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Automated Taxonomy Generation for Summarizing
Multi-type Relational Datasets

Tao Li and Sarabjot S. Anand

Abstract— Taxonomy construction provides an efficient nav-
igating and browsing mechanism to people by organizing large
amounts of information into a small number of hierarchical
clusters. Compared with manually editing taxonomies, Auto-
mated Taxonomy Generation has numerous advantages and
has therefore been applied to categorize document collections.
However, the utility of this technique to organize and repre-
sent relational datasets has not been investigated, because of
its unaffordable computational complexity. In this paper we
propose a new ATG method based on the relational clustering
framework DIVA. By incorporating the idea of Representative
Objects, the computational complexity can be greatly reduced.
Moreover, we analyze the divergence of the data attributes
and label the taxonomic nodes accordingly. The quality of the
derived taxonomy is quantitatively evaluated by a synthesized
criterion that considers both the intra-node homogeneity and
inter-node heterogeneity. Theoretical analysis and experimental
results prove that our approach is comparably effective and
more efficient than other ATG algorithms.

I. INTRODUCTION

Today’s information technology makes it possible to pro-
duce a vast amount of data. For instance, on the World
Wide Web millions of new webpages are published everyday.
The problem of information overload, i.e. the incapability of
people to digest such huge volumes of information, becomes
very critical in many applications. Although some data
mining techniques have been utilized to address this problem,
they are not always effective. For example, search engines
usually return too many pages of web documents that match a
user query, but most users only have patience to read the top-
20 results. Additionally, if the search result is not satisfactory,
users have to manually adjust the target keywords or change
the search strategies, which requires them to master advanced
searching skills or domain-specific knowledge. Ideally, we
expect a data model that is very effective in summarizing
the characteristics of the whole dataset as well as intuitive
enough for ordinary users to understand.

Taxonomy construction provides an efficient navigating
and browsing mechanism by organizing large amounts
of information into a small number of hierarchical
clusters [21][13]. Some taxonomies as Yahoo! Direc-
tory (http://dir.yahoo.com) and Open Directory Project
(http://www.dmoz.org) have been created on the Web to
organize webpages into a global topical structure, but such
manually edited taxonomies are only feasible for small or
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Fig. 1. Ontology of a movie dataset

static datasets. In contrast, the technique of Automated Tax-
onomy Generation (ATG) owns obvious advantages and has
therefore become an attractive research topic in recent years.
Currently this technique is mainly used to organize a large
collection of documents [17][14][5] or web pages/images
[4][3][15][13]. Usually, the techniques of Natural Language
Processing or Information Retrieval are applied in the first
step to extract some linguistic features from the text, and
then a hierarchical taxonomy is automatically synthesized by
utilizing hierarchical clustering techniques. Given the derived
taxonomy, users can easily browse the structure of the whole
document collection and focus on the topics they are most
interested in. A good example is the search engine vivisimo
(http://www.vivisimo.com), which automatically groups the
retrieved webpages into a topic hierarchy so as to facilitate
users’ browsing.

Organizing multi-type relational datasets into hierarchical
structures has potential value in both theoretical and practical
aspects. Automatically derived taxonomies will not only
facilitate people navigating the dataset but also accelerate
many online applications. For example, Fig. 1 shows an
ontology of a movie dataset used by a content-based filtering
system, in which a bi-directional arrow means a recursive
references between two concepts of the ontology, so the data
object representing a movie will include all the participant
actors and in turn other movies these actors participate in.
The content-based filtering system expects to find a collection
of candidate movies that are most similar to the movies the
current user has visited. When comparing two movies, the
related actors and in turn more movies have to be considered.
Such recursive calculation is too expensive for the online
recommendation service. If the dataset is organized by a
hierarchical structure so that the movies contained in sibling
nodes are more similar than those in non-sibling nodes,



the system can search a small portion of movies at the
beginning and gradually expand the search scope when
necessary, which will greatly reduce the online response time
of the recommender system. Nevertheless, to the best of
our knowledge, the utility of ATG techniques to organize
and represent multi-type relational datasets has not been
investigated till now, because most traditional hierarchical
clustering algorithms have unaffordable computational com-
plexity when processing relational datasets.

In this paper, we expand the applicability of ATG tech-
nique from document collections to relational datasets. Our
algorithm does not depend on the extraction of linguistic
features, but only requires a similarity or distance measure
defined on the dataset. The idea of Representative Objects
adopted in our algorithm guarantees the taxonomic nodes as
homogeneous as possible and also speeds up the procedure of
taxonomy generation for very large datasets. The labels of the
taxonomic nodes are assigned by analyzing the divergence of
the data attributes. Moreover, we propose a synthesized crite-
rion, considering both the intra-node homogeneity and inter-
node heterogeneity, to quantitatively evaluate the quality of
the derived taxonomy. We also compare the robustness of
our algorithm with others under different noise ratios, which
is not studied in previous works.

The rest of the paper is organized as follows: Some
related works about ATG algorithms and cluster analysis are
presented in Section II. We review the relational clustering
algorithm DIVA with more details in Section III before ex-
plaining our new ATG approach in Section IV. Experimental
results are provided in Section V. And finally, Section VI
summarizes some conclusions and future works.

II. RELATED WORKS

As the cornerstone of ATG techniques, cluster analy-
sis aims to partition a dataset into a certain number of
groups (clusters) by optimizing their internal homogeneity
and external separation. Data objects in the same cluster are
more similar to each other than those from different clusters
[10]. Many clustering approaches build hierarchical trees
to reflect the internal structure of the original dataset and
preserves the similarity relationship between data objects,
such as the traditional Hierarchical Agglomerative Cluster-
ing (HAC) approach or the bisecting K-Means Partitioning
approach [18]. Another well-known algorithm BIRCH [20]
utilizes the idea of Clustering Feature and incrementally
builds a CF-tree to preserve the inherent clustering structure
within a propositional dataset. Each node in the CF-tree
summarizes the statistical characteristics of its corresponding
cluster. However, BIRCH is only applicable for propositional
datasets because it requires data to be additive and divisible.
Yin et al. [19] developed a reinforcement hierarchical clus-
tering model SimTree to approximate the original similarity
values between pairs of objects, but their approach only
utilizes frequent pattern mining techniques to build the initial
SimTrees. Information contained in the property attributes
of data objects are not considered, which definitely impacts
the accuracy of the final cluster result. Li and Anand [16]

TABLE I
MAIN FRAMEWORK OF DIVA

DIVA (dataset D, number of ROs r, variance v)
1) cluster set {Ck} ← call the Divisive-Step, given D, r and v as

the parameters.
2) dendrogram T ← call the Agglomerative-Step, given {Ck} as

the parameter.

proposed a multiple-phase clustering algorithm for relational
datasets, which will be reviewed in the next section.

In order to more effectively organize and discover knowl-
edge within a large document collection, many algorithms
of automatically constructing taxonomies upon document
collections have been developed. Usually documents are
first pre-processed by utilizing techniques in linguistics,
information retrieval or statistics so that their textual contents
are represented by some quantitative features. For example,
a document is first converted into a term vector by the TF-
IDF term weighting scheme. The semantic similarity measure
between two documents is defined by the Pearson’s Correla-
tion Coefficient or the cosine value of their corresponding
term vectors [1]. Based on that, traditional hierarchical
(divisive or agglomerative) clustering algorithms can be used
to construct a hierarchical taxonomy [5]. Boley developed a
divisive partitioning algorithm PDDP in [2], which iteratively
performs binary divisions in each cluster when its scatter
value is greater than a user-defined threshold. The scatter
criterion is determined by a linear discriminant function that
is based on the first principal component of the covariance
matrix. Clerkin et al. [6] applied the incremental concep-
tual clustering algorithm COBWEB [8] to construct class
hierarchies. COBWEB performs the hill-climbing search in
the space of possible taxonomies and uses Category Utility
[9] to select the possible categorizations. After building the
initial taxonomy as a single category, the algorithm uses
CU to evaluate the taxonomies and perform one of the
following operations accordingly: classify an instance into
the existing cluster, create a new cluster, divide or merge
the existing clusters. The output of COBWEB can be finally
translated into a class hierarchy. Lawrie and Croft proposed
the use of a set of topical summary terms for taxonomy
construction. These topical terms are selected by maximizing
the joint probability of their topicality and predictiveness,
which is estimated by the statistical language models of the
document collection [15]. Kummamuru et al. developed an
incremental learning algorithm DisCover to maximize the
coverage as well as the distinctiveness of the taxonomy. [13].
A general survey of various ATG techniques is provided in
[12]. However, none of the above approaches can easily be
extended to multi-relational datasets. For example, PDDP
requires the availability of covariant matrix and probabilistic
models beyond propositional domains, which are usually
undefined in the relational datasets.



III. DIVA FRAMEWORK

In this section we review in detail the general clustering
framework DIVA for relational datasets [16], since it is
the basis of our ATG algorithm. DIVA is a multiple-phase
clustering algorithm [10], composed of two steps: divisive
and agglomerative. The whole dataset is first divided into
a number of clusters so that the variance of each cluster is
equal to or less than a particular threshold value v. Based
on these clusters, a hierarchical dendrogram is built using
an agglomerative approach. The procedure of the DIVA
framework is summarized in Table I.

A. Representative Objects

Traditionally most partitional clustering algorithms need to
compute the centroid of the clusters during their execution.
In propositional datasets, the computational complexity of
obtaining this geometric feature is linear to the size of the
dataset. However, in the relational dataset the complexity
becomes quadratic because the relational objects are not ad-
ditive or divisible. To accelerate the clustering procedure for
relational datasets, it is necessary to develop new methods for
delimiting the shape of clusters. The idea of Representative
Object (RO) is proposed to address this problem. ROs are
defined as a set of maximum-spread objects in the dataset
D, denoted as {roi} (1 ≤ i ≤ r). Since they are maximum-
spread to each other, the selected ROs can well represent the
shape of D. Furthermore, the distance between the farthest
pair of ROs approximates to the diameter of the data space.
We define the variance of the dataset D as:

V ar(D) = max
1≤i,j≤r

fdobj(roi, roj) (1)

Small variance means data objects reside in a compact data
space and thus are more similar to each other, which also
means the data are of higher homogeneity.

An efficient method for determining the ROs is proposed
in [16]. After a start object xs is randomly chosen, the i-th
RO is determined as follows 1:

roi =





arg max
x∈D

fdobj(x, xs) if i = 1

arg max
x∈D

(
min

1≤j<i
fdobj(x, roj)

)
if 2 ≤ i ≤ r

(2)

B. Divisive and Agglomerative Steps

The divisive step implemented in [16] partitions the dataset
in a recursive fashion: Given the whole dataset D as the ini-
tial cluster C0, its ROs are selected using Eq. 2. The variance
of C0 is evaluated by Eq. 1. If V ar(C0) is greater than the
pre-specified variance threshold v, C0 will be divided. The
furthest pair of ROs are used as the absorbent objects of
sub-clusters respectively, and the other data objects in C0

are distributed according to their distance to the absorbent
objects. Then for each of derived sub-clusters, the above

1We use fsobj(·, ·) and fdobj(·, ·) to denote the similarity and distance
measures for relational data objects respectively. Commonly they hold the
relationship fsobj(·, ·) + fdobj(·, ·) = 1.

procedure is recursively launched if its variance does not
satisfy the requirement.

The agglomerative step is launched after the divisive one
to improve the quality of the resulting clusters. The cluster
set {Ck} obtained from the divisive step constitute the leaf
nodes of the dendrogram. In each iteration, the most similar
pair of sub-clusters (child-nodes) are merged to form a new
super-cluster (parent-node). In this paper the words “cluster”
and “node” are used interchangeable. The similarity value
between nodes t and t′ is evaluated by their RO set:

fsnode(t, t′) = min
i,j

fsobj(ro
(t)
i , ro

(t′)
j ) (3)

where {ro(t)
i } and {ro(t′)

j } are the set of ROs contained
in node t and in node t′ respectively. Conventionally, most
agglomerative clustering algorithms use similarity values as
the criterion to merge nodes, so we use the similarity function
fs(·, ·) in Eq. 3 instead of the distance function fd(·, ·).

One key advantage of the DIVA clustering approach is
that its computational complexity is linear to the size of D.
Formal complexity analysis is provided in [16]. Furthermore,
the maximum-spread set of ROs well represents the shape of
clusters in the data space, which will bring benefits for the
taxonomy construction procedure in the next section.

IV. AUTOMATED TAXONOMY GENERATION

The main purpose of building a taxonomy is “to pro-
vide a meaningful navigational and browsing mechanism
by organizing large amount of information into a small
number of hierarchical clusters” [21]. Kummamuru et al. [13]
suggests six desirable properties of taxonomies generated
from a document collection, which can be easily expanded
for processing general datasets :

1) Coverage: Ideally all the data should be contained in
at lease one node in the taxonomy. That is to say, for
each data object, we can find a path in the taxonomy
which starts from the root node and ends at the node
that the data object belongs to. The derived taxonomy
that covers more data objects is considered to be better.

2) Compactness: The property restricts the size of the de-
rived taxonomy. Since the ATG techniques are used for
the purpose of summarizing and navigating datasets,
taxonomies with too many levels or too many branches
in each level are not encouraged.

3) Sibling Node Distinctiveness: At any level of the hierar-
chy, the sibling nodes should be as different as possible
from each other.

4) Node Label Predictiveness: Labels are used to summa-
rize the contents or the characteristics of their corre-
sponding nodes. A taxonomy with good node labels
can help users to find their interested sub datasets with
minimum efforts.

5) Reach Time: The average time spent by users to find
their interested sub datasets is important. This criterion
can be qualified by the size of the derived taxonomy,
because both the depth and the width of the taxonomy
will impact user’s reach time.



6) General to Specific: The node labels should be selected
to follow the general-to-specific relationship within the
hierarchical taxonomy from top to bottom.

Obviously, since each data object is contained in one of the
leaf nodes and each super-node contains all the contents of
its sub-nodes, the dendrogram derived by the agglomerative
step of DIVA satisfies Properties 1 and 6. However, its
binary split structure does not meet the requirement of
Property 2. In Section IV-A, we will describe our method of
optimizing the hierarchical structure of the derived taxonomy.
Comprehensive experiments for evaluating Properties 2, 3
and 5 are presented in Section V. Property 4 is originally
proposed for document collections, where the node labels
are usually assigned by parsing the textual content of the
documents. Even in that case, labeling taxonomic nodes is
rather subjective in nature, because it is hard to qualify the
goodness of labels for summarizing taxonomic nodes. In the
scenario of generating taxonomies for multi-type relational
datasets, this work becomes more difficult, so we will provide
some empirical analysis in Section IV-B.

A. Optimize the taxonomy structure

The binary split dendrogram, although strictly records
the order of merging nodes, is not convenient for users to
navigate, so it is necessary to reduce the total number of
levels within the dendrogram and adjust its structure [13][11].
We expect the optimized hierarchy can better reflect the
natural structure of the dataset, i.e. all the taxonomic nodes
located at the same level should be approximately of the
same granularity and all the sibling nodes belonging to the
same parent node be as distinctive as possible.

Some heuristic strategies have been proposed in literature
for this purpose. Duda et al. suggest that the node-pair simi-
larity used in each agglomerative iteration indicates whether
the formed cluster is natural or forced: an unusually large gap
within node-pair similarities indicate a natural partitioning of
the dataset [7]. Kashyap et al. used a series of thresholds,
according to the suggestion of the taxonomy creator or
the user, to select nodes and extract a taxonomy from the
dendrogram [11]. Chuang and Chien developed a top-down
algorithm to cut the dendrogram at some levels and merge
the rest. The determination of a cut level depends on the
quality of the cluster set at that level, which is calculated by
a criterion of combining intra- and inter-cluster similarities as
well as the size of the cluster set [4]. Cheng and Chien used
the distance between two adjacent levels, which is the ratio
of the change of intra-cluster distance to that of inter-cluster
distance in two levels, as the cutting criterion [3].

As in [3], we use the following function to determine
the cutting levels and thus optimize the taxonomic structure:
given the original dendrogram T , in which all the levels have
been numbered 1, 2, . . . , L from top to bottom, function G(l)
for level l (2 ≤ l ≤ L) within T is defined as:

G(l) =
gintra(l)− gintra(l − 1)
ginter(l)− ginter(l − 1)

(4)

Fig. 2. Example of adjusting taxonomy

where gintra(l) and ginter(l) compute the intra-node and
inter-node similarity of level l respectively. A set of cutting
levels in T are determined when their corresponding values
of G(l) is greater than 1. An intuitive explanation is: if the
change of intra-cluster similarity between level l and l − 1
is greater than the change of inter-cluster similarity between
them, which means the the data grouped by the nodes of
level l is more cohesive or natural than that of level l − 1,
it is reasonable to set a cutting level between l and l − 1;
otherwise, levels l and l−1 would be merged. Because each
node is represented by a set of ROs in DIVA, we re-define
gintra(l) and ginter(l) as follows: assume there are Kl nodes
located at the l-th level of T , denoted as {tlk} (1 ≤ k ≤ Kl),
and function P (tlk) obtains the parent node of tlk, then:

gintra(l) =
1
Kl

Kl∑

k=1

(
min
i,j

fsobj(ro
(tl

k)
i , ro

(tl
k)

j )
)

and

ginter(l) =
1

Kl−1

Kl−1∑
p=1

(
min
k1,k2

P (tl
k1

)=P (tl
k2

)=t
l−1
p

fsnode(tlk1
, tlk2

)
)

The similarity function fsnode(·, ·) is given in Eq. 3. One
special case is the calculation of ginter(1), because the first
level only contains the root node and thus its inter-node
similarity is undefined. To solve this problem we simply
specify ginter(1) to be 0.

After determining all the cutting levels in T , we can
optimize the structure of T accordingly: when a super-node
tp and its sub-node tc are together located between two
neighboring cutting levels or below the lowest cutting level,
tc will be removed and all tc’s sub-nodes will be linked to tp,
otherwise the linkage between tp and tc is kept in the final
taxonomy T ′. This procedure continues until all the nodes are
unremovable. Fig. 2 gives a simple example: the left graph is
a binary dendrogram T built by the agglomerative step and
the right one is the taxonomy T ′ after optimization.

Compared with the approaches in [4] and [3], our approach
is far less expensive to determine the cutting levels. Since
each node in T is represented by roi (1 ≤ i ≤ r), the com-
plexity of calculating gintra(l) and ginter(l) is not related to
the size of the whole dataset D: Given the number of nodes
{tk} that are located at level l is Kl, to compute gintra(l) we
will compare each pair of ROs belonging to the same node,
so the total number of comparison is O(r2 ·Kl). Similarly
the complexity of computing ginter(l) is O

(
r2 · ( Kl

Kl−1
)2

)

in a balanced hierarchy or O(r2 · K2
l ) in the worst case.

When the number of nodes Kl is far less than the size of D,



the time spent by the optimization step of our approach is
approximately constant. In contrast, both of the approaches
in [4] and [3] need to compare each pair of data objects
when determining the cutting levels, so their computational
complexities are quadratic to the size of D. This conclusion
is supported by our experimental results in Section V.

B. Assign labels to taxonomic nodes

Another non-trivial issue is how to label the derived
taxonomic nodes, since this task is rather subjective in nature.
There is no commonly accepted criterion to evaluate the
goodness of labels for summarizing taxonomic nodes till
now. If the taxonomy is built for document collections, some
key words or phrases extracted by NLP or IR techniques can
be used as the labels of the taxonomic nodes [17][3][11],
but labeling a taxonomy that represents general relational
datasets is much more difficult. Our solution of addressing
this issue is: by analyzing the attribute distribution of all data
objects belonging to a taxonomic node t, find some attribute
values of t that are the most different from those of t’s sibling
nodes and use them as the label of t. Formally, the Kullback-
Leibler Divergence [7] is used to evaluate the distinctiveness
between t and t’s sibling nodes on attribute a:

DKL(t, a) =
∑

h

Pa(h) log2

Pa(h)
Qa(h)

(5)

where Pa(h) and Qa(h) are respectively the real and the
“default” proportion of data objects in t whose attribute a
has the value h. Qa(h) is estimated by using t’s parent node.
Because t’s parent node contains the data objects of t as well
as t’s sibling-nodes, Eq. 5 reflects the distinctiveness between
the current node t and its sibling nodes on attribute a. When
an attribute contains a set of related data objects instead of
simple numeric or nominal values, e.g. in the movie dataset a
movie is related to many actors, we will recursively compute
the attribute divergence of all the related objects that are
belong to t and t’s parent node using Eq. 5 and use the
average value as the result. After obtaining the divergence
value DKL for all the attributes, those attributes with the
maximum divergence are assigned to t as the label.

V. EXPERIMENTAL RESULTS

To examine the effectiveness and efficiency, our DIVA-
based ATG approach was compared with two representative
taxonomy construction methods using pure binary agglomer-
ation or binary division: (1) HAC-based approach [4] and (2)
bisecting K-Means Partitioning approach [18] (we adopted
k-Medoids as the meta-clustering algorithm here, since our
experiments were conducted on relational datasets instead
of document collections) until every leaf node contains one
data object. For the sake of simplicity, in this section we use
words “DIVA”, “HAC” and “CBP” to represent the above
three approaches respectively. For the CBP approach, we
set the number of iterations within k-Medoids to 10 when
splitting any taxonomic node, and the number of sub-clusters
is fixed to 2 since the approach uses binary partitioning
split. For our DIVA approach, we set the size of RO sets

Fig. 3. Ontology of the Synthetic Dataset

r to 3 and the variance v to 0.4. Such parameter settings
guarantee that all the leaf nodes in the derived taxonomy
are homogeneous enough while the total number of nodes
is far less than the size of dataset D. Both CBP and DIVA
approaches are launched 5 times with different random seeds,
and the final result is the average value of those experimental
results obtained each time.

The experiments are conducted on two relational datasets:
(1) a synthetic dataset of user visits, (2) a real movie dataset.

A. Synthetic Amazon Dataset

This synthetic dataset simulates the user visits to the
Amazon website based on their interests. Fig. 3 shows
the ontology of the synthetic dataset. First of all, 10,000
virtual products were created and randomly assigned into
the Amazon product categories. In parallel, 2,000 users were
created and assigned into 100 groups. For each user group,
a probability distribution was constructed to simulate the
users’ preferences on the Amazon product categories, i.e.
the likelihood of a user in that group to browse a product in
that category. According to the information of users, groups,
categories and products, in total 100,000 browsing actions
were created by: (i) randomly select a user and get his
group; (ii) randomly select an interest and get the related
product category; (iii) randomly select a product that belongs
to this category; (iv) create a browsing action between the
user and the product. In order to test the robustness of
the ATG approaches, we also introduced some noise data
as follows: For each user, (i) uniformly choose four noise
interests; (ii) randomly select a product that belongs to one
of the four noise interests; (iii) create a noise browsing action
between the user and the product. More details about the data
generation procedure are included in [16].

As discussed in Section IV, the optimized taxonomy
should maximize intra-node-uniformity and sibling-nodes-
distinctiveness. Here we use an entropy-based criterion to
evaluate the uniformity (purity) of all nodes in the derived
taxonomy, because the classes of test data objects have been
known. For node tk, its intra-node entropy is defined as:

Eintra(tk) = −
∑

h

Ph,k log2 Ph,k

where Ph,k is the proportion of data objects of class h in node
tk. The Kullback-Leibler Divergence is used to evaluate the
sibling-nodes distinctiveness (named as inter-node entropy):

Einter(tk) =
∑

h

Ph,k log2

Ph,k

Qh,k

where Qh,k is the default proportion of data objects of class
h. We use tk’s parent node to estimate the default distribution
as in Section IV-B, and hence Einter(tk) measures the



TABLE II
EVALUATION RESULTS USING SYNTHETIC DATASET

HAC CBP DIVA
Time Spent (sec) 5286 5914 2532

Size of Taxonomy 1575.0 1218.3 438.3
Number of Leaves 1186.0 781.0 253.7
Intra-Node Entropy 0.062 0.455 0.471
Inter-Node Entropy 0.038 0.238 0.227

Quality 0.500 0.488 0.479

distinctiveness between the current node tk to its sibling
nodes. Generally speaking, lower intra-node entropy value
means taxonomic nodes are more homogeneous and higher
inter-node entropy value means they are more distinctive
to each other. Another important issue is the size of the
taxonomy. We expect the taxonomy would not be very large
or very small, but it is very difficult to estimate the accurate
value for that in a relational dataset. As in [4], we take the
square root of N as the expected number of leaf nodes. To
synthesize all the above issues, we use the following formula
to evaluate the quality of the whole taxonomy:

Quality(T ) =

∑
tk

Einter(tk)∑
tk

Eintra(tk)
×

√
1−

(M −√N

N

)2

(6)

where M is the number of leaf nodes and N is the size
of dataset. According to the definition of Einter(tk) and
Einter(tk), we prefer the derived taxonomy with higher value
of Quality(T ).

The first line of Table II records the time spent by all ATG
approaches we examined. CBP and HAC are both very time
consuming compared to DIVA. Actually, when generating a
new taxonomic level of T , CBP will launch the k-Medoids
algorithm to split every leaf node in T . And then each pair
of data objects in the same cluster would be compared to
select the medoids for the derived sub-clusters. Hence, the
CBP approach has quadratic computational complexity as the
HAC approach. In contrast, the DIVA approach is executed
very fast due to its use of RO sets and assigning non-RO
objects in linear time, and the computational complexity of
optimizing the taxonomic structure is linear as well.

Table II also shows that the size of the taxonomy generated
by DIVA is substantially smaller than that of the other two
approaches. In total it contains 438 taxonomic nodes, less
than half of the number of nodes in HAC or CBP, which
means the taxonomy generated by DIVA better satisfied the
Properties 2 (Compactness) and 5 (Reach Time) discussed
in Section IV. As the tradeoff of the above advantages,
the quality of the taxonomy derived by DIVA is slightly
worse than that of HAC and CBP. When evaluated by the
synthesized criterion in Eq. 6, the quality loss of the DIVA-
derived taxonomy is 4.2% and 1.8% compared with HAC
and CBP respectively.

Fig. 4 illustrates the robustness of all approaches under
different noise ratios of browsing actions, ranging from 20%
to 100%. In general, the quality of the taxonomy derived
by all approaches is reduced as the noise ratio increases.

Fig. 4. Synthetic Dataset - Evaluate Taxonomy w.r.t noise

When the noise ratio is small (less than 0.4 in this case),
HAC performs the best; otherwise, the accuracy of HAC
decreases sharply. Instead, CBP performs more stable and
keeps generating taxonomies of high quality under different
noise ratio.

B. Real Dataset

All the taxonomy construction approaches were also eval-
uated on a real-world dataset, a movie knowledge base
defined by the ontology in Fig. 1. After data pre-processing,
there are 62,955 movies, 40,826 actors and 9,189 directors.
The dataset also includes a genre taxonomy of 186 genres.
Additionally, we have 542,738 browsing records included in
15,741 sessions from 10,151 users. For the original dataset
neither HAC nor CBP are applicable due to their quadratic
computational complexity, we have to reduce the size of
the dataset. Based on the user visits, in total 5000 most
popular movies are selected for the purpose of taxonomy
construction.

In this dataset, since no pre-specified or manually-labeled
class information for movies is available, we have to utilize
the visit information from users to indirectly evaluate the
derived taxonomies. The basic assumption is: two movies are
likely to belong to the same category if they are co-visited by
the same user, which reflects the organization of the dataset
from the viewpoint of users. Hence the intra-node similarity
Sintra can be evaluated by a variant of Jaccard Coefficient:
the number of objects pairs that are co-visited by the same
user over all possible objects pairs in the same node. The
sibling-node-similarity (i.e. the inter-node similarity Sinter)
is defined in the same way: the number of objects pairs
belonging to two sibling nodes that are co-visited by the
same user over all possible objects pairs in these two node.
Different from the intra- and inter-node entropy, here high
intra-node similarity value means taxonomic nodes are more
homogeneous and lower inter-node similarity value means
they are more distinctive to each other. Finally the quality of
the whole taxonomy is defined as:

Quality(T ) =

∑
tk

Sintra(tk)∑
tk

Sinter(tk)
×

√
1−

(M −√N

N

)2

(7)

Table III lists the experimental results of all approaches.
Again the taxonomy built by DIVA is of the most compact-



TABLE III
EVALUATION RESULTS USING REAL DATASET

HAC CBP DIVA
Size of Taxonomy 3343 5586 2548
Number of Leaves 2040.0 3041.0 1670.7

Intra-Node Similarity 0.537 0.457 0.572
Inter-Node Similarity 0.0188 0.0188 0.0168

Quality 0.026 0.020 0.033

Fig. 5. Part of the Labeled Movie Taxonomy

ness. Moreover, we found in Table III that the intra- and inter-
node similarities within the DIVA-derived taxonomy are both
better than that of the HAC- and CBP-derived taxonomies,
which leads to 26.9% and 65% improvements in taxonomy
quality (evaluated by Eq. 7) when compared with HAC and
CBP respectively.

Fig. 5 shows a part of the derived taxonomy labeled by
the approach introduced in Section IV-B. At the first few
levels, the attribute “Genre” can well distinguish a taxonomy
node from its sibling nodes, When navigating deeper levels
within the taxonomy, the movie genres of sibling nodes
become more homogeneous and hence other attributes, such
as keywords in the title, the year of movie released or the
name of actors, are used as the labels of the taxonomic nodes.

VI. CONCLUSIONS AND FUTURE WORKS

Although many techniques of Automated Taxonomy Gen-
eration have been applied successfully to categorize docu-
ment collections into a hierarchical structure for the purpose
of facilitating people’s navigation, they are not applicable
for processing relational datasets due to their unaffordable
computational complexity. In this paper we propose a new
approach, based on the multi-type relational clustering al-
gorithm DIVA, to automatically construct taxonomies for
relational datasets. By incorporating the idea of Represen-
tative Object, our approach has linear time complexity. A
heuristic method is used to determine the cutting levels
within the derived taxonomy and optimize the hierarchical
structure accordingly. Comprehensive experiments conducted
on synthetic and real datasets show that our approach can
build very compact taxonomies compared with traditional

agglomerative or partitional approaches. The quality of the
taxonomies derived by our approach are comparable or even
better than that of the traditional approaches. In the future, we
will continue to investigate more methods to determine the
optimal structure of the derived taxonomy, and also explore
other criterion to better evaluate the quality of the taxonomy
by synthesizing all the desired properties.
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