tree, but not using a method so simple that a syntactic type

checker can verify the faet unaided. We propose to solve this problarn by

developing a notion of algebra based on a ssnantic concept of type: we see

type systems as bei.ng prima.rily classifications of semantic objects, ie of
data objects. We call- these new kinds of algebras classified algebras. The

CA (elassified algebra,) systern is more general than the OSA syster:o, and. is at

the sane tine (mercifully) notationally much simpler. We clo not preten6 that

CAs solve al-l the problans present in the algebraic approach; our intention is
rather to present thqn as a simple example of a ssnantically based systmr.

-7 -

The ne.w system ean be thought of as the result of earrying Gogren-s

enriehment of an 0SA system to its 1ogiea.1 eonelusion. We promote his

declaratjons to the stahrs of fu1l fledged assertions, sha.ring the sarne rislts

an<1 privile-ges as equ,atlons. Sinee declara,tions can be used to formrrlate al1

the type information aborrt operations 'coded up- in an 0SA signahre' we can

rely on cleclarations a'Lone and cirop any a priori sprtaetic concept of type. A

signa.ture in the new system is simply a collection of sort symbol s and

operation synbols (we a^ssume they ean be distinE:ished) wirich incl-udes the

speclal sort synbol anything. l,,rie even drop any syntaetie notlon of rankn

althoueh rankings coul.tl be retained for those uncornfortable in their absenee.

By an operation over a set X we nean a function frcrn the set of finite

Sequences of elsnents of X to X. fhen given any signatrrre Sg, a

Sg-cla.ssified aig_,ebra- A. is a flnction w-ith domain Sg such tha.t

(i) A(anythiag) is a nonempty set, cal-1ed the

universe of A;

(ti) A a,pplied to any sort syrnhol in Sg yields

a. :;ubset of the unirrerse of A;

(i;i) A appl.ied to anv operation svmbol jn A vields

nn oner.atjon orrer the unjverse of A. A elassifietl aleebra

is therefore jusr a eonventiona--L (afxr.rt from beins ral:lk- less) single sorted

aJ g,ebra. to,<l.ether with a label.]-ed elassificaJion of the el-ements of its

universe. The sets {A(s) : s a sort symbol other than anythingi correspond to

the carriers in 2.66nrr€11tiona]- lvlSA. Tn generai, there wil1 be elements of the

unj-verse of a CA A which rlo not appea.r in any of its -carriers-. These are

hest thought or Bs eruor ohjects or even - jurk- wl".ich is the resLflt of

nonsensirrnl combinntions"

The slfntgetie side of the 0A systern is equal-ly sirrrpl-e. Ixpressions

(terms) are b11i1t up frcm va:'iables hy combining operation sytrbols with with

operand expressions - the choice and nrrober being a'rbitrary' An equation is

an ordered pa.ir G,E-) of terns; we will- also use the notation

fln'
l, == lt

-8-

A decl-aration is an ordered pair (Il,s) with E a term and s a sorr
symbol.; we will al.so use the notation

n:s.

Variables are typed (or sorted), s in the MSA system, &rlcl so can be thought

of as ordereil pairs consisting of a token together with a sort symbol.

A ,leclaration E:s is true in an algebra A iff the vaJ_ue of the

expression E is of tvpe s (ie is in a(s)) for atl properly typed

assignnents of values to variables. fhus the declaration

rRODUcf (vveetor, TRANSposE(v,r""to")) : posreat

asserts that the operation A(pnOnuCn) applied to an elsnent of A(vector)

and to A(TRANSPOSX) appl_ied to that elennent is in A(posreat).

An assertion is either an equation or a declaration. An a^ssertion p is
true in an algebra A lff it is tme as an equation or as a declaration, as

above,

Declarations are intended to allow explieit fonnulation of the type

properties of expressions whleh in other systerns are fonnulated irnplicitly by

the signature (r,strierr assigns operation types to operation synbols). The

availability of declarations relieves us from the neeessity of encodlng t.rpe

infonnation in this syntactic form (in the signatr-rre) and at the same time is
rnueh more general as we11.

For example, the fact that the operation sylbol pusH is of type

(stack, int rstack)

can be expressed by the declaration

PtlsH(Tstack,Iint) : stack

We can, of eourse, write more than one declaration coneerning the same

operation; for example,

X. +Y : int--int - int
X - +Y--reaJ- -real- : reaf-

x*"*"no" t no"

so that we can forrnalise the notion of an operator being 'rpolymorphie". The

ordering between types can also be formulatetl with deelarations: the

-9-

deelarn.tion

Xint t reai-

asserts that type int is a subtype of tlpe real. fhis ,leclaration is true

in ar algebra A iff A(lnt) is a subset of A(real).

l'lnally, rleelarations earl be usetl to give trrpe infonnation about -speciai

ease' expressi-ons which cannot be deduced just from typre informatj,on

concerning the operation slmbols used in the expresslon. I{ere are three

pvqmn-l oq.

X - -X - : int--real -'real

fF m THFIN Xin+ trlLSE Yreal : int
TF X""*1 > 0 TTfEMQR?(X"ea:,) ET,SE SQRT(-Xreaf) : reat-

I{er:e is a. specification of the natural- nulbers r',rith the opera.tions zero

(0), suecessor (-), anaition (+) and multiplication (*).

0:nat

Xnat' : nat

X +Y : natnat nal
X *Y : natnar nar

xn"t+o==xn"t
xrrnt, + Yna.t- == (xrr"t + Ynra)-

xrr"t*o==o
x"^t * Yn"t == (xnat * Yr',.,,t) * xnot

and here are a.tlditiona-l a^ssertions whieh speeify stacks of natural nurnbers

tr'j.th POP, T0? and PIISI{. The ertra sort svmbol nstack stands for non-anptv

staeks.

NIT, : staek

W : stacknstaeK
prsrr(v --X ,): nstaek' 'staekt "nat'

POD(W ,): stack'nstacK'

TOP(W .) : nat'nstaeK'
mno/orrcrrrr/lr Y)\ -- Y-:\': \ wr)r r\ Ystaekr"nat, , -- "nat

pno/prrqrr/rl Y \\ -- 1ILrli \ I'r')r't\ Ystaekt"nat/ / --'StaCk
4n

- l\/ -

4. fheories and initlal models

Classified algebras were developed prinarily to facilitate the

specification of abstract data types. A specification is a collection of

assertions rartrich somehow -aximatises- the algebra of the intended ctata types

and operations. In general, a specification has naany different models; that

is,there are mar\y different algebras in w?rich a].l the assertions in the

specification are tme. There is, however, one particular collection of

algebras associated with the speciflcation wtrich have an excellent clain to be

the algebras -intended-. These are the initial models of the specification.

An algebra A which is an elsnent of a class K of algebras is said to

be initial (in I{) ift given any other algebra B in K there is a unique

homonorphism from A to B. A model of a set of assertions is an initial
model iff it is initial in the class of a].l nodels of the set. It has been

shown that in the MSA and 0SA systerns a specification always has an initial
model, and that this initial nodel is unique up to isornorphisn. A

specification can therefore be considered as defining a particular isomorphism

elass of algebras - this is the justification of the initial algebra approach

to data type specification (see, for exmple, l-ll).
fhe motivation behind the foruat definition is hard to guess; but

fortunately there is aJ-so a suggestive infomal characterisation. flre initial
moclel is the one which

(i) ineludes only those data objects wtrieh are

requi.red by the speeification to exist;

(il) identifies only those objects wtrich the

specification requires to be identified. The initial algebra

is therefore in a certain sense the -mininal- solution to the specification.

If we want to use the initiality principle in conjurction with CAs, we

must obviously prove that every 0A specifieation has an initial nodel unique

up to isomorphisn. This is not particularly difficult, and we present the

proof here in outline only.

- 11

Ato

crrcial eoncept is that of homcrnorphiwr. By a hommorphism from a CA

B we mean a function h from the universe of A to that of B sueh that

for any operation syrnbol f and any elanents ap,
^1r...an_1

in the universe of A, the resrrl-t of applying B(f) to h(a6),

h(a,),...h(a- ,) is the irna.ge (rurder h) of the result of'| n-l
applying A(f) to rO, "1 an_1 i

(ii) for argr sort symbol s and any elanent a of the universe of A-

if a is in A(s) then h(a) is in B(s).

Now suppose that we have a specifieation (set of assertions) S and a

signature Sg. tde will construet a partieular algebra A which is an initial
model of S.

The universe of A consj.sts of equivalenee elasses of Sg--expressions, two

expressions n and E- being equivalent off the equation E==E- is a logical

eonseqnence of the assertions in S (ie iff the equation is true in all rnodels

of s). Given an;r sort symbol s in sg, A(s) is the set of all equivarence

classes of expressions E for which E:s is a logical eonsequence of s.

Final1.y, if f is a.n operation s-nnbol in sg ana [Enl, ht
.1,...,

[nrr_1] are in

the universe of {, then the result of applyine A(f) *o rnnl, [Et.],..., [t,_, I

The

a0A

t'l I

ETTII"0' ''1r "'-n-1
fn order

(i)

is lf<TlO,E1 ,...Err-t >1, ie-' the equival-enee elass of the teml forrned from f with

as opergIros.

to check that A is wel-l defined we nust verify tha.t

if X:s follows from S, and E- is equival.ent to E,

then E-:s follows from S;

(ii) if Ei is eq"uivalent to Er- (i<n) then f(xO,E1 ,...,E,_1)
is equivalent to fGO- ,E1

-, . . . ,Xr,_1
-).

(s a sort svrnbol and f an operation slmbol). Thls is straightforward.

Next, we must show that A itself is a nodel of S. this follovs frcm the

nore general- but easily established. result (inportant in its own right) tftat

an assertion (r,riri.ch may invol-ve variables) is trre in A iff each of its

variabl.e - free substitution instanees is a logical consequence of S. (fne

substitutions al-1owed are those which involve replacing a variable of type s

lz -

by an expressi.on E for wtrich E:s follows frcm S). fhe result is hardly

surprising, eonsldering that the elments of the universe of A are

(equtvalence ela^sses of) va.riable - free expressions. Since all the

substitution instances of assertions in S are obviously consequenees of S, 1t

follows that A is a model of S.

Finally, it is easy to see that A is an initial nodel. Given any other

' model B of S, we define the firnction h fron the universe of A to that of B by

setting h([E]) to rc the valrre of E in B (reca].l that E has no variables).

The fact that B is a model of S ensures that h is well defined ancl is a

homomorphisn.

C1ear1y, the proof of the existence of initial rnodels for CA

specifieations differs little from analogous proofs in the other s1/sterns.

5. Reasoning about Classified Alsebras

One of the great attra.ctions of equational algebra as a logical system is
the extreme simplicity of the rules of inf-erence. fhe two rules are, of
course, the n;le of substitution (of expressions for variables) and the rule
of replacement (of equals for equals). The CA system uses these same rules,

with appropriate nodifieations. The essential difference is that the CA rules

can be used to derive new declarations as well as new equations.

fhe rule of substitution allows us to infer, given an assertion P and a

deelaration E:sr arV a^ssertion P- forued frm P by substituting E for a1l

occtlrrences ln P of any one variable of type s. fhus frm the assertion (in

this case, a declaration)

t*"*t*=t*"

and the declaration

zint* zirrt t Po"

we can infer the declaration

no= Qrn *Zi.,t): Pos'

Substitution ean, as indicated, be perforned on equations a,s we1I.

13

The rule of replacement allours us to infer, given an assertion P and an

equati r:n U==Il-, a4Y assertion P- formed from P by replacing any occurrenee of
E in P by x-. fhus from the a.ssertion (again, a declaration)

x"run+(2+Yi't):even
anrl the equation

2 * Yirrt == Yirrt * 2

we can infer the declaration

x"r*r+(Y.n**2) :even.

0f course replacement ea:t, like substitr:tion, be applied to equations as well.
f t can be shown (tfrougl,r we will not do it here) that these rules

(together with the obvious axionns) are complete: an assertion P can be proved

frorn a set S of assertlons iff P is a logical consequence of S, ie iff p is
tme in a1l. models of S.

Now suppose that we have a set S of assertions which we want to consider

as a specifieation, and that 'rre are interested in proving eertain properties

of the data types specified. The initial model of a specification is*nodel;

thus a4y asserticns wirieh can be derived usin€ the mles of inference igst
given are tlre in the initial nodel. Assertions derived in this way, however,

are those whieh are true in all models of the strrcifiea.tion. In general there

are a.ssertions tnre in the initial algebra whieh are not tme in other nodels

of the speci.ficatj-on anri so cannot be derived using the ordinary 11les of
inferences. The commutative law of addition, for example, is not a eonsequenee

(in t;he ordinarl,r sense) of the specification of the natr_ral mrmbers eiven

enrl i er.

Obviou"sl.v, we require stronger rules of inferenee which drich take into

account the special. fea"tures of the initial nodel. We saw eariier that the

universe of the initial- model contains only those data objects requirecl to

exist by the s'pecifieatj-on. In the CA systen we ean restate these properties

in a more ,sug-qestive forn : the elements of the initial algebra are exactly

those which are generated by the deelarations in the specifieation. fhis

fomulation lnints, of course, towards a ruJ.e al.lowing assertions to be proved

_14-

declarations for the type s in s. hle forn a new sequence %-, Et'r...,En-r- of
terrns in r,rrhich each E- - is the result of replacine all variables of type s in

by indtretion on the eomplexity of the stmcture of the data. ob.jeets of a given

type. We have in mlnd some fonn of rrgenerator induetion'f (see, for example,

[5]) ontti"h extends the classieaJ- rule of mathmatical incluctlon over the

natural nurnbers.

An induetion ru]-e of this type is easily found. sirppose that sg is a

signature, that S is a specifieation, that s is a sort syrnbol in S and that
P(w) is an assertion involving the variable w of type s (and possibly others,
possibly of other types as well). I-et %r", 81 :sr...,!n_1 :s be al-I the

Ei by new operation synboh (wtricfr will be used as mrllaries) not already in
sg. ret "o, ".1,

..., &nF1 be the new sJnnbols. Then we are required to prove,

using the orrlinary rules of lnference, the assertions e(Er-) (i<n). fn doing

so we use S, the declarations c,:s (i(m). and the incluctionhypotheses p(cj)

(i<t). Ihving done so, we can lon"rlra" that P(w) is tme in the initial model

of S.

The rule is simple enouglr, but ln attempting to apply it to the exanple

specifications given earlier we run into an unexpected diffieulty. In proving

assertions a.bout the natural nunbers, for example, we would expect only two
-ca,ses- : proving p(O) ana proving p(a-) assurning p(a). Accordlng to the

ru1e, however, we must also prove two other ca^ses: p(ao+a.,) rrcm p(%), and

F(aO*1) from p(ro) and P(a1). ttre extra steps are ulneeessary anct often

impssible' so that our induction rule proves to be of li:nited usefulness.

0f course we all'lanow- that the declarations O:int and xi.rt-:int by

thernselves are enough to generate the integers. In general, however, it would

be very diffieult to say r,rtrich of a set of declarations are redr.ndant and

shoul-d therefore not require setrnrate lnduction steps.

0n the other hand. if the declarations

X. +Y . int--int -int ' 4rru

xirrt*Yint'int
really are -redundant- in a certain sense, we ought to ask ourselves wtry they

-15-

were inelu<lerl. The answer, of cou.rse, is that they represent supposedly vital

type inforrnation about the operations + and *, infomatlon given by the

si,qnature in eonventiona-1 alg,ebrale systems. Tn an 0SA or llSA system, thls

inforrnation inust be inclurled because a signa,ture must assign types to

operation synbols. fn the CA systen, however, there is no a priori

requirement that we inelude the correstrnnding declarations in a speeifi.eation.

The extra deelarations are, in fact, redundant. fhe following a^ssertions

O: int
Y '.1n+-'int '-""

Y rfl--Y"i.nt '' -- 'tint
Y rY '-- (Y rY \-''int 'int -- "'int ' 'int'

Xint*0==0

Xint * Yirrt- == xint*Yint + xint

specify exactly the same initial- algebra. fhe extra declarations are already

trre in the initial models of the above specification ancl can be proved using

the lnduetion rule previously stated. To prove, for example, that the sr:m of

two integers is an integer, we must prove

Xint*0tint

and

X.n*+A-: int

from the speeifications, the deelaration A:int and the inducti-on hypothesis

Xint*Atint

The proof is very simple. In the sane way, we ean use the induction mle to

prove the nssoelative, cornmutative, and distributive laws and other inportant

assertions. Severa-]. steps are required : assertions provd by one application

of induction are added to the specification and used in subsequent induction

proofs.

One of the glreat advanta€es of this induetion nrle is that it a,1lo.'is

proofs to be formll-ated. entireJ-y within the object language, ie essentlally

that used by programmers. It does not require lmowledge of, or reference to,

metarnathernatical notions such as that of homomorphism.

-16-

fneidentally, the other specificatlon al.so contains redundant a,ssertlons.

The specifieation of stack really requires only the five assertions

1\TT, : stack

Tnstaek : stack

ffiH(T"t""t,rint) : nstack

rnnp/prrc..rr/m r \\ -- Trvtr \i "tr,.\.Stackr-int/ / --'int

PoP(PUSH(Tstack, r:.r,t)) == Tstack.

0f course we could certainly criticise a speeification for naking no provision

at all for errors. But extra error assertions cou].d be added to those above

without forcing the creation of ar\y new objects of type staek. The above

assertions can be thougirt of as specifying the bare minim.un of lfuat everyone

F.grees about stacks. fn faet the tlpe nstack itself is not rea11y neeessary;

we eould rsnove the second assertion and replace ttnstackft by 'rstackrt in the

declaration following. The resulting set of four assertions has an even

better claim to reoresent the -hard core- of axicros about stacks.

6. Signatures ancl tvoe checking

It migJrt seem that the adoption of a semantically based system like the

one presented here neeessitates the abancloment of slmtactic type checking.

After al-l, one eould reason, in the CA systen there are no operation types and

anybhlng can be applied to arlything.

Any specifieation (set of assertions) S a:ready cleterrnines a

el.a^sslfi.cation of the set of all erpressions. For each sort synbol s we have

the corresponcting collection of at1 expressions E for tlhieh E:s is tnre in the

initial model- of S. fhls classification malr not, however, be decidable' so

that we cannot in general expect to have an algorithm lftrich w-ill check the

types of expressions in this sense. trbr some sets of assertions, hor,rever, the

corresponcting syntactic classification is decidable; in particular' if the

assertions are all declarations. Of course, lt is very unlikely that a

speciflcation would eonsist only of tleclarations. But given a specification S

-17-

we can form another set T of assertions such that

(i) ea.ctr elsnent of T is tnre in the lnitial motiel

of S (ie ts true of the t5rpes speeified);

(ii) the svntactic classification lnduced by T is
(easily) ciecidable.

rn such a situation the type checking with res'pect to T is -partially

correct-. If our type checker conclurles that a given expression is of a given

type, then this will be the case, Ttre only problern is that there may exist

complicated expressions that fool- the type cheeker, eg l*rose vaf-ue is alwa.'rs

an integer even thouglr the best that the type checker can do is classify it as

of type reaJ-. rn marly applieations, hovever, partial type infonnation is
enough.

fhose who approve of the discipline enforcecl in a strongly typed language

may feel very uneasy about the way in which the fomal system allows

expressions to be built up in an arbitrary fashion a^1lowir\g eg staeks to be

added and integers to be POPed. There is no reason, however, to allow the

prograffner the fu]l freedom uhich is available in principle in the formal,

system. An implanenter could always select some set T (as deseribed aborre)

anti require thal expressions in a program be -elassifiable- aceording to T.

The stren6$h of resul-tlng type diseipline delrnds inversely on that of T, but

there seems to be no a prlori limit on r'rhat shorrld or should not be allowed to

appear in programs. Clur formal systern therefore takes no stand on the issue

and leaves the decision where it belongs, in the hands of the language

ri erri gner.

The approach to type checking presented here is in many respects simi.lar

to (anci inspired by) tfrat used by lr{ilner in his Iv[language (as descrlbed in

t+l).

There is, however, one vital a priori reason for making at least some

restriction on the form of programs. The problel is the vast amount of

untyped -junk- floating around even (or especidly) in the initial nodel of a

- 't8 -

specj"fication. It ls totalJ-y unreasonable to expeet that the lmplmentor of a
spet:lflcation shou-1d have to worry about l;he Junk and provtde representatlons

for data objects that are essentially nathanaticaJ- garbage (such as the resurt

of addlng 5 to a truth value, or of using suceessor as a binary operator).

fdeally, the implanentor should have to rrorry about sensible objects onl;7, ie

those with a type (other than anything). At the sane time, the progranmer

would be restr:icted to programs that produce healthy output, ie that produce

values with a type.

Unfortunately, it is possible to prod,uce specifications in wtrich jr.trk can

appear as intermediate results in conputations that procluce sensible val-ues.

0n the other hand, with most -normal-- specifications this carurot happen.

Clearly what is required is a fonnal definition of nornality, a simple if not

exhaustive criterion for nonnality of a given specifieation, and a proof that

the junk in the initial moilel of a nonnal speeification can be safely igrrored.

This remains to be done.

7. Fktensions and Conclusions

fhe basic innovation in our CA approach is to aJ-low explicit reasoning

about the types of expressions by means of declarations. At the same time we

have greatly reduced the explicit, s5mtactic way ln which this infonnation

encoded in conventional sSrstens. It shoultl be apparent then, this process ean

be carried even further than we have done already.

For one thing, we eould eljminate the syntactic typing of variables by

allouing varlable type declarations to be used. as precontlitions for

assertions. In this wqy we would write

X:int, Y:int -) X+Y:int

instead of

xint *Yint: int

0f course once we allow preconditions we nnigirt as well al.low arbitrary

d.eclarations as precontlitions or even equations as well. This would allow us

- 19 _

to wrlte, for example,

A:pommtrix, A = TRANSp0SE(A) -) A:henmitian

Another direction in whieh we could extend the system is to al_low

parametrised types and type operations, the need for ldrich we have already

describerL. fhe simplest type operations are probably union and intersection,
with axioms like

X:A, X:B -) X:A^B

We could aJ-so have a cross product operation on types associated with a
pairing function and axioms like

X:A, Y:R -) MIGAIR(X,y): ArA

brtending the eoncept even fwther, we eould allow type variables and

user-specified operations on types like Staek. fhe specification of Stack

night include assertions like

X: t , H: Stack(t) -> PUSH(H, X) : Stack(t)

As for parametrised types, we might specify vector (witir vector(r) a vector of
length I) wittr assertions like

T:nat, X:Vector(T), y:Vector(I) _> X+y:Vector(I)

Finally, r,tre eould even raise the ord.er of the systan by allowing metatypes

which represent elassifications of types. .An example could be lfumeric. wlth
axi oms].lke

t:l'iumeric, X:t, y:t -) X+y:t

rn al-l of these su€gested systerns, it is neeessary that a1r (or at least rnost)

sets of assertions have initial rnodels, and it is desirable that there be

simple induction rules for proviqg assertions about initial moders.

The classified algebra approach outlined in this paper :-s in a sense, the

simplest of aJ-1 the syste.ms suggested here. Nevertheless we feel that even the

CA system is rich enough to illustrate the .power anri. potential of an algebraic

system freed from a built-in commitnent to sone particular sSrntactic notion of
type.

-20-

8. References

[t] Birkhoff, G. and Litrrson, D., "Heterogenous Algebras," J. Comblnatorial

Theory 8,1970, pp. 115-133.

lz) Goguen, ,I. A., "order sorted Algebras: exceptions and error sorts,

eoercions and overloaded. operatorsrrr Semantics and Dreory of Conpr:tation

report no. l4,Computer Science Deprtment, IICTTA, December 1978.

I,l) Goguen, J. A., Thateher, J.w. and wagner, x. G., *An rnitiat Algebra

Approach to the Specification, Correctness and Inplmentation of Abstract

T)oto rr\moo,tt in C\rrrent Trenils in progranning Methodolory, Vol. 4, Data

Stnrcturias (ed. by R. Yeh), Prentice-Hall, 1978, pp. BO-144.

t+] Milner, R., 'rA Theory of Tfpe PolSrmorphisrn in progremm{ng,'r JOSS 1T (19T8),

pp. 348-375.

tl] Shamir, A. and l'/a.dge, W., ItData Types as Objectsr" Springer Iecture Notes

in Computer Science no. 52 (ed,. by G. Goos and J. I{artnaruris), Springer

Verlag, 1977, pp. 465479.

t6] Spitzen J. and Wegbreit 3., ffThe Verification and glnthesis of Data

Stmctures,r' Acta Infornatica 4 (975), pp. 127-144.

-21

