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Abstract—The proliferation of multi-type relational datasets
in a number of important real-world applications and the
limitations resulting from the transformation of such datasets
to fit propositional data mining approaches have led to the
emergence of the discipline of multi-type relational data mining.
Clustering is an important unsupervised learning task aimed
at discovering structure inherent in data. In this paper, we
survey the state-of-the-art in the field of relational clustering,
providing a taxonomy of approaches and review some of the
most representative algorithms within each category. We also
present DIVA, our general framework for multi-type relational
clustering, which combines the use of Representative Objects with
multi-phase clustering in a bid to provide flexibility, efficiency
and effectiveness in clustering relational datasets. Theoretical
analysis and experimental results prove that our approach is
more effective and efficient than a number of other algorithms
proposed in literature.

Index Terms—Data Mining, Clustering, Algorithm, Multi-
Type, Relational.

I. INTRODUCTION

As a widely-applied technique for data analysis and knowl-
edge discovery, cluster analysis tries to partition a dataset
into a number of finite and discrete subsets by considering
the internal homogeneity and the external separation of the
clusters, i.e. maximizing intra-cluster similarity and inter-
cluster dissimilarity [16][43].

Traditional cluster analysis mainly focuses on propositional
datasets, which are composed of a flat and single-type data
structure. All data instances in a propositional dataset are of
the same type with instances typically consisting of a list
of numeric or nominal attribute values, so that they can be
represented as points in a multi-dimensional vector space.
Based on such a representation, many propositional cluster-
ing algorithms have been developed that can be classified
as density-based, model-based or distance-based approaches,
depending on whether they take neighbourhood characteristics
into account or not. Alternatively these algorithms can be clas-
sified into partitional or hierarchical approaches, depending
on whether they create a single partition of the data or a
hierarchical decomposition.

A variety of algorithms for clustering propositional datasets
have been proposed in literature. In particular, recent efforts
focus on scalability and efficiency of clustering algorithms
and their ability to discover clusters of increasingly complex
shapes. For example, BIRCH [46] utilizes the concept of
clustering feature (CF) to efficiently summarize the statistical

characteristics of a cluster and distribute the data objects
in Euclidean space into micro clusters. The CF vectors are
updated when a cluster absorbs a new data object or two
sub-clustered are merged. By scanning the dataset, BIRCH
incrementally builds a CF-tree to preserve the inherent clus-
tering structure of the data objects that have been scanned.
Finally, in order to remedy the problems of skewed input
order or undesirable splitting, BIRCH applies a traditional
agglomerative clustering algorithm to improve cluster quality
using the CF-tree. DBSCAN [10], a density-based clustering
algorithm, aims to find clusters of arbitrary shapes. Clusters
are dynamically created from an arbitrary point, absorbing all
points that are reachable from within its neighbourhood (de-
fined by two parameters: Eps (the radius of the neighbourhood
of a point) and MinPts (the minimum number of points in the
neighbourhood)). Chameleon [20] is a hierarchical clustering
approach based on the k-nearest-neighbor graph. Edge are
drawn between each object and its k nearest neighbours. The
weights assigned to these edges are the pair-wise similarities
between data objects. Chameleon uses a graph-partitioning
algorithm to divide the graph into a set of sub-clusters with
the minimal edge cut. These sub-clusters are then repeatedly
merged, by considering their relative interconnectivity and
relative closeness, to derive the ultimate cluster result. More
propositional clustering approaches as well as their applica-
tions can be found in the comprehensive surveys [2][18][43].

Relational datasets usually pertain to domains with a num-
ber of object types and a multitude of relationships defined
between these types[7]. Data relating to these objects and re-
lationships between objects are stored in multiple tables within
a relational database. Although the propositional clustering
algorithms are still applicable in these cases by means of
combining the multiple tables into a single one through join or
aggregation operations (a process referred to as proposition-
alization), it is not a good choice for the following reasons
[15][31]:

• The transformation of relational linkage information into
a unified feature space will causes information loss, or
generate very high dimensional and sparse data, which
will inevitably degrade the performance of clustering
algorithms.

• The traditional clustering framework is designed only for
an individual dataset, so it cannot capture the dynamic in-
fluence propagation along the paths of relations between
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multi-type data.
• Besides the clusters within data objects of each type,

the global hidden patterns involving multi-type objects
might also be important, which cannot be recognized by
classical clustering approaches.

The above limitations, of applying propositional clustering
algorithms to propositionalized multi-relational data, have mo-
tivated the development of numerous algorithms for clustering
multi-relational datasets. In this paper we first provide a
comprehensive survey of the relational clustering approaches
in Section II. After that, we present our relational clustering
framework DIVA in Section III explaining the motivation
behind various aspects of the framework. Theoretical analysis
and experimental results (in Section III-D) show that DIVA
is both effective and efficient. Finally, conclusions and future
work on DIVA are presented in Section IV.

II. MULTI-TYPE RELATIONAL CLUSTERING

Multi-type relational clustering approaches try to partition
data, involving multiple tables (relations) within a relational
database, into a set of clusters so as to reflect the hidden
structure within the data. Here the attribute values of the
data as well as the inter-relationships among them are both
important for the learning procedure [8]. Generally speaking,
there are three ways of designing Multi-Type Relational Data
Mining (MRDM) approaches:
• Transform the MRDM problems into propositional form

[27]. All related tables are firstly merged into a single
one by adding new attribute-values so that traditional
propositional learner can be applied. Finally, the induced
hypothesis is transformed back into the relational form.

• Use the techniques of Inductive Logic Programming
(ILP) to induce relational rules. The MRDM prediction
problems are hence converted into the tasks of automated
logic-program synthesis. It usually includes the phases
of constructing clause space based on θ-subsumption and
performing exhaustive or heuristic search in that space
[8].

• Upgrade the single table data mining algorithms to
relational ones based on the observation that MRDM
algorithms have many characteristics in common with
propositional learning algorithms [39]. The basic idea
is to keep as much of the propositional algorithm as
possible and only upgrade the key notions, e.g. upgrading
the distance measure and keep the clustering algorithms
unchanged.

Džeroski compared the pros and cons of the above ideas [7]:
The first one makes available many data mining algorithms
that works on a single table, but is only feasible for a
restricted class of MRDM problems. The second one is the
most intuitive, but it cannot be applied to large-scale problems
because ILP algorithms usually require a great deal of compu-
tational resource. Therefore, the third one is very attractive and
many MRDM algorithms based on this approach have been
developed recently, aimed at inducing structural regression
trees [26], association rules [5], classification models [9] and
clustering [22][23].

Fig. 1. Ontology of a movie dataset

Fig. 2. Example object: Tom Hanks (Depth = 2)

In the following subsections, we first introduce how to
construct the relational data objects and upgrade the similarity
measures accordingly in Section II-A. We then provide a
taxonomy of approaches to relational clustering algorithms
discussing representative algorithms within each category.

A. Relational Object Construction and Relational Similarity
Measure

Given an ontology represented as a directed graph G =
(C, E), in which the vertices, C, represent the set of concepts
in the ontology and edges E = {~est| edge ~est : cs →
ct; cs, ct ∈ C} represent the relationships between concept
pairs, i.e. source concept cs references target concept ct as its
member property. When constructing an object x of concept
cs, we will first build its member concept list MC(cs) and
then link all objects related to x into the member property
attributes of x. We say an object y of concept ct is related to
x when ct ∈ MC(cs). In such case, y will be added into the
member property attribute x.ct. Then for each y ∈ x.ct, we
launch the above procedure iteratively until MC(ct) = ∅ or a
pre-specified depth bound Depth(≥ 0) is reached. Figures 1
is the ontology of a relational movie dataset and Figures 2
shows part of the object for Tom Hanks constructed in this
way.

In the propositional datasets each data point is represented
as a vector in the multi-dimensional space, so it is possi-
ble to use any of the numerous approaches to calculating
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dissimilarity between two data points in multi-dimensional
space. Relational objects consist of multi-type components
(simple types such as numeric attributes or compound types
as sub-objects) and the relationships defined between different
concepts. Therefore, the similarity measures for relational
datasets are more complex than those for propositional ones.
Emde and Wettschereck proposed the RIBL distance measure
in their system [9] and later upgraded it to RIBL2 in [21].
The calculation procedure is summarized as follows: For two
relational data objects xi and xj of concept cs, the relational
similarity measure

fs(xi,xj) =
1

|MC(cs)|
∑

ct∈MC(cs)

wst · fsset(xi.ct,xj .ct)

(1)
where weight wst (wst ≤ 1 and

∑
t wst = 1) represent the

importance of member concept ct when describing the concept
cs. In Equation 1, fsset(xi.ct,xj .ct) is defined as:

fsset(xi.ct,xj .ct) =





1
|xi.ct|

∑
yl∈xj .ct

max
yk∈xi.ct

fs(yk,yl),

if |xi.ct| ≥ |xj .ct| > 0.

1
|xj .ct|

∑
yk∈xi.ct

max
yl∈xj .ct

fs(yk,yl),

if |xj .ct| ≥ |xi.ct| > 0.

0, if |xi.ct| = 0 or |xj .ct| = 0.
(2)

If MC(cj) 6= ∅, the value of fs(yk,yl) in Equation 2 is recur-
sively calculated by Equation 1. It means to replace xi (resp.
xj) by yk (resp. yl) in Equation 1 and then use Equation 2 to
compare all the associated objects that are referenced by yk

or yl. This relational similarity measure explores the linkage
structure of the relational objects in a recursive fashion. The
procedure continues until MC(cj) = ∅ or the depth bound
is reached, where the propositional similarity metrics can be
applied.

Recursively considering all the associated data objects in
Equations 1 and 2 by exhaustively exploring the whole
structure of relationships is neither feasible nor necessary
in practice. We can quantitatively evaluate the influence of
similarity values between data objects in the d-th level to the
comparison of root data objects. From Equation 1, we see that
the similarity value between two member objects of concept ct

will be propagated into the similarity calculation of the upper
level concept cs with a decay factor δd(ct) = wst

|MC(cs)| , where
d means concept ct is located at the d-th level of the root
object’s relational structure. The total decay factor for concept
ct to impact the similarity calculation of two root objects is
∆(ct) =

∏
d δd. In many applications, this factor will reduce

very quickly as d increases, which means the impact from
member objects at the deeper levels of the relational structure
decreases [28]. Hence it is not unusual for a depth limit to be
set when computing similarity between objects.

B. A Taxonomy of Multi-Relational Clustering Approaches
Multi-relational clustering algorithms can be classified into

distance-based, reinforcement, model-based, graph theoretic

approaches and user-guided or constraint based clustering.
Of these reinforcement based clustering is the only approach
that does not have its roots in propositional techniques for
clustering.

1) Distance-based Clustering: The development of simi-
larity metrics for multi-relational data as introduced in the
previous section led to the development of clustering algo-
rithms based on standard propositional clustering algorithms
for partitional and hierarchical clustering. Kirten and Wrobel
developed RDBC [22]and FORC [23] as the extensions of
classic hierarchical agglomerative and k-partitional clustering
algorithms respectively. Both of them adopt the distance
measure RIBL2 [21] to calculate the dissimilarity between
data objects and keep the same algorithmic procedure as their
propositional ancestors. Because relational data objects are not
additive and divisible as numeric vectors, RDBC and FORC
use the medoid to represent the clusters in their execution.
The medoid of a cluster is defined as the data object that
has the maximum average similarity (or minimum average of
distance) with the other objects in that cluster. This requires
the comparison between every pair of data objects in the
given cluster, which has quadratic computational complexity.
Therefore, RDBC and FORC are not suitable for clustering
very large datasets as they have time-complexities in O(n2).

2) Reinforcement Clustering: The principal of reinforce-
ment clustering approaches comes from the observation that,
since all data objects of different types are inter-related to each
other, the cluster result of one data type might be propagated
along the relationship structure to improve that of other data
types. Anthony and desJardins summarized this idea as inter-
cluster relation signature in [1]: First, data objects of a certain
type, say ci, are clustered based on their attributes using
some propositional clustering methods. Then for objects of
type cj referencing (or being referenced by) ci, the inter-
cluster relation signature is constructed as an K-dimensional
vector, where K is the number of clusters obtained through
the clustering of ci. The value of each dimension in the inter-
cluster relation vector vk is the number of edges that an object
of type cj has if they are linked to objects of type ci in cluster
k. The above procedure is iterated for all data types, until the
clusters become stable.

The relational clustering algorithm motivated by the idea of
mutual reinforcement was firstly implemented by Zeng et al. in
[45] in the scenario of clustering heterogeneous web objects,
such as web-pages/users or queries/documents. They carefully
analyzed several cases of mutual reinforcement in clustering,
and concluded that “when the links among nodes are dense
enough and contain mostly correct information”, the cluster
results of one data type will improve that of other related data
types. Additionally, they used a hybrid similarity function, a
weighted sum of two similarity measures based on content
features and link features, to compare data objects during
the clustering procedure. The ReCoM framework proposed by
Wang et al. [40] further developed this idea by incorporating
the importance of data objects to improve the cluster quality.
Besides being used to group data objects in an iterative
reinforcement fashion, the relationship structure is also used
to differentiate the importance of data objects. More important
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objects, just as authoritative and hub nodes in the HITS
algorithm [25], can have more influence on the clustering
procedure. When clustering data objects of a certain type,
both of the above frameworks transform the information of
relationship structure into the link feature vector of the current
objects according to the cluster result of other data types. By
this means, the relational clustering task is propositionalized
and thus traditional clustering algorithms could be easily
embedded into each iterative clustering step to improve the
efficiency.

3) Model-based Clustering: From the viewpoint of prob-
ability theory, data objects are assumed to be generated by
a set of parametric probability models. The derived clusters,
which are expected to reflect the natural structures hidden
in the dataset, should match the underlying models. These
probability distributions might be of different types or have
the same density function but with different parameters. If
the distributions are known, finding clusters within a given
data set is equivalent to the problem of estimating parameters
for underlying models. The EM (Expectation-Maximization)
algorithm is a popular solution for this kind of problem [4]. In
propositional datasets, mixtures of multivariate Gaussian dis-
tributions are often used due to its well-developed theoretical
foundation [11][12].

Taskar et al. [38] propose a general class of models for
classification and clustering in relational domains. All rela-
tional instances are modeled by the framework of Probabilistic
Relational Models (PRMs), in which the attributes of an
instance are, based on a conditional probability distribution,
determined by the related attributes of its parent instances.
The parameters of PRMs are learned from data by utilizing the
EM algorithm. Since the networks would be fairly complex,
they have to adopt the strategy of belief propagation as the
approximation scheme. Liu et al. [30] extends the reinforce-
ment relational clustering framework proposed by Zeng et al.
[45]. They introduce two latent clustering layers, serving as
two mixture probabilistic models to derive object features. The
EM algorithm is used iteratively to estimate the parameters of
the mixture models in each layer.

4) Graph-theoretic Clustering: Data clustering and graph
partitioning, a sub domain in graph theory [42], share many
common traits, so we can easily use concepts and techniques
of graph partitioning to define and solve the problem of data
clustering: A weighted graph G = {V,E} will be constructed
to describe the target dataset D, where vertices V correspond
to all data objects in D and the weight of edges E reflect
the proximities between each pair of data points. Graph-based
approaches can be further classified into Graph Partitioning
and Spectral clustering based approaches.
• Graph Partitioning based approaches view clustering of

data objects in D as equivalent to finding highly con-
nected sub-graphs in G so that some prescribed properties
are optimized, for example minimizing the sum of edge
weights on the cut or maximizing the sum of edges
weights within the partitioned sub-graphs. Chameleon
[20] is a good example that incorporate graph partitioning
techniques in propositional cluster analysis.
In relational clustering, Neville et al. [32] provided some

preliminary work of adapting graph-based techniques to
incorporate both linkage structure and attribute informa-
tion. In their paper, the similarity of a pair of related
objects is determined by the number of common attributes
they share. Objects that are not directly related in the
linkage structure have zero similarity regardless of their
attribute values. This similarity measure is used to weight
edges of the graph G. Then three algorithms, Karger’s
Min-Cut [19], MajorClust [36] and spectral clustering
with normalized-cuts criterion [35], are used to partition
the graph G and thus generate the clustering result for the
original dataset D. One disadvantage of this approach is
that only the information contained in the first degree
of linkage structure is exploited in clustering. It does not
consider the pairwise similarity between data objects that
are linked via more than one intermediate objects.

• Spectral Clustering has recently developed into one of the
most popular approaches to clustering [34][14]. Rooted
in the spectral theory [37], spectral clustering approaches
need to analyze the eigenvectors of an affinity matrix
(also called as “similarity matrix” or “adjacent matrix”)
derived from the dataset. The problem of optimally
partitioning the original dataset is usually converted into
solving a set of algebraic equations [35] or performing
the traditional clustering procedure in a new feature space
spanned by the eigenvectors [33]. Finally it is necessary
to interpret the cluster indices for the original dataset from
the computational result. Weiss reviewed several typical
spectral clustering algorithms within a unified framework
[41]. Since spectral clustering can handle non-sphere
clusters and is easily to be implemented, it has been
successfully applied in the field of speech separation,
image segmentation, bio-data classification, etc.
Long et al. presented a general framework for multi-
type relational clustering in [31]. Based on the assump-
tion that the hidden structure of a data matrix can be
explored by its factorization, the multi-type relational
clustering is converted into an optimization problem:
approximate the multiple relation matrices and the feature
matrices by their corresponding collective factorization.
Under this model a spectral clustering algorithm for
multi-type relational data is derived, which updates one
intermediate cluster indicator matrix as a number of
leading eigenvectors at each iterative step until the result
converges. Finally the intermediate matrices have to be
post-processed to extract the meaningful cluster structure.

5) Semi-supervised and User-guided Clustering: Until now
all the relational clustering approaches we have introduced
belong to unsupervised learning, which means they are per-
formed under the assumption that there is no preliminary
knowledge about the distribution of the dataset. Recently
semi-supervised [3][24] and user-guided clustering [44] also
attract research interest, where users can provide information
or opinion to influence the clustering procedure. These two
methodologies are quite different from classification, since
the user’s knowledge might be inaccurate or incomplete.
Hence, it is necessary that the clustering algorithms have the
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DIVA (dataset D, number of ROs r, variance v)
1) cluster set {Ck} ← call the Divisive-Step, given D, r and v as

the parameters.
2) dendrogram T ← call the Agglomerative-Step, given {Ck} as

the parameter.
3) determine the appropriate level in T to construct the clustering

result.

TABLE I
MAIN FRAMEWORK OF DIVA

capabilities of automatically evaluating the pertinence of the
given information and utilizing them appropriately.

III. A NOVEL AND EFFICIENT
RELATIONAL CLUSTERING FRAMEWORK - DIVA

In this section, we will introduce a general clustering
framework DIVA for relational datasets [28]. DIVA belongs
to the class of distance-based approaches to clustering. The
objective of DIVA is three-fold:
• To introduce an approach to distance-based relational

clustering that scales well with the number of objects be-
ing clustered. Currently distance-based approaches such
as FORC and RDBC have quadratic time complexity and
are hence unsuitable for use within large data sets.

• To be robust to outliers.
• To provide a flexible framework to support the discovery

of arbitrary shaped clusters.
These objectives are met by DIVA through the use of three key
concepts. These are the use of multiple representation objects
to represent each cluster, the use of a multi-phase approach
to clustering consisting of a divisive step followed by an
agglomerative step and the use of a variance threshold during
the divisive step. We now describe each of these concepts and
explain how they deliver the objectives set out above.

Like propositional clustering algorithm BIRCH [46] and
Chameleon [20], DIVA uses a multi-phase approach to clus-
tering: divisive and agglomerative. The whole dataset is first
divided into a number of clusters so that the variance of each
cluster is equal to or less than a particular threshold value
v. Based on these clusters, a hierarchical dendrogram is built
using an agglomerative approach. An appropriate level of the
dendrogram is determined to construct the final cluster result.
The whole procedure of the clustering framework DIVA is
summarized in Table I.

Section III-A introduces the idea of Representative Objects
and its application in the procedure of clustering. Based on
that, Section III-B describes the divisive (including recursive
and incremental approaches) as well as the agglomerative steps
of DIVA. Section III-C briefly analyze the computational com-
plexity of each step in DIVA. And finally some experimental
results are provided in Section III-D.

A. Representative Objects

Distance-based partitional clustering algorithms have tradi-
tionally used a single prototypical object from each cluster

(typically the centroid or medoid) to allocate objects to the
clusters and to compute the quality of the resulting clustering.
The sensitivity of the centroid to outliers makes the medoid
a more robust prototype, however, medoid based algorithms
such as PAM are known to be more computationally expensive.
Furthermore, such approaches lend themselves to the discovery
of spherical clusters of similar sizes. CURE [13] proposed
the use of multiple prototypical objects (called Represen-
tative Points, RP) and used an agglomerative approach to
hierarchically clustering objects in propositional datasets. The
advantage of using multiple prototypical objects was the ability
to discovery arbitrarily shaped clusters. The RPs were defined
using the concept of maximum spread though the chosen RPs
were “shrunk” by a factor, α, towards the centroid to provide
robustness to outliers.

DIVA also uses multiple maximum spread objects, called
Representative Objects (ROs), to represent clusters. However,
in the absence of a centroid in multi-relational space and to
avoid the computational cost of computing the medoid, DIVA
uses a variance threshold to ensure robustness to outliers. In
addition to the advantage that multiple ROs provide with re-
spect to the discovery of arbitrary shaped clusters, as discussed
in Section III-C, ROs provide the basis for reducing the time
complexity of multi-relational clustering algorithms.

As stated previously, ROs are defined as a set of maximum-
spread objects in the dataset D, denoted as {roi} (1 ≤ i ≤
r). Moreover, the distance between the farthest pair of ROs
approximates to the diameter of the data space. We define the
variance of the dataset D as:

V ar(D) = max
1≤i,j≤r

fdobj(roi, roj) (3)

Small variance means data objects reside in a compact data
space and thus are more similar to each other.

An efficient method for determining the ROs was developed
in [28]. After a start object xs is randomly chosen, the i-th
RO is determined as follows:

roi =





arg max
x∈D

fdobj(x, xs) if i = 1

arg max
x∈D

(
min

1≤j<i
fdobj(x, roj)

)
if 2 ≤ i ≤ r

(4)
where fdobj(·, ·) is the distance measure for relational data
objects. In Section III-C we will show that the computational
complexity of the above method is linear to the size of the
dataset D. However, Equation 4 is not suitable in the scenario
of incremental learning: every time a new data object is added
into the dataset, re-selecting all the ROs from scratch with
Equation. 4 will lead to quadratic complexity.

An alternative method for dynamically determining ROs,
which is especially suitable for the scenario of incremental
learning, is developed in [29]. Consider a collection of data
objects D, of which the set of ROs {roi} (1 ≤ i ≤ r) have
been selected. Assume a new data object x is added to D, one
of the existing ROs would be replaced by x if the new RO
set holds the maximum-spreading requirement. Theoretically
there are r + 1 possible combinations to be examined within
the set {roi} ∪ {x}. If all the pairwise similarity values
between existing ROs have been stored in the memory, both
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Fig. 3. Dynamically update the ROs

Recursively-Divisive-Step(dataset D, number of ROs r, variance v)
1) CREATE the initial cluster C0 containing all the data in D.

Insert C0 into the list L.
2) FOR EACH newly inserted cluster Ck in L:

a) generate the set of ROs {ro
(Ck)
i }:

i) the start object x
(Ck)
s ← randomly select an object

from Ck .
ii) to determine ro

(Ck)
i (1 ≤ i ≤ r):

ro
(Ck)
i ← select the object x from Ck that is farthest

away from the start point x
(Ck)
s when i = 1 or that

maximize the accumulated distances from itself to the
already obtained ROs ro

(Ck)
j (1 ≤ j < i) when

2 ≤ i ≤ r, as described in Equation 4.
b) evaluate the variance of Ck by Equation 3. Without loss

of generality, assume the pair of ROs in {ro
(Ck)
i } that

are farthest away from each other are ro
(Ck)
1 and ro

(Ck)
2 .

Then V ar(Ck) = fd(ro
(Ck)
1 , ro

(Ck)
2 ).

c) if V (Ck) > v, then:

i) create two new clusters Ck′ and Ck′′ , using ro
(Ck)
1

and ro
(Ck)
2 as the absorbent objects of Ck′ and

Ck′′ respectively, where k′ and k′′ are unused index
numbers in L.

ii) allocate the rest objects x ∈ Ck into either Ck′ or
Ck′′ based on the comparison of fd(x, ro

(Ck)
1 ) and

fd(x, ro
(Ck)
2 ).

iii) insert Ck′ and Ck′′ into L to replace Ck .
3) RETURN all the remaining clusters Ck in L.

TABLE II
THE RECURSIVE DIVISIVE STEP

the time and the space complexities of this method are O(r2).
To further improve the efficiency, we incorporate a heuristic
method to update the RO set: for the new data x, we can find
its nearest RO in {roi}, denoted as ro∗. The replacement of
ro∗ by x happens only if the following condition is true:

min
1≤i≤r,

roi 6=ro∗
fdobj(x, roi) > min

1≤j≤r,
roj 6=ro∗

fdobj(ro∗, roj) (5)

To perform comparison in Equation 5, we only need to store
the minimum distance of each RO to the other ROs, so both the
space and the time complexities are reduced to O(r). Figure 3
shows the above procedure: when a new data object x is added,
the original RO ro∗ is replaced because x can better represent
the shape of the whole dataset.

B. Divisive and Agglomerative Steps

Corresponding to the methods of determining ROs discussed
in the previous section, there are two approaches to dividing
the original dataset D: recursive (based on Equation 4) and
incremental (based on Equation 5).

Incremental-Divisive-Step(dataset D, number of ROs r, variance v)
1) Randomly select a data object x0 ∈ D to form the start cluster

C0. Insert C0 into the cluster list L.
2) FOREACH data object x ∈ D:

a) Select the nearest cluster C∗ to x using Equation 7.
Assume {ro

(C∗)
i } is the set of ROs for C∗, among which

ro∗ is the nearest one to x.
b) IF max

1≤i≤r
fdobj(x, ro

(C∗)
i }) ≤ v:

i) Add x into the cluster C∗.
ii) IF the size of {ro

(C∗)
i } is less than r, x will be added

into {ro
(C∗)
i } as a new RO.

ELSE ro∗ will be replaced by x in {ro
(C∗)
i } when

the Inequality 5 is true.
ELSE Create a new cluster C′ which only contains x.
Then insert C′ into L.

3) RETURN the cluster list L.

TABLE III
THE INCREMENTAL DIVISIVE STEP

The recursive divisive procedure is described in Table II.
Given the whole dataset D as the initial cluster C0, its ROs
are selected by Equation 4 and the variance of C0 is calculated
by Equation 3. If V ar(C0) is greater than the pre-specified
variance threshold v, C0 will be divided. Two furthest ROs are
used as the absorbent objects of sub-clusters respectively, and
the other data objects in C0 are distributed according to their
distance to the absorbent objects. Then for each of derived sub-
clusters, the above procedure is recursively launched when its
variance does not satisfy the variance requirement.

The incremental divisive step follows the idea of traditional
first leader clustering algorithm [17]: each new data point
is added into its nearest cluster, of which the center to the
current point is less than an Euclidean distance MaxDistance,
and the cluster’s center is updated accordingly; if no such
cluster exists, the point will form a new cluster by itself. In
our clustering procedure, all the data objects in D are scanned
sequentially. The MaxDistance constraint for relational data is
defined as:

max
1≤i≤r

fdobj(x, ro
(C)
i ) ≤ v (6)

where {ro(C)
i } is the set of ROs for cluster C and v is the

variance that controls the compactness of all derived clusters.
The above constraint guarantees that the newly generated
cluster C′ still holds the requirement of variance and the
previous absorbed data objects are still valid, avoiding the
unbound problem in the original First Leader method. In the
case that more than one candidate clusters is available, we
adopt the complete-linkage strategy to pick out the appropriate
cluster C∗ to absorb x:

Complete-linkage: C∗ = arg min
C

(
max

i
fdobj(x, ro

(C)
i )

)
(7)

The single-linkage and average-linkage strategies may also be
adopted according to the requirement of different applications:

Single-linkage: C∗ = arg min
C

(
min

i
fdobj(x, ro

(C)
i )

)
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Agglomerative-Step(cluster set {Ck})
1) INITIALIZE the dendrogram T . For each Ck , construct a leaf

node tk in T .
2) REPEAT for K − 1 times, where K is the size of {Ck}:

a) for nodes in T that have no parent node, their pairwise
similarity values are evaluated by Equation 8. From all
these nodes, we choose the pair with the highest similarity
value, assuming they are tl and tl′ .

b) generate a new node tp as the parent node for both tl
and tl′ , which equals to create a new super-cluster Cp by
merging Cl and Cl′ . The top-r maximum-spread ROs in
{ro

(tl)
i } ∪ {ro

(tl′ )
j } are chosen as the ROs for tp.

c) store tp into T .
3) RETURN T .

TABLE IV
THE AGGLOMERATIVE STEP

Average-linkage: C∗ = arg min
C

(1
r

∑

i

fdobj(x, ro
(C)
i )

)

The incremental divisive step is summarized in Table III.
When the divisive step is finished, we get a set of clusters

{Ck} (
⋃

k Ck = D, Ck1

⋂ Ck2 = ∅) with variance equals or
is less than v. Note that the use of the variance threshold as
a parameter in defining these clusters implies a bias towards
spherical clusters.

The clusters obtained at the end of the divisive step are
used as input to the agglomerative step. They constitute the
leaf nodes of the dendrogram resulting from the agglomerative
step in DIVA. In each iteration, the most similar pairwise sub-
clusters (child-nodes) are merged to form a new super-cluster
(parent-node)1. The similarity between two nodes is calculated
using their set of ROs:

fdnode(tl, tl′) = max
i,j

fdobj(ro
(tl)
i , ro

(tl′ )
j ) (8)

where {ro(tl)
i } and {ro(tl′ )

j } are the sets of ROs contained
in node tl and tl′ respectively, assuming the super node
tp is formed from two sub-nodes tl and tl′ . Note that this
approach to merging clusters in equivalent to complete-linkage
using only the RO sets of the clusters. The agglomerative
step is summarized in Table IV. It is worth noting here
that the agglomerative step is not a reverse reproduction of
the recursive divisive step. As shown in BIRCH [46] and
Chameleon [20], the agglomeration can remedy the inaccurate
partitioning generated by the divisive step. Note that the use
of single-linkage as opposed to Complete-linkage provides the
flexibility to discover arbitrarily shaped clusters using DIVA.

After the dendrogram T is built, an appropriate level in T
is determined to construct the final cluster result. A common
strategy is to select the level at which the variance of each
node equals or is less than v. Alternatively, we can record
the variance of newly generated nodes for each level, find
the largest gap between variances of two neighbored levels
and use the lower level as the basis to construct clusters [6].

1Since each cluster in the agglomerative step is related to a unique node
in the dendrogram, the words “cluster” and “node” are used interchangeably
here.

When the number of clusters is fixed, the level which contains
the exactly required number of nodes is selected to construct
clusters.

C. Complexity Analysis

In this section, we briefly analyze the computational com-
plexity for each step in DIVA, given the whole dataset D of
size N , the number of maximum iteration in the divisive step
is R and the size of {Ck} is K.
• For the recursive divisive step based on Equation 4:

– After the start object xs is randomly selected with
complexity O(1), the first RO ro1 is determined
by scanning the initial dataset C0 once to pick
out the farthest data object from xs. Similarly, the
determination of each roi (2 ≤ i ≤ r) only needs
to scan the whole dataset once by comparing all
the non-RO objects with roi−1, because the other
required similarity values have been obtained when
determining roj(1 ≤ j ≤ i − 2). Overall, the
computational complexity is O(r ·N).

– When the dataset Ck has to be divided, two sub-
clusters are constructed by appointing the farthest
pair of ROs (assuming roi and roj) as the absorbent
objects respectively. Then, all the non-RO objects
can be allocated to the nearest cluster without extra
calculation because their similarity values to roi

or roj have been obtained in the procedure of
determining {roi}. Hence, the operation for dividing
and redistributing dataset D has complexity O(1).
The above division procedure is launched recursively
for all the derived sub-clusters until their variances
satisfy the requirement. Assume the cluster Ck of size
Nk in the final cluster result is generated from the
original dataset D by at most R iterations, then all
the data objects in Ck need to be compared with R ·r
ROs during the recursive division. Hence, the total
computational complexity for the recursive division
is O(

∑
k R rNk), i.e. O(R rN).

• For the incremental divisive step based on Equation 5:
– when a new data object is added, it will compared

with all the ROs in previous created clusters. The
computational complexity in the worse case is O(K ·
r).

– Since the whole dataset D will be scanned only
once, the total computational complexity is hence
O(K rN).

• For the agglomerative step based on Equation 8:
– every pair of ROs in two different clusters will

be compared, so the computational complexity of
building the taxonomy is O(r2 ·K2).

In summary, the total computational complexity of the
DIVA algorithm is O(rN + rRN + r2K2) when using the
recursive divisive fashion or O(N · r ·K + r2K2) when using
the incremental divisive fashion. In the case that rR ¿ N
or rK ¿ N , the computational complexity of our DIVA
algorithm would be linear to the size of the dataset. When the
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whole dataset can be stored in the memory and the data objects
are evenly distributed, the recursive method is usually better,
because we have K = log2R when the derived divisive tree is
balanced. In contrast, the incremental division is superior for
processing very large datasets because the data will be scanned
only once, while recursive division might access each data
object many times resulting expensive disk I/O operations.

It is worth noting that R in the recursive division is
controlled by the variance threshold v: lower v leads to more
recursive operations and thus generates more clusters. In the
incremental division K is controlled by v in the same way.
When v → 0, too many tiny clusters (or singular clusters in
the extreme) will be generated, which makes the agglomerative
step behave like the pure agglomerative approach RDBC with
quadratic complexity. Hence, the value of variance v should be
set appropriately to avoid such unnecessary division. A good
strategy is to gradually increase the value of v to improve
the homogeneity of the generated clusters, until their quality
meets our requirement.

D. Experimental Results

Some comprehensive experiments are conducted to examine
the efficiency and effectiveness of our algorithm. For the sake
of brevity, in this section we use the word “DIVA” to stand
for the implementation of DIVA consisting of the recursive
division plus the agglomeration, while the word “HIREL”
means the incremental division plus the agglomeration. They
are compared with the following well-known multi-type re-
lational clustering algorithms: (1) ReCoM [40], which uses
relationships among data objects to improve the cluster quality
of interrelated data objects through an iterative reinforcement
clustering process. Because there is no prior knowledge about
the authoritativeness in the datasets, we treat all data objects as
equally important. Additionally, k-Medoids is incorporated as
the meta clustering approach in ReCoM. (2) FORC [23], which
is a natural extension of k-Medoids in the field of relational
clustering.

To evaluate the accuracy of the clustering result, the crite-
rion of Related Minimum Variance [6] is adopt to measure the
similarity between pairs of objects in the same cluster.

Sintra =
1
K

∑

k

( 1
N2

k

∑

x∈Ck

∑

x′∈Ck

fsobj(x, x′)
)

where Nk is the size of cluster Ck. Generally speaking, higher
intra-cluster similarity indicates higher quality of derived
clusters. Another criterion is based on entropy to evaluate the
uniformity or purity of a cluster, if the class labels of data
objects are available [40].

H(Ck) = −
∑

h

Ph,k log2 Ph,k (9)

where Ph,k is the proportion of data objects of class h in
the cluster Ck. The total entropy of the cluster result is the
sum of entropies across all clusters. Different from the intra-
cluster similarity measure, lower entropy value means more
homogenous clusters.

Fig. 4. Intra-cluster similarity (Synthetic Amazon Data)

Fig. 5. Entropy (Synthetic Amazon Data)

1) Synthetic Amazon Dataset: This dataset
simulates the users’ browsing products on the website
http://www.amazon.com based on their interests. The process
of data generation has been explained in [28]. In total there
are 2000 users, 10,000 virtual products and 100,000 browsing
actions. Here we keep the parameters for algorithms ReCoM,
FORC and DIVA the same as in [28]. Each clustering
algorithm generates 100 final clusters for users.

Figures 4 - 6 show the evaluation results, changing v from
0.7 to 0.3 and fixing r = 3 for DIVA and HIREL. As we
expect, the quality of clusters derived by DIVA and HIREL
will be greatly improved as v decreases. When v < 0.55,
both DIVA and HIREL outperform the other two algorithms.
DIVA converges more quickly than HIREL, but their quality
of the clustering result are almost the same when v is sufficient
small (v < 0.5 in this case). From Figure 6 we can see that
the time spent by HIREL is far less than that of the other three
algorithms.

Figures 7 and 8 illustrate the robustness of all approaches
under different noise ratios of browsing actions, ranging from
20% to 100%. We fixed v = 0.5 and r = 3 for DIVA and

Fig. 6. Time spent (sec) (Synthetic Amazon Data)

Fig. 7. Intra-cluster similarity (Synthetic Amazon Data with Noise)
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Fig. 8. Entropy (Synthetic Amazon Data with Noise)

Fig. 9. Schema of the DBLP database

HIREL. In general, the accuracy of all approaches are reduced
as noise ratio increases. Being evaluated by the entropy-based
criterion, DIVA and HIREL exceed the other two algorithms
when the noise ratio is below 80% and performances of all the
four algorithms are very close when the noise ratio is above
80%, which means DIVA and HIREL are very suitable for
clustering datasets with reasonable noise ratio.

2) DBLP Dataset: This dataset is download from the web-
site http://dblp.uni-trier.de/, containing thousands of authors,
papers, conferences as well as their relationships. Figure 9
shows the database schema. we selected 503 authors and 615
acceptors in our analysis. In total there are 83579 papers
written by these authors and accepted by the acceptors. In
order to evaluate the cluster result, we manually labeled the
research areas of all the authors by assigning them into (up
to three) domains. Then the Kullback-Leibler Divergence [6]
is used to evaluate the relative entropy of the clusters, by
changing Equation 9 as:

H(Ck) =
∑

h

Ph,k log2

Ph,k

Qh,k

where Qh,k is the expected proportion of data objects of class
h in the cluster Ck.

Figures 10 - 12 report our experimental results. Since
the linkage structure of this dataset is much denser than
that of the Amazon dataset, ReCoM generates the worst
cluster result (divergence = 2.0) and spent the longest time

Fig. 10. Intra-cluster similarity (DBLP Data)

Fig. 11. KL Divergence (DBLP Data)

Fig. 12. Time spent (sec) (DBLP Data)

(TimeSpent > 100Ksec), so it is excluded in Figure 11
and 12. Figure 10 and Figure 11 show that the cluster results
derived by DIVA and HIREL are comparatively homogenous,
which are much better than those of ReCoM and FORC.

Generally as v decreases, the time spent by DIVA and
HIREL are increased accordingly, but they are still faster than
ReCoM and FORC. When v ≤ 0.8, the time spent by HIREL
is more than that of DIVA. This phenomenon is understandable
because the incremental divisive step of HIREL generated
more than 250 clusters in such case. Considering the total
number of authors is 503, each derived cluster only contained
two authors in average. Such unnecessary division makes the
HIREL behave like the pure agglomerative algorithm with
quadratic complexity, as we have discussed before. Instead,
DIVA performs better keep the linear computational com-
plexity due to its recursive division, because, as the recursive
division goes deeper, each object will be compared with less
and less ROs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we described the current state-of-the-art in
multi-relational clustering. A taxonomy of approaches to clus-
tering complex multi-relational objects was presented along
with representative algorithms proposed in each category. We
then described our framework for distance-based clustering,
DIVA developed with the aim of developing efficient, effective
and flexible multi-relational clustering algorithms. DIVA uses
a multi-phase clustering approach consisting of an initial
divisive step followed by an agglomerative step. To enhance
efficiency of the algorithm, a cluster is represented using a
set of maximal spread objects, called Representative Objects.
Two implementations of the divisive step, using a recursive and
an incremental approach were presented. Empirical evaluation
of DIVA shows that DIVA can provide substantial benefits in
terms of efficiency while discover better quality clustering than
a number of standard algorithms for multi-relational clustering.
DIVA also provides benefits with respect to robustness to
outliers and the discovery of arbitrary shaped clusters.

In the future, we intend to investigate methods to determine
optimal ROs during recursive and incremental clustering.
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We will also investigate the application of different cluster
similarity measures within the divisive and agglomerative steps
within different application scenarios. The experimental results
obtained on the DBLP data set warrants further investigation
into the use of better data structures for representing clusters
when large number of clusters are discovered during the
divisive step. Finally, we intend to explore the use of sampling
to further improve the time complexity of the algorithm.
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