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THEORY-BASED BENCHMARKING OF THE BLENDED FORCE-BASED

QUASICONTINUUM METHOD

XINGJIE LI, MITCHELL LUSKIN, CHRISTOPH ORTNER, AND ALEXANDER V. SHAPEEV

Abstract. We formulate an atomistic-to-continuum coupling method based on blending atomistic
and continuum forces. Our precise choice of blending mechanism is informed by theoretical predic-
tions. We present a range of numerical experiments studying the accuracy of the scheme, focusing
in particular on its stability. These experiments confirm and extend the theoretical predictions,
and demonstrate a superior accuracy of B-QCF over energy-based blending schemes.

1. Introduction

Atomistic-to-continuum coupling methods (a/c methods) have been proposed to increase the
computational efficiency of atomistic computations involving the interaction between local crystal
defects with long-range elastic fields [6, 7, 15, 18, 22, 29, 30, 40]; see [26] for a recent review of a/c
coupling methods and their numerical analysis. Energy-based methods in this class, such as the
quasicontinuum model (denoted QCE [41]), exhibit spurious interfacial forces (“ghost forces”) even
under uniform strain [8,39]. The effect of the ghost force on the error in computing the deformation
and the lattice stability by the QCE approximation has been analyzed in [8–10, 31], where lattice
stability refers to the positive definiteness of the Hessian matrix of the total potential energy. The
development of more accurate energy-based a/c methods is an ongoing process [5,15,20,34,37,38,40].

An alternative approach to a/c coupling is the force-based quasicontinuum (QCF) approxima-
tion [7, 11, 12, 25, 29], but the non-conservative and indefinite equilibrium equations make the iter-
ative solution and the determination of lattice stability more challenging [12–14]. Indeed, it is an
open problem whether the (sharp-interface) QCF method is stable in dimension greater than one.
Although some recent results in this direction exist [24], it is still unclear to what extent they can
be extended for general atomistic domains and in the presence of defects.

Many blended a/c coupling methods have been proposed in the literature, e.g., [1–4, 16, 23, 35,
36, 42]. In [21], we formulated a blended force-based quasicontinuum (B-QCF) method, similar to
the method proposed in [25], which smoothly blends the forces of the atomistic and continuum

Xingjie Li, 182 George St., Providence, RI 02912, USA, xingjie li@brown.edu
M. Luskin (Corresponding Author), 127 Vincent Hall, 206 Church St. SE, Minneapolis, MN 55455,

USA, luskin@umn.edu, Phone: 612-625-6565, FAX 612-626-2017
C. Ortner, Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL,

UK, christoph.ortner@warwick.ac.uk
A. V. Shapeev, 127 Vincent Hall, 206 Church St. SE, Minneapolis, MN 55455, USA,

alexander@shapeev.com
Date: May 24, 2014.
2000 Mathematics Subject Classification. 65Z05,70C20.
Key words and phrases. quasicontinuum, error analysis, atomistic to continuum, embedded atom model, quasi-

nonlocal.
This work was supported in part by the NSF PIRE Grant OISE-0967140, DOE Award DE-SC0002085, and

AFOSR Award FA9550-12-1-0187. CO was supported by EPSRC grant EP/H003096 “Analysis of atomistic-to-
continuum coupling methods.”



THEORY-BASED BENCHMARKING OF THE B-QCF METHOD. 2

model instead of the sharp transition in the QCF method. Under the simplifying assumption
that deformation is homogeneous, we established sharp conditions under which a linearized B-
QCF operator is positive definite, which effectively guarantees stability of the numerical scheme.
Surprisingly, the required blending width to ensure positive definiteness of the linearized B-QCF
operator is asymptotically small (however typical prefactors in the relative size of the blending
region are not predicted by the theory). The one-dimensional theory developed in [21] is complete
and agrees with the numerical experiments. However, the two-dimensional theory was based on a
conjecture that has been proved only in a particular case (see Remark 3.1 for more details) and
therefore requires numerical validation.

In the present paper, we present focused numerical experiments to validate and extend the
theoretical conclusions in [19, 21]. In particular, we study (i) whether stability of the B-QCF
method in 2D can be systematically improved with increasing the blending width, (ii) whether
a relatively narrow blending, as suggested by the theory, is enough in practice, and (iii) whether
using the quintic spline (that has the regularity assumed in the theory) has advantages over the
cubic spline. In addition we provide accuracy benchmarks similar to those in [27]. Our numerical
benchmarks demonstrate that the B-QCF scheme is a practical a/c coupling mechanism with
performance (accuracy versus computational cost) superior to energy-based blending schemes.

1.1. Summary. In section 2, we introduce the B-QCF model for a 1D atomistic chain. We state
the asymptotically optimal condition on the blending size in Theorem 2.1 and apply a uniform
expansion to the atomistic chain in subsection 2.2. The critical strain errors between the atomistic
and B-QCF models with different blending size are computed in this subsection. The numerical
results perfectly match the analytic prediction, that is, the errors decay polynomially in terms of
the blending size.

In section 3, we establish the B-QCF model for a 2D hexagonal lattice. We state sufficient and
necessary conditions on the blending width under which the B-QCF operator is positive definite.
To numerically investigate the positive-definiteness of the B-QCF operators in 2D, we apply three
different classes of deformations to the perfect lattice, which are the uniform expansion, two types
of shear deformation, and a general class of homogeneous deformations. The results of 2D uniform
expansion are similar to those of the 1D example, and they agree with the theoretical conclusions
well.

The stability regions of the different models under homogeneous deformations are consistent
with the analytic prediction. By using a small blending region, the 2D B-QCF operator becomes
almost as stable as the atomistic model, compared to the fact that the stability region of the force-
based quasicontinuum (QCF) method, i.e., the B-QCF method without blending region, is a proper
subset of the fully atomistic model [12–14]. However, the stability error under shear deformation
for the B-QCF operator seems to only depend linearly on the system size, which is observed from
the numerical experiments.

In section 4, we implement the B-QCF method from a practical point of view. We briefly review
the accuracy results in terms of computational cost, i.e., the total number of degrees of freedom DoF,
and then include some numerical experiments for a di-vacancy and microcrack to demonstrate the
superior accuracy of B-QCF over other a/c coupling schemes that we have investigated previously
in [27].
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2. The B-QCF Operator in 1D.

2.1. Notation. We denote the scaled reference lattice by εZ := {ε` : ` ∈ Z}. We apply a macro-
scopic strain F > 0 to the lattice, which yields

yF := FεZ = (Fε`)`∈Z.

The space U of 2N -periodic zero mean displacements u = (u`)`∈Z from yF is given by

U :=

{
u : u`+2N = u` for ` ∈ Z, and

∑N
`=−N+1 u` = 0

}
,

and we thus admit deformations y from the space

YF := {y : y = yF + u for some u ∈ U}.
We set ε = 1/N throughout so that the reference length of the computational cell remains fixed.

We define the discrete differentiation operator, Du, on periodic displacements by

(Du)` :=
u` − u`−1

ε
, −∞ < ` <∞.

We note that (Du)` is also 2N -periodic in ` and satisfies the zero mean condition. We will often

denote (Du)` by Du`. We then define
(
D(2)u

)
`

and
(
D(3)u

)
`

for −∞ < ` <∞ by(
D(2)u

)
`

:=
Du`+1 −Du`

ε
;
(
D(3)u

)
`

:=
D(2)u` −D(2)u`−1

ε
.

To make the formulas more concise, we sometimes denote Du` by u′`, D
(2)u` by u′′` , etc., when there

is no confusion in the expressions.
For a displacement u ∈ U and its discrete derivatives, we employ the weighted discrete `pε and

`∞ε norms by

‖u‖`pε :=

(
ε

N∑
`=−N+1

|u`|p
)1/p

for 1 ≤ p <∞, ‖u‖`∞ε := max
−N+1≤`≤N

|u`|,

and the weighted inner product for `2ε is

〈u,w〉 :=

N∑
`=−N+1

εu`w`.

2.2. The B-QCF Operator. We consider a one-dimensional (1D) atomistic chain with periodicity
2N , denoted y ∈ YF , under second-neighbor pair interaction. The total atomistic energy per period
of y is given by Ea(y)− ε

∑N
`=−N+1 f`y`, where

Ea(y) = ε
N∑

`=−N+1

[
φ(y′`) + φ(y′` + y′`−1)

]
(2.1)

for external forces f` and a two-body potential φ ∈ C2(0,+∞) such as the Morse potential given
by (2.12). Implicitly we also assume that φ(r), φ′(r) and φ′′(r) decay rapidly as r increases, so that
we only have to take into account first and second neighbors.

The equilibrium equations are given by the force balance at each atom: F a` + f` = 0 where

F a
` (y) :=

−1

ε

∂Ea(y)

∂y`
=

1

ε

{ [
φ′(y′`+1) + φ′(y′`+2 + y′`+1)

]
−
[
φ′(y′`) + φ′(y′` + y′`−1)

] }
. (2.2)
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The linearized equilibrium equations about yF are

(Laua)` = f`, for ` = −N + 1, . . . , N,

where (Lav) for a displacement v ∈ U is given by

(Lav)` := φ′′F
(−v`+1 + 2v` − v`−1)

ε2
+ φ′′2F

(−v`+2 + 2v` − v`−2)

ε2
.

Here and throughout we use the notation φ′′F := φ′′(F ) and φ′′2F := φ′′(2F ), where φ is the potential
in (2.1). We assume that φ′′F > 0, which holds for typical pair potentials such as the Lennard-Jones
potential under physically relevant deformations. Appropriate extensions of the stability results
in this paper can likely be obtained for more general smooth deformations by utilizing the more
technical formalism developed, for example, in [18,32,33].

The local QC (or Cauchy-Born) approximation (QCL) uses the Cauchy-Born extrapolation rule
[40, 41], that is, approximating y′` + y′`−1 in (2.1) by 2y′` in our context. Thus, the QCL energy is
given by

Eqcl(y) = ε
N∑

`=−N+1

[
φ(y′`) + φ(2y′`)

]
. (2.3)

Then the local continuum forces F qcl(y) are

F qcl
` (y) :=

−1

ε

∂Eqcl(y)

∂y`
=

1

ε

{ [
φ′(y′`+1) + 2φ′(2y′`+1)

]
−
[
φ′(y′`) + 2φ′(2y′`)

] }
.

We can similarly obtain the linearized QCL equilibrium equations about the uniform deformation(
Lqcluqcl

)
`

= f` for ` = −N + 1, . . . , N,

where the expression of
(
Lqclv

)
`

with v ∈ U is(
Lqclv

)
`

:=
(
φ′′F + 4φ′′2F

) (−v`+1 + 2v` − v`−1)

ε2
.

The blended QCF (B-QCF) operator is obtained through smooth blending of the atomistic and
local QC models. Let β : R→ R be a “smooth” and 2-periodic blending function, then we define

F bqcf
` (y) := β`F

a
` (y) + (1− β`)F qcl

` (y),

where β` := β(ε`). Linearization about yF yields the linearized B-QCF operator

(Lbqcfv)` := β`(L
av)` + (1− β`)(Lqclv)`.

Next, we define the blending region I of width K:

I : =
{
` ∈ {−N + 1, . . . , N} : 0 < β`+j < 1 for some j ∈ {0,±1,±2}

}
, and

K : = the cardinality of the set I,
(2.4)

so that D(j)β` = 0 for all ` ∈ {−N + 1, . . . , N} \ I and j ∈ {1, 2, 3}. Thus K is the size of the

compact support of D(j)β`. It is obvious that K < 2N .
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2.3. Positive-Definiteness of the B-QCF Operator. We proved in [21] that the blending
function β can be chosen as a quintic polynomial such that

(i) The jth derivatives of β satisfy

‖D(j)β‖`∞ ≤ Cβ(Kε)−j , for j = 1, 2, 3. (2.5)

(ii) This estimate is sharp in sense that, if β` attains both the values 0 and 1, then

‖D(j)β‖`∞ ≥ (Kε)−j , for j = 1, 2, 3. (2.6)

A linearized operator Lw with w ∈ {a, c,bqcf}, is said to be positive definite in the H1 norm or
coercive if there exists a constant γ > 0 such that

〈Lwu,u〉 ≥ γ‖Du‖2`2ε ∀u ∈ U . (2.7)

We have proved an asymptotically optimal stability condition on the blending region size of the 1D
B-QCF operator in [21].

Theorem 2.1. Let I and K be defined as in (2.4), and suppose that β is chosen to satisfy the
upper bound (2.5). Then there exists a constant C1 = C1(Cβ), such that

〈Lbqcfu,u〉 ≥
(
c0 − C1|φ′′2F |

[
K−5/2N1/2

])
‖Du‖2`2ε ∀u ∈ U , (2.8)

where c0 = min(φ′′F , φ
′′
F + 4φ′′2F ) is the atomistic stability constant.

Moreover, if β` takes both the values 0 and 1, then there exist constants C2, C3 > 0, independent
of I, N , φ′′F and φ′′2F , such that

〈Lbqcfu,u〉 ≤
(
c0 +

{
C2 − C3

[
K−5/2N1/2

]}
|φ′′2F |

)
‖Du‖2`2ε for some u ∈ U \ {0}. (2.9)

From the conclusion of Theorem 2.1, we can immediately get the following necessary and sufficient
conditions on the blending width K for the operator Lbqcf to be coercive.

Corollary 2.1. Suppose that La is positive-definite and that the blending function is sufficiently
smooth. If the blending size K satisfies K � N1/5, then the B-QCF operator Lbqcf is positive-
definite and this estimate is asymptotically optimal.

2.4. 1D Uniform Expansion Experiments. We conduct numerical experiments in order to
verify our theoretical findings. More precisely, we compare the decay rates of the error in critical
strain as computed by B-QCF with the theoretically predicted rates as we increase the blending
width K.

We use two kinds of blending functions: a cubic spline

B̂ (x) =


0 x < 0,

−2x3 + 3x2 0 ≤ x ≤ 1,

1 x > 1,

(2.10)

and a quintic spline

B̄(x) =


0 x < 0,

6x5 − 15x4 + 10x3 0 ≤ x ≤ 1,

1 x > 1.

(2.11)

We scale B̂(x) and B̄(x) and define the blending functions for the atomistic chains as

β̂` := B̂

(
`

K

)
and β̄` := B̄

(
`

K

)
for ` = −N + 1, . . . , N.
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Therefore, atoms with indices from −N + 1 to 0 belong to the continuum region, from 1 to K − 1
belong to the blending region, and from K to N belong to the atomistic region. We note that B̄(x)

has three bounded derivatives and hence it satisfies (2.5), whereas for B̂(x) the second derivative
has a jump, hence the third derivative does not exist. Therefore, we expect that only β̄ will yield
the asymptotically optimal stability estimates for the B-QCF method (see [21]).

For our interaction potential, we use the Morse potential

φ(r) = [1− exp(−α(r − 1))]2 , (2.12)

and we cut-off the interactions beyond the second nearest neighbor interactions.
We apply a uniform expansion to the atomistic chain: yF := FεZ with Dirichlet boundary

condition:
u−N+1 = uN = 0. (2.13)

We then compute the critical strains of the atomistic and B-QCF models with different blending
size K and fixed N . The critical strains are defined as

γw := max {F > 0 : Lw(yG) is positive definite for all G ∈ [1, F )} , (2.14)

where w ∈ {a, c,bqcf} denotes the respective model.

Remark 2.1. The stability bounds in Theorem 2.1 hold also for displacements u satisfying a ho-
mogeneous Dirichlet boundary condition. To establish this, we note (1) that the bounds hold for
constant displacements as well, and (2) that any function satisfying (2.13) can be extended to a
periodic function (possibly with a nonzero mean). Hence, Corollary 2.1 also holds for displacements
u with homogeneous Dirichlet boundary conditions (2.13).

The computational results are shown in Figure 1. In Figure 1(a) we plot the dependence of the
errors of quintic blending on K for different values of α. We see that the graph of the error for the
quintic blending is very close to the lower bound K−5/2 as given by (2.8) in Theorem 2.1. Also, the
error is lower for larger α, which is also in accordance with the theoretical results. Indeed, when α
is large, the strength of the next-nearest neighbor interaction, φ′′2F , is small relative to the nearest
neighbor interaction φ′′F , which contributes to a better stability of B-QCF according to (2.8).

Figure 1(b) shows the results of comparison of the cubic and the quintic blending. We see that
the cubic blending produces the error that seems to decay slower, like K−2. On the other hand,
the quantitative difference between cubic and quintic is not large on the example considered. To
observe a significantly higher accuracy of the quintic spline, the computational domain size N has
to be much larger. In addition, for larger α, N has to be even larger for the quintic blending to
have advantage over the cubic blending.

3. The B-QCF Operator in 2D.

3.1. The Triangular Lattice. For some integer N ∈ N and ε := 1/N , we define the scaled 2D
triangular lattice L to be

L := A6Z2, where A6 := [a1, a2] := ε

[
1 1/2

0
√

3/2

]
,

where ai, i = 1, 2 are the scaled lattice vectors. Throughout our analysis, we use the following
definition of the periodic reference cell

Ω := A6(−N/2, N/2]2 and L := L ∩ Ω.

We furthermore set a3 = (−1/2ε,
√

3/2ε)T, then the set of nearest-neighbor directions is given by

N1 := {±a1,±a2,±a3}.
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Figure 1. (a) The absolute critical strain errors for a 1D uniform expansion. We
set N = 40, 000, ∆γ = 1/N2 where ∆γ is the strain increment used for testing
stability, and γa and γbqcf are the critical strains for the atomistic and B-QCF
models, respectively. The dashed line corresponds to the theoretical asymptote.
(b) The absolute critical strain errors of quintic and cubic blending functions with
N = 40, 000 and α = 3. The solid line corresponds to the theoretical asymptote.

The set of next nearest-neighbor directions is given by

N2 := {±b1,±b2,±b3}, where b1 := a1 + a2, b2 := a2 + a3, and b3 = a3 − a1.

We use the notation N := N1 ∪ N2 to denote the directions of the neighboring bonds in the
interaction range of each atom (see Figure 2).

We identify all lattice functions v : L → R2 with their continuous, piecewise affine interpolants
with respect to the canonical triangulation T of R2 with nodes L.

3.2. The Atomistic, Continuum, and Blending Regions. Let Hex(R) denote the closed
hexagon centered at the origin, with sides aligned with the lattice directions a1, a2, a3, and di-
ameter 2R. For Ra < Rb < N ∈ N, we define the atomistic, blending, and continuum regions,
respectively, as

Ωa := Hex(εRa), Ωb := Hex(εRb) \ Ωa, and Ωc := clos (Ω \ (Ωa ∪ Ωb)) .

We denote the blending width by K := Rb − Ra. Moreover, we define the corresponding lattice
sites

La := L ∩ Ωa, Lb := L ∩ Ωb, and Lc := L ∩ Ωc.

For simplicity, we will again use L as the finite element nodes, that is, every atom is a repatom.
For a map v : L→ R2 and bond directions r, s ∈ N , we define the finite difference operators

Drv(x) :=
v(x+ r)− v(x)

ε
and DrDsv(x) :=

Dsv(x+ r)−Dsv(x)

ε
.
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(a) Neighbor set (b) Domain decomposition

Figure 2. (a) The 12 neighboring bonds of each atom. (b) The periodic reference
cell L := L ∩ Ω, the atomistic region Ωa := Hex(εRa), and the blending region
Ωb := Hex(εRb) \ Ωa. Here, N = 32, Ra = 3, Rb = 7, and K = 4.

We define the space of all admissible displacements, U , as all discrete functions L → R2 which
are Ω-periodic and satisfy the mean zero condition on the computational domain:

U :=
{

u : L→ R2 : u(x) is Ω-periodic and
∑

x∈Lu(x) = 0
}
.

For a given matrix B ∈ R2×2, det(B) > 0, we admit deformations y from the space

YB :=
{
y : L→ R2 : y(x) = Bx+ u(x) ∀x ∈ L, for some u ∈ U

}
.

For a displacement u ∈ U and its discrete directional derivatives, we employ the weighted discrete
`2ε and `∞ε norms given by

‖u‖`2ε :=

(
ε2
∑
x∈L
|u(x)|2

)1/2

, ‖u‖`∞ε := max
x∈L
|u(x)|, and

‖Du‖`2ε :=

(
ε2
∑
x∈L

3∑
i=1

|Daiu(x)|2
)1/2

.

The inner product associated with `2ε is

〈u,w〉 := ε2
∑
x∈L

u(x) · w(x).

3.3. The B-QCF operator. The total scaled atomistic energy for a periodic computational cell
Ω is

Ea(y) =
ε2

2

∑
x∈L

∑
r∈N

φ(Dry(x)) = ε2
∑
x∈L

3∑
i=1

[
φ(Daiy(x)) + φ(Dbiy(x))

]
, (3.1)

where φ ∈ C2(R2), for the sake of simplicity. Typically, one assumes φ(r) = ϕ(|r|); the more general
form we use gives rise to a simplified notation; see also [33]. We define φ′(r) ∈ R2 and φ′′(r) ∈ R2×2

to be, respectively, the gradient and hessian of φ.
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The equilibrium equations are given by the force balance at each atom,

F a(x; y) + f(x; y) = 0, for x ∈ L, (3.2)

where f(x; y) are the external forces and F a(x; y) are the atomistic forces (per unit area ε2)

F a(x; y) :=− 1

ε2
∂Ea(y)

∂y(x)

=− 1

ε

3∑
i=1

[
φ′ (Daiy(x)) + φ′ (D−aiy(x))

]
− 1

ε

3∑
i=1

[
φ′ (Dbiy(x)) + φ′ (D−biy(x))

]
.

Again, since u = y − yB, where yB(x) = Bx, is assumed to be small, we linearize the atomistic
equilibrium equation (3.2) about yB:

(Laua) (x) = f(x), for x ∈ L,

where (Lau) (x), for a displacement u, is given by

(Lau) (x) = −
3∑
i=1

φ′′(Bai)DaiDaiu(x− ai)−
3∑
i=1

φ′′(Bbi)DbiDbiu(x− bi), for x ∈ L.

We use the Cauchy-Born extrapolation rule to approximate the nonlocal atomistic model by a
local continuum Cauchy-Born model [29, 39, 41]. Using the bond density lemma [33, Lemma 3.2]
(see also [37]), we can write the total QCL energy (the discretized Cauchy-Born energy) as a sum
of the bond density integrals

Ec(y) =
1

Ω0

∫
Ω

∑
r∈N

φ(∂ry) dx =
∑
x∈L

∑
r∈N

∫ 1

0
φ
(
∂ry(x+ tr)

)
dt, (3.3)

where the factor Ω0 :=
√

3/2 is the volume of one primitive cell of L and ∂ry(x) := d
dty(x+ tr)|t=0

denotes the directional derivative. We compute the continuum force

F c(x; y) = − 1

ε2
∂Ec

∂y(x)
,

and linearize the force equation about the uniform deformation yB to obtain

(Lcuc) (x) = f(x), for x ∈ L.

To formulate the B-QCF method, we let the blending function β(s) : R2 → [0, 1] be a “smooth”,
Ω-periodic function. Then, the (nonlinear) B-QCF forces are given through a convex combination
of F a(x; y) and F c(x; y):

F bqcf(x; y) := β(x)F a(x; y) + (1− β(x))F c(x; y),

and linearizing the equilibrium equation F bqcf + f = 0 about yB yields

(Lbqcfubqcf)(x) = f(x), for x ∈ L,

where (Lbqcfu)(x) = β(x)(Lau)(x) + (1− β(x))(Lcu)(x).
(3.4)

The 2D blending function in our computational experiments will be defined radially using cubic
and quintic splines:

β̂(x) := B̂

(
εRb − |x|
εRb − εRa

)
and β̄(x) := B̄

(
εRb − |x|
εRb − εRa

)
,
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where B̂(x) is given by (2.10) and B̄(x) is given by (2.11). The function β̄(x) has the smoothness

and satisfies 2D versions of the scaling bounds (2.5) needed for Theorem 3.1 below, whereas β̂(x)

does not have a bounded third derivative. We therefore can expect that β̂(x) will give a larger
error asymptotically as compared to β̄(x).

3.4. Positivity of the B-QCF operator in 2D. Necessary and sufficient conditions for Lbqcf to
be positive-definite are given in [21]. To make this paper more concise, we only state the conclusions
without proof. First, we state a lower bound for 〈Lbqcfu,u〉:

Theorem 3.1. Suppose that β ∈ C3 and satisfies the scaling bounds (2.5); then,

〈Lbqcfu,u〉 ≥ γbqcf‖Du‖2`2ε ,

where

γbqcf := γ̃ − C
[
K−5/2R

1/2
b | log(Rb/N)|1/2

]
, (3.5)

where C is a generic constant independent of N , and γ̃ is the coercivity constant for the operator
L̃:

〈L̃u,u〉 := 〈Lcu,u〉 − ε4
3∑
i=1

∑
x∈L

β(x− a2)
∣∣DaiDai+1u(x− a1 − a2)

∣∣2
bi
≥ γ̃‖Du‖2`2ε ∀u ∈ U .

One can see very clearly that, whenever N is polynomial in Rb and K � R
1/5
b , then Lbqcf can be

expected to be coercive. Both are natural and easy to achieve. We can thus deduce the following
result for the coercivity of Lbqcf :

Corollary 3.1. Suppose that L̃ is positive-definite and that the blending function β ∈ C3 and
satisfies the scaling bounds (2.5). Let the number of atoms Ra along the radius be of order Nα with
0 ≤ α ≤ 1. If the blending width K satisfies

K �


| logN |1/4, α = 0,

| logN |1/5Nα/5, 0 < α < 1,

N1/5, α = 1,

then the B-QCF operator Lbqcf is positive-definite.

Remark 3.1.

(a) The stability result of Theorem 3.1, and hence of Corollary 3.1, is based on the conjecture

that the operator L̃ is stable. In [21] we show that L̃ is indeed stable whenever nearest-
neighbor interactions dominate.

Moreover, based on the analysis and numerical experiments in [33] for a similar linearized

operator, we expect that the region of stability for L̃ is the same as for La asN, Ra, Rb →∞.
We therefore expect that the result of Theorem 3.1 holds (up to a controllable error) if

coercivity of L̃ is replaced by coercivity of La in the hypothesis.
(b) One can apply the argument of Remark 2.1 to conclude that the results of Theorem 3.1

and Corollary 3.1 are valid for homogeneous Dirichlet boundary conditions as well.

By constructing a radial counterexample similar to our 1D counterexample, we can observe that
our conditions in Corollary 3.1 are essentially necessary.
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Theorem 3.2. Suppose that La is positive-definite and that the blending function β ∈ C3 and
satisfies the scaling bounds (2.5). The number of atoms Ra along the radius is of order Nα with

0 < α ≤ 1. If the blending width K is K � Nα/5, then the B-QCF operator Lbqcf cannot be
positive-definite and we can construct a radial counterexample in this case.

We note that there is a gap between the necessary and sufficient conditions for 0 < α < 1. In
addition, we have no necessary condition for α = 0, which corresponds to a fixed atomistic core
independent of the reference cell Ω.

3.5. 2D numerical experiments for B-QCF operators. In this subsection, we will continue
the numerical experiments for the 2D B-QCF models to verify the theoretical findings by comparing
the decay rates of the error in critical strain as computed by B-QCF with the theoretically predicted
rates as we increase the blending width K.

(1) Uniform expansion.
We first consider the simplest 2D deformation: we apply a uniform expansion y(x) = Bx

with

B = γ

(
1 0
0 1

)
to the perfect lattice L with Dirichlet boundary condition:

u(x) = 0 ∀x ∈ ∂Ω. (3.6)

Then we compute the critical strains γ of the atomistic and B-QCF models with different
blending region width K.

We note that the 2D conclusions also depend on the size of the atomistic region. Therefore
we let Ra = K5/3 in order to narrow the dependence only to the blending width K. Then
the asymptotical term in (3.5) for sufficiently large N is approximately

K−5/2R
1/2
b | log(Rb/N)|1/2 =K−5/2(Ra +K)1/2| log(Rb/N)|1/2

≈K−5/2R1/2
a = K−5/3 = R−1

a ,

which means that the error in γbqcf is systematically improvable.

The choice of scaling Ra = K5/3 is motivated by the results in [17] which indicate that,
generically, one should expect an O(R−1

a ) error in the regions of stability between the
infinite lattice atomistic model and the atomistic model in a domain with radius Ra. In
the computation, we assign integer values for K and use the rounded values for Ra, that is
Ra = bK5/3c.

The critical strains are defined as

γw := max
{
γ̄ > 0 : Lw(Bx) is positive definite for γ ∈ [0, γ̄)

}
, (3.7)

where w ∈ {a,bqcf} denote the models. Here we use the MATLAB function eigs [28] to
compute the smallest eigenvalue of the symmetric part of Lw(Bx) and thus determine the
positive-definiteness of Lw(Bx).

We also define the increment of the strain γ in each step by ∆γ. The results in [10,
14, 17, 33] suggest that the theoretical increments be of order O(N−2) (at least, for finding
the critical strain of a uniform lattice), and we set ∆γ = 10−8 which is sufficiently small
considering N = 200 or 300 in our experiments.

We plot the difference of the critical strains with different blending width K in Figure 3.
The numerical critical strain errors in the left figure approach the analytical asymptote as
K increases. There are larger fluctuations of errors as compared to the 1D case, which is
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Figure 3. (a) The absolute critical strain errors for the 2D uniform expansion.
We set N = 500, and we denote the critical strains for the atomistic and B-QCF
models by γa and γbqcf , respectively. The dashed line corresponds to the theoretical
asymptote. (b) The absolute critical strain errors for the quintic and cubic blending
functions with N = 500 and α = 3. The solid line corresponds to the theoretical
asymptote.

likely due to round-off errors in calculating Ra = K5/3. Thus, the slopes of the errors with
quintic blending agree with the theoretical prediction in Theorem 3.1. Also, similarly to
the 1D results, the error is smaller when the nearest neighbor interaction dominates (that
is, when α is large).

Although the slope of the errors with cubic blending seems to be one half order less than
that with quintic blending (see Figure 3(b)), the computed errors for cubic blending are
slightly smaller for the relatively small N considered. We expect that for a sufficiently large
system, the quintic blending would be more accurate. In addition, the 2D errors for uniform
expansion are similar to the 1D results. This is reasonable since the 2D uniform expansion
is similar to the 1D deformation.

(2) Uniform shear deformation.
We now investigate stability of B-QCF under shear deformation. We apply a y-directional

shear deformation to the hexagonal lattice Ω with Dirichlet boundary conditions (3.6). The

y-directional shear is y(x) = B̃x with

B̃ =

(
1 0
γ 1

)
.

The critical strain errors between the B-QCF and atomistic models with the quintic blending
are plotted in Figure 4.

In Figure 4 we plot the critical strain errors in the following three regimes: (1)N increases,
Ra = const, K = const, (2) all three parameters increase, and (3) N = const, Ra and
K increases. The choice of constant parameters, K = 2 and Ra = 14, does not follow

the scaling K ≈ R
3/5
a , and was made to show that such nonoptimal parameters do not
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Figure 4. The relative critical strain error for the y-directional shear deformation.
γa and γbqcf are the critical strains for the atomistic and B-QCF models respectively.
ForN = 200, γa ≈ 0.1813. The dashed line corresponds to the theoretical asymptote.
The fluctuations in the plotted error for N = const seems to be due to round-off
errors in calculating Ra and K. The method parameters were rounded as follows:

in (a) K = bN3/10c and Ra = bN1/2c, and in (b) K = bR3/5
a c.

significantly affect the results in this case. The results indicate that the error in this case
depends on N , but does not depend on Ra or K. This means that, for shear deformations,
the local continuum approximation and its finite element coarse-graining contributes most
of the error.

We explain such a qualitative difference between the uniform expansion and the shear
deformation in the following way. For the uniform expansion the onset of instability is
due to competition of interaction of the nearest neighbors (NNs), contributing to stability,
and the second nearest neighbors (NNNs), contributing to instability. On the other hand,
for the shear deformation the onset of instability is primarily due to competition between
elongated and compressed NN bonds. Therefore, for the uniform expansion it is important
to reduce the interface error which distorts the NNN interaction, whereas in shear defor-
mation the NNN interactions do not contribute significantly to stability errors. Since, for
NN interaction, the atomistic, Cauchy-Born and B-QCF models are identical, the stability
error only depends on the domain size.

(3) Regions of stability.
We now combine the uniform expansion and shear deformation together and study the

stability region of Lbqcf for a general class of homogeneous deformations. We consider the
following family of deformations which involve shear, expansion, and compression.

B =

(
1 + s 0.1

0 1 + r

)
.

Applying these specific homogeneous deformations to the hexagonal lattice in the reference
cell and again using the Dirichlet boundary condition, we plot the stability regions (regions
where the operators are positive definite) in Figure 5.
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Figure 5. The stability regions of the different models. These closed curves are the
boundaries of the stability regions for the atomistic, B-QCF, and the local continuum
models, respectively. The curves with indicators are for QCF.

We observe that the stability regions of the B-QCF model with different blending sizes
are all proper subsets of the atomistic model. In addition, the fully atomistic and continuum
models are very close to each other, which agrees with the stability analysis of the perfect
lattice [17]. Also, when α increases, which means the next-nearest neighbor interactions
become less important, the difference becomes smaller.

There is a visible difference in the stability regions between the QCF model and the exact
atomistic model, whereas the difference between the B-QCF model and the atomistic model
is almost not seen. This implies that using a blending region can significantly improve the
stability properties of the approximation models.

(4) Stability of micro-cracks.
The experiments that we have reported up to this point were based on perfect lattices.

Now we apply the B-QCF model to lattices with local defects.
The atomistic system is as follows. There is a micro-crack in the center of the domain Ω

with length 5, i.e., 5 atoms are removed from the lattice (see Figure 6). Hence, we redefine
accordingly the positions of atoms in the reference configuration x, the interaction energy

Ea, etc. We impose a vertical stretching B =

[
1 0
0 1 + γ

]
on the lattice and compute the

critical strains γc > 0 beyond which the system loses stability.
We computed the critical strain γc in the following way. Given γ > 0, we use Newton’s

iteration method to solve the following force equations for yγ with the initial guess yF = Bx:

Fw(x; yγ) = 0 for x ∈ Ω \ ∂Ω.

We set the tolerance for the `∞ε norm of the force residual of the Newton’s iteration to
be 10−5. To prevent the configuration from “jumping out” of the local energy well corre-
sponding to the defect under consideration, we require at each step the `∞ε norm of force
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Figure 6. The stable equilibrium configuration of the micro-crack with crack
length= 5 and γ = 0.001, and the `∞ε norm of the force residual is of order O(10−12).

residual to be less than 100 and the positive-definiteness of Lw(y), where y is the current
configuration. If any of the two requirements is not met, then the current γ is regarded as
an unstable strain. When the force residual is smaller than the tolerance, the configuration
y∗ is thought to be in its equilibrium of the local energy well. Then we check the positive
definiteness of corresponding operator Lw(y∗) with the equilibrium configuration y∗. The
nonlinear critical strain is thus defined as

γc := max{γ̄ > 0 : Lw(y∗) is positive definite for γ ∈ [0, γ̄)}.
The plot of critical strain for the B-QCF models are shown in Figure 7. Even though we
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Figure 7. The nonlinear critical strain error for vertical stretching. We set N =
200, crack length= 5, and Ra = max{K2, 6}. γa, γbqcf are the critical strains for
the atomistic and B-QCF models, respectively. The dashed line corresponds to the
theoretical asymptote.

choose the blending width K ≈ R1/2 slightly smaller then our previous choice (K ≈ R3/5),
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Figure 8. The zoomed-in critical eigenvector of critical strain of vertically stretch-
ing a micro-crack. We set N = 200, crack length= 5, strain increment ∆γ = 10−11

and α = 4.

we observe the nonlinear error decays much faster than the theoretical predicted rates and
it can reach the strain increment ∆γ = 10−8. This phenomenon has been observed in [33]
and is likely related to superconvergence of local quantities of interest. The indicator of the
superconvergence is the concentration of the critical eigenmode corresponding to γc near
the defect, which is illustrated in Figure 8.

We also study the relative errors of the critical strains for two different choices of the

blending width, K = 2 and K ≈ R
3/5
a + 2. Motivated by the analysis in [33], the size of

the atomistic core is chosen to be Ra =
√
N . According to Figure 9, the relative errors for

K ≈ R
3/5
a + 2 are approximately 10 times smaller than those for K = 2. But both graphs

decay rapidly as N increases. The rate of decay appears to be quadratic.

Remark 3.2. The numerical computations in this section are conducted without coarsening. The
main reason for this was that coarsening introduces more approximation parameters and potentially
more fluctuations in the results. Typically, coarsening does not reduce the stability, and we therefore
expect that our stability results will remain valid for any coarsening. Another reason to discard
coarsening was to better compare the numerics with the theory. However, the purpose of a/c
coupling is to reduce the number of degrees of freedom of an atomistic computation, therefore
coarsening is required when comparing efficiency (i.e., accuracy against the number of degrees of
freedom) of different methods.

4. The Accuracy of B-QCF

In the previous sections, we investigated the positivity of the B-QCF operator. One motivation
for this study is that these experiments fill a gap in our error analysis of the B-QCF method [19]. We
now briefly review these results and then include some numerical experiments demonstrating the
superior accuracy of B-QCF over other a/c coupling schemes that we have investigated previously
in [27].
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4.1. Implementation of the B-QCF method. Let V ⊂ L be a set of vacancy sites and LV :=
L \ V the corresponding lattice with defects. Let B ∈ R2×2 be the applied far-field strain. We
consider the atomistic problem

ya ∈ arg min
{
Ea(y) : y : LV → R2, y(x) ∼ Bx as |ξ| → ∞

}
. (4.1)

We remark that one must carefully renormalize Ea in order to rigorously make sense of this problem;
see e.g. [19] for the details. The vacancy sites are accounted for in the definition of Ea by simply
removing the relevant pair interactions.

We wish to approximate this problem with a practical variant (i.e., with coarsening) of the B-
QCF method. To that end, we choose Ra, Rb = Ra+K,N ∈ N in such a way that all vacancy sites
are contained in the atomistic region Ωa, which is a hexagon with side length Ra. The blending
region is defined analogously. The full computational domain is given by Ω, which is a hexagon
with side length N . We triangulate Ω in such a way that it matches the canonical triangulation of
the triangular lattice in Ω.

Let Th denote the set of triangles, let Nh denote the nodes of the triangulation, and let N free
h :=

Nh \ (V ∪ ∂Ω) denote the free nodes.
Let P1

h denote the space of all functions vh : Ω → R2, that are continuous and piecewise affine
with respect to the triangulation Th. The space of admissible trial functions is then given by

Yh :=
{
yh ∈ P1

h : yh(x) = Bx for x ∈ ∂Ω
}
.
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Each deformation yh ∈ Yh is understood to be extended by Bx outside of Ω and thereby gives rise
to an admissible atomistic configuration.

We define the discretized Cauchy-Born energy functional as

Ec(yh) :=
∑
T∈Th

vol(T )W
(
∇yh|T

)
,

where vol(T ) in 2D is the area of the triangle T . We can define the discretized B-QCF operator,
for a given blending function β, as follows:

F bqcf(x; yh) := (1− β(x))
∂Ea(y)

∂y(x)

∣∣∣
y=yh

+ β(x)
∂Ec(zh)

∂zh(x)

∣∣∣
zh=yh

for x ∈ N free
h .

In the B-QCF method, we aim to find a solution ybqcf
h ∈ Yh satisfying

F bqcf(x; ybqcf
h ) = 0 ∀x ∈ N free

h . (4.2)

We remark that this method has essentially five approximation parameters that must be chosen
carefully: the atomistic region size Ra, the blending width K, the computational domain size N ,
the blending function β, and the finite element mesh Th.

4.1.1. Practical considerations. To implement (4.2) in practice, we need to specify further details
of the method:

(1) In our choice of blending function, we deviate from the optimal choice of a C2,1-blending
function and instead choose only a C1,1 blending function, which is more easily constructed.
This is justified, firstly, by our foregoing numerical experiments which suggest that little
additional accuracy in the stability regions can be gained in the pre-asymptotic regime by
using quintic splines (i.e., C2,1-blending), and secondly, because the consistency error does
not depend on the regularity of the blending function.

We choose the blending function proposed in [27], which minimizes ‖∇2β‖L2 , or a discrete
variant thereof, in a precomputation step (see [27] for the details).

(2) In addition to the blending region Ωb we ensure that two additional “layers” of atoms outside
of it belong to Nh. This makes the implementation of the atomistic force contribution in
(4.2) straightforward.

Moreover, we ensure that the vacancy sites do not affect the forces on atoms x where
β(x) 6= 0. This ensures that all the Cauchy-Born force contributions in (4.2) are the correct
Cauchy-Born forces.

(3) To obtain an appropriate initial guess for the B-QCF solutions, we first solve the corre-
sponding energy-based blended QCE method (B-QCE) [27] with the same approximation
parameters, using a preconditioned line search method. The details are described in [27].
The B-QCE solution is then taken as a starting guess for the B-QCF Newton iteration to
solve (4.2). If no B-QCE code is readily available, then a natural alternative would be to
implement a damped Newton method for B-QCF.

We remark, that the Jacobian matrix of the B-QCF operator is straightforward to as-
semble from the Hessians of the atomistic and Cauchy-Born energy. Nevertheless, for large
3D simulations, more sophisticated solution methods may be required.

(4) We are now only left to choose the remaining approximation parameters Ra,K,N and the
mesh Th.
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4.2. Error versus computational cost. We briefly review the main ideas of our analysis in [19]
without technical details. A first key result is that if the atomistic solution is stable (δ2Ea(ya) is
positive definite) and the linearized B-QCF operator δF bqcf(·;Bx) is positive definite, then choosing
Ra and K sufficiently large implies that δF bqcf(·; ya) is also positive definite, that is, the B-QCF
method is stable under these conditions. To achieve this in practice, we need to choose K3 � Ra
(recall from section 4.1.1 that we have chosen a sub-optimal β).

From this stability result, we can deduce the existence of a B-QCF solution in a neighborhood
of the atomistic solution, and an error estimate in terms of the best approximation error (the
best approximation of ya from the finite element space Yh). and of the modeling error (the force

discrepancy of the B-QCF and atomistic models). We estimate the error in the strain ∇ya−∇ybqcf
h

in terms of the “smoothness” of ya, which is measured in terms of bounds on the derivatives ∇jya.
The derivatives of the discrete functions ya are understood as derivatives of a smooth interpolant.
(See [19] for the details.)

Dropping an unimportant term for the sake of readability, our error estimate reads

‖∇ya −∇ybqcf
h ‖L2(R2) . Cstab

(
Cβ‖∇3ya‖L2(R2\ωa) + ‖h∇2ya‖L2(Ω\ωa) + ‖∇ya‖L2(R2\ω)

)
, (4.3)

where ‖∇3ya‖L2(R2\ωa) measures the modeling error, ‖h∇2ya‖L2(Ω\ωa) the finite element discretiza-
tion error and ‖∇ya‖L2(R2\ω) the error in the far-field due to the artificial boundary condition (the
two latter errors comprise the best approximation error). The domains ωa, ω are slightly smaller
hexagonal subsets of, respectively, Ωa and Ω, with comparable side lengths.

In addition, Cstab is a stability constant that is uniformly bounded for Ra � K3, and

Cβ := K−1/2R1/2
a log

∣∣Ra/N ∣∣
is a β-dependent prefactor, which arises from a crucial inequality, ‖∇(βv)‖L2 ≤ Cβ‖∇v‖L2 , in the
consistency analysis of B-QCF.

We choose K ≈ Ra and N a polynomial of Ra (we will see momentarily why this is natural),
then Cβ is uniformly bounded and in addition, we choose Ra � K3 , which we require for stability.
With this choice, it is easy to see that Cβ‖∇3ya‖L2(R2\ωa) . ‖h∇2ya‖L2(Ω\ωa) (recall that we are
working in units where atomic spacing is 1), and hence we can simply ignore the modeling error
term from now on.

We recall from [27] that the atomistic method (ATM) is given by the B-QCF method with β ≡ 0.
We also recall the corresponding error estimates (dropping less important terms) for the atomistic
(ATM) and the B-QCE methods [19,27]

‖∇ya −∇yatm‖L2(R2) . ‖∇ya‖L2(R2\ω), (4.4)

‖∇ya −∇ybqce
h ‖L2(R2) . ‖∇2β‖L2(R2\ωa) + ‖h∇2ya‖L2(Ω\ωa) + ‖∇ya‖L2(R2\ω). (4.5)

To better understand the best approximation error, we need to understand the regularity of ya.
Since the problems only involve defects with zero Burgers vector, it is reasonable to assume based
on linear elasticity, that

|∇jya(x)| ∼ |x|−j−1.

(We stress that this estimate only applies in the far-field. In the preasymptotic regime different

rates of decay might be observed, e.g., |∇jya(x)| ∼ |x|1/2−j for the micro-crack case discussed
in § 4.3.2.)

Having this explicit knowledge about the elastic field, we can optimize our choice of finite element
triangulation. Using the construction in [33] and also used successfully in our B-QCE experiments
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in [27], we obtain a triangulation Th (as a function of Rb and N), for which the following estimate
holds:

‖h∇2ya‖L2(Ω\ωa) + ‖∇ya‖L2(R2\ω) . R−2
a +N−1.

Thus, we choose N ≈ R2
a to balance these two error contributions.

Finally, we note that, with this construction, the number of degrees of freedom in Yh, DoF :=
dimYh = 2#N free

h is approximately equal to DoF ≈ R2
a. (In particular, the number of degrees of

freedom in the atomistic, blending and continuum regions are comparable.)
In summary, choosing K ≈ Ra, N ≈ R2

a, the blending function β according to the construction
proposed in [27], and the finite element mesh according to the construction proposed in [33], we
obtain from (4.3) the error estimate

‖∇ya −∇ybqcf
h ‖L2(R2) . DoF−1. (4.6)

We note that N = Ra in the ATM method, and consequently we obtain from (4.5)

‖∇ya −∇yatm‖L2(R2) . DoF−1/2; (4.7)

thus demonstrating an improved rate of convergence for the B-QCF method in comparison with
the ATM method.

We remark that this is optimal for P1-finite element type coarse-graining schemes, as the mod-
eling error is in fact dominated by the finite element error. In particular, it is a substantial
improvement over the B-QCE method, for which the corresponding error estimate obtained from
(4.4) is

‖∇ya −∇ybqce
h ‖L2(R2) . DoF−1/2.

We note that the B-QCE method can be shown to have a higher rate of convergence than the ATM
method for defects with nonzero Burgers vector (such as dislocations) which have a lower rate of
decay. The finite element coarse-graining of the B-QCE method can more efficiently approximate
the larger region where the strain gradient is significant; [19, 27] for the details.

4.3. Numerical rates. We test our analytical predictions against the two numerical examples,
for which we already tested the B-QCE method in [27]. In both examples, we choose the Morse
interaction potential

φ(r) = [1− exp(−α(r − 1))]2 ,

with stiffness parameter α = 4.
We compare the B-QCF method with a pure atomistic computation on a finite domain, with the

QCE and B-QCE methods (cf. [27] for a detailed description of these three methods) and with the
pure QCF method, which is simply the B-QCF method with K < 1 (i.e., β(x) ∈ {0, 1}).

Finally, we have also included a highly optimized B-QCE variant where we choose K ≈ R2
a

and N ≈ R4
a, which is a very unexpected scaling, but yields improved errors in the preasymptotic

regime; see [27, Remark 4.3]. We denote this method by B-QCE+ in the error graphs.

4.3.1. The di-vacancy example. We choose the vacancy set V = {0, e1} and the macroscopic strain

B =

(
1.03 0.3
0.0 1.03

)
·B0,

where B0 is a minimizer of W (3% uniform stretch and 3% shear from ground state). The setup of
the B-QCF method for the di-vacancy problem is shown in Figure 10.

In Figure 11, we plot the degrees of freedom (DoF) against the error in the energy-norm for
the various a/c coupling methods that we consider. As predicted by our analysis, the B-QCF
method clearly outperforms all other methods, with the exception of the QCF method, which is
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Figure 10. Setup of the B-QCF method for the di-vacancy example, for a specific
choice of approximation parameters, shown in deformed equilibrium. The size/color
of the atoms in the center correspond to decreasing values of (1− β(x)).
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Figure 11. Plots of computational cost (DoF) versus error in the energy-norm
for various a/c coupling methods approximating the di-vacancy problem described
in section 4.3.1.

barely distinguishable from the B-QCF method in this graph. Unfortunately, we cannot offer a
satisfactory theory for the QCF method at present.

We also remark that, due to the high consistency error committed in the interface region, the
B-QCE does not even outperform a plain atomistic computation in this particular example. (But
it will clearly outperform the fully atomistic method (ATM) in the micro-crack example, where the
elastic field is much more significant.)
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Figure 12. Setup of the B-QCF method for the micro-crack example, for a specific
choice of approximation parameters, shown in deformed equilibrium. The size/color
of the atoms in the center correspond to decreasing values of (1− β(x)).
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Figure 13. Plots of computational cost (DoF) versus error in the energy-norm
for various a/c coupling methods approximating the micro-crack problem described
in section 4.3.2.

4.3.2. The micro-crack example. In the micro-crack (or void) example, we choose the vacancy set
V = {−5e1, . . . , 5e1} and the macroscopic strain

B =

(
1.0 0.03
0.0 1.03

)
·B0,

where B0 is a minimizer of W (3% tensile stretch and 3% shear from ground state). The setup of
the B-QCF method for the micro-crack problem is shown in Figure 12.
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In Figure 13 we plot the degrees of freedom (DoF) against the error in the energy-norm, for the
various a/c coupling methods that we consider. In this example the picture is less clear than in the
di-vacancy example due to a more significant preasymptotic regime, which is caused by the more
significant deformation admitted by the microcrack. In the preasymptotic regime we observe that
the QCE and B-QCE methods perform much better than expected, but eventually fall back to the
predicted rates. By contrast, the B-QCF and QCF methods display clear systematic convergence
at the predicted rate throughout.

We also note that, in this example, the B-QCE+ method performs comparable to the B-QCF
and QCF methods, at least in the preasymptotic regime accessible in the experiment.

5. Conclusion

We have formulated an atomistic-to-continuum force-based coupling, which we call the blended
force-based quasicontinuum (B-QCF) method. In this paper, we numerically studied the stability
as well as accuracy of the B-QCF method. We computed the critical strain errors between the
atomistic and B-QCF models with different sizes of the blending region under different types of
deformations.

The main theoretical conclusion in [21] is that the required blending width to ensure coercivity
of the linearized B-QCF operator is surprisingly small. For both 1D and 2D uniform expansion,
the computational results of the linearized operators perfectly match the analytic predictions. In
addition, the stability for a general class of homogeneous deformations of the 2D B-QCF operator
becomes almost the same as that of the atomistic model by using a very small blending region,
in contrast to the fact that the stability region of the force-based quasicontinuum (QCF) method,
that is, the B-QCF method without blending region, is just a proper subset of the fully atomistic
model. However, the critical strain error for the B-QCF operator applied to shear deformation
seems to only linearly depend on the system size and is thus insensitive to blending width.

For the problem of a microcrack in a two-dimensional crystal, we studied the nonlinear stability
of the B-QCF operators. The critical strain error decays faster than the prediction, and it can be
as small as the strain increment. However, we find that the error increases a little bit when the
blending size becomes larger, which is possibly due to round-off error.

Moreover, we implemented a practical version of the B-QCF method. We briefly reviewed the
accuracy results in terms of computational cost [19]. The numerical experiments, di-vacancy and
microcrack demonstrate the superior accuracy of B-QCF over other a/c coupling schemes that we
have investigated previously in [27].

The BQCF method with a surprisingly small blending region is an appealing choice for numerical
simulations of atomistic multi-scale problems as it is always consistent and can be guaranteed by
both theory and benchmark testing to be positive definite when the fully atomistic operator is
positive definite.
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