
http://wrap.warwick.ac.uk/

Original citation:
Hendrix, Maurice and Cristea, Alexandra I. (2008) A meta level to LAG for adaptation
language re-use. In: 6th International Workshop on Authoring of Adaptive and Adaptable
Hypermedia Workshop (A3H 2008), Hannover, Germany, 29 July - 1 Aug 2008

Permanent WRAP url:
http://wrap.warwick.ac.uk/60485

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29188945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60485
mailto:publications@warwick.ac.uk

A meta level to LAG for Adaptation Language re-use

Maurice Hendrix and Alexandra Cristea

 The University of Warwick, Department of Computer Science

Gibbet Hill Road, CV4 7AL, Coventry

United Kingdom

{maurice, acristea}@dcs.warwick.ac.uk

Abstract. Recently, a growing body of research targets authoring of content

and adaptation strategies for adaptive systems. The driving force behind it is

semantics-based reuse: the same adaptation strategy can be used for various

domains, and vice versa. E.g., a Java course can be taught via a strategy

differentiating between beginner and advanced users, or between visual versus

verbal users. Whilst using an Adaptation Language (LAG) to express reusable

adaptation strategies, we noticed, however, that: a) the created strategies have

common patterns that, themselves, could be reused; b) templates based on these

patterns could reduce the designers’ work; c) there is a strong preference

towards XML-based processing and interfacing. This has lead us to define a

new meta-language for the LAG Adaptation Language, facilitating the

extraction of common design patterns. This paper provides more insight into

the LAG language, as well as describes this meta-language, and shows how

introducing it can overcome some redundancy issues.

Keywords: LAG; AHA; Grammar; Educational Adaptive Hypermedia;

Adaptation; Adaptation Engine.

1. Introduction

The use of adaptive systems [7] is increasingly popular. Commercial systems on the

web (e.g., Amazon) or beyond (PDA device software) present at least a rudimentary

type of adaptation. However, adaptation specification can not be fully expressed by

standards1 yet, and most commercial and non-commercial systems rely on proprietary,

custom designed, system specific, non-portable, and non-interoperable adaptation. An

intermediary solution, until standards emerge, is the creation of Adaptation

Languages, which, with their power of semantics-based reuse, appear as a reliable

future vehicle for all [8], [15]. Once written, the same adaptation strategy can be used

for various domains. E.g., the strategy for beginner-intermediate-advanced written in

the LAG language [8], could be used to teach students of varying knowledge level

studying databases, mathematics or poetry. Similarly, the same domain model can be

used with various adaptation strategies. E.g., a Java course can be taught via a

strategy differentiating between beginner and advanced users, or between visual

1 SCORM Simple sequencing allows basic adaptation. IMS-LD promises more for the future.

versus verbal users. However, there are a number of limitations regarding adaptation

engines, which ultimately influence the efficient authoring of adaptation strategies, as

based on an analysis of Interbook2 [12] WHURLE3 [14], AHA! [4], [5] and Personal

Reader [1].

Thus, in this paper we define and analyze these limitations, illustrating them via a

case study of a simple, yet powerful Adaptation Language, the LAG language [8].

Moreover, we propose a meta-language, as a supplement to LAG, showing how

introducing it can overcome such limitations. Importantly, this solution is compatible

with extant adaptation engines, instead of requiring the creation of new engines.

2. Adaptation Engine Issues and Limitations

The following are issues and limitations identified as influencing the authoring

flexibility of adaptive hypermedia (AH) systems:

L1. Most adaptive hypermedia delivery systems determine the adaptation on a per-

concept base [1]. A broad knowledge of the whole content at every adaptation

step is (usually) unavailable, mainly due to run-time complexity limitations.

Thus, adaptation strategies cannot specify complex inter-concept rules; e.g., a

strategy with an arbitrary set of labels denoting topics of interest, displaying to

the user concepts related to his topic, without limiting the possible topics at

design-time.

L2. Adaptation engines don’t (usually) allow for non-instantiated program variables

[1]. Thus, authoring strategies which involve an unknown number of types,

categories, etc., are currently not permitted. All domain-related variables need to

be instantiated in the authoring stage.

L3. There are extreme difficulties arising when combining multiple strategies [1].

Adaptation engines usually update sets of variables based on some triggering

rules, without knowing which high-level adaptation strategies these variables

represent. An example of a combined strategy currently difficult to implement is

one where the system checks whether the user prefers text or images, and then

displays the preferred type of content, filtered via a beginner-intermediate-

advanced strategy, where concepts are shown based on the user’s knowledge.

In AHA! [4], [5] reasoning is mainly done on a per-concept base (for persistent

attributes). Volatile attributes can contain expressions, which reference other

attributes, allowing for backward reasoning. However, this does not fix problem L1

entirely. This method only allows for access to variables concerning concepts that

have already been visited before or are in the same line of hierarchy. AHA! also does

not allow for any free program variables (L2). AHA! can combine strategies (via the

LAG language [8]) but does not offer any solution to conflicting naming (L3).

InterBook4 [12] uses a knowledge-based approach to create adaptive, interactive

electronic textbooks. Adaptation is more limited than in AHA!: it uses a classification

of domain concepts into a spectrum and allows for adaptation towards the user’s

2 http://www.contrib.andrew.cmu.edu/~plb/InterBook.html
3 http://whurle.sourceforge.net/
4 http://www.contrib.andrew.cmu.edu/~plb/InterBook.html

current knowledge state. The prerequisites are computed on a per-concept base, and

neither free variables nor combined strategies are at all possible (L1-L3).

In WHURLE5 [14], the lesson plan specifies a path through the content chunks.

Rules are defined on a per-concept base (L1), and no free program variables are

allowed (L2) [13]. Multiple strategies are possible by using XML pipelines [16]. The

issue of different strategies using conflicting naming (L3), however, remains.

Personal Reader [1] can deal with more sophisticated issues. It uses an RDF

ontology with complex reasoning, so limitation L1 does not apply. However, it still

does not offer free program variables (L2). Combining rules in an RDF ontology is

less problematic, as multiple relationships can be defined at the same time. There are

however limitations as to what can be implemented efficiently. For example, if we

look at the OWL6 ontology language (based on RDF), we see that although OWL Full

is complete and has no limitations as to what can be expressed, only the very limited

set of OWL Lite can be implemented efficiently. This however comes at the cost of a

greater computational complexity, and therefore leads to a less scalable system.

3. A Case Study

3.1 The Theoretical Framework, in short: the LAOS Framework

In order to analyze the LAG language [8], a short briefing about the underlying theory

is necessary. The LAG Adaptation Language instantiates the adaptation layer of the

LAOS model [10]. The LAOS model is a general layered framework for Adaptive

Hypermedia authoring, containing five layers: Domain Model (DM): with domains of

content and their relations; Goal & Constraints Model (GM): filtering useful domain

concepts (possibly from multiple domains) and grouping them; User Model (UM):

with user specific variables, e.g. level, age, etc.; Adaptation Model (AM): defining

how the content is adapted to users’ needs; Presentation Model (PM): determining

look & feel, navigation elements, as well as quality of service parameters.

3.2 Expressing Static Content in CAF (Common Adaptation Format)

The LAG Adaptation Language [8] processes information stored in CAF (Common

Adaptation Format) [11]. CAF is an interfacing format that describes the static data

needed for describing a Goal & Constraints Model (GM), and all the Domain Models

(DM) it uses, ensuring that they all conform to LAOS [10]. Thus it defines concept

maps, concepts, links and resources that are to be used in adaptation. CAF is mainly

targeted at improving interoperability between different Adaptive Hypermedia

systems, by offering a way to represent data in a system-independent way; e.g., CAF

can be used to transport a GM and its related DMs between MOT [9] and AHA! [4].

CAF represents these models using a relatively simple XML format (see below).

5 http://whurle.sourceforge.net/
6 http://www.w3.org/TR/owl-ref/

<?xml version="1.0"?>
<!DOCTYPE CAF SYSTEM 'CAF.dtd'>
<CAF>
 <domainmodel>
 <concept>
 <name>Relational databases</name>
 <concept>
 <name>Fundamentals</name>
 <attribute>
 <name>theory</name>
 <contents>Relational theory</contents>
 </attribute>
 <concept>...
 </concept>...
 </domainmodel>
 <goalmodel>
 <lesson>
 <contents weight="0" label="beginner_title">
 Relational databases\Fundamentals\title</contents>
 <contents weight="0" label=" beginner_text">
 Relational databases\Fundamentals\theory</contents>
 <lesson>
 <contents weight="0" label="intermediate_title">
 Relational databases\Fundamentals\Definition\title
 </contents>...
 </lesson>...
 </lesson>
</CAF>

The example shown above represents a CAF file that contains one GM and one

DM which this GM uses. The DM is called Relational databases. This Domain Model

has one domain concept called Fundamentals. This concept has a domain attribute

theory with the contents Relational theory. It also has other attributes, omitted due to

lack of space. We see that the GM uses both the title and theory attributes of the

Fundamentals concept of the Relational databases DM. It sets weights and labels for

them, which, as we will see in section 3.3, are used by LAG [8] adaptation strategies.

In short, titles and other elementary information (not shown here) are displayed to

beginner students, and the theory is displayed to more advanced students.

3.3 A strategy in the LAG Adaptation Language

The Adaptation Language (LAG) [8] can express reusable adaptation strategies,

describing adaptation, as prescribed by the Adaptation Model of LAOS [10]. As seen

in section 3.2, items in the Goal & Constraints Model (GM) have weights and labels,

which are used by the adaptation strategies. Below we show an example Adaptation

Strategy described in the LAG language. This language works on structures defined

by CAF, and thus is domain specific, with its domain being adaptive hypermedia in

general; at the same time, within adaptive hypermedia, it is generic, as it can work

with any content domain (e.g., databases, neural networks; chemistry, etc.).

The example below illustrates a simple strategy called ‘beginner – intermediate -

advanced’. This strategy displays concepts to the user, depending on his experience

level. The example uses the simpler labels ‘beg’, ‘int’ and ‘adv’ for concepts intended

for beginner, intermediate and advanced users respectively (instead of the labels

‘beginner_title’, ‘beginner_text’, etc., as in section 3.2). The example also uses a

number of variables. The ‘show’ variable, which determines if the concept is to be

shown, is one of the few core set variables of the LAG language. Other variables are

used, e.g., to record if a concept has been visited, or how many concepts of a

particular group of concepts have been visited. It is more elegant to keep the set of

variables as small as possible. Fewer variables make strategies smaller in terms of file

size, thus easier to read, and in terms of memory usage, thus performing better.

The initialisation part (below) is performed only the first time the user enters the

system; after that, every time the user selects a (lesson) concept, the implementation

part (see comment 6), describing the actual interaction loop, is performed.

initialisation(

1) general: make every general (unlabeled) concept readable; mark every concept

as "not visited yet" (beenthere =0);

while (true) (
 PM.GM.Concept.show = true
 UM.GM.Concept.beenthere = 0)

2) initialize the number of concepts for beginning to advanced students to 0;

UM.GM.begnum=0 UM.GM.intnum=0 UM.GM.advnum= 0

3) count and store the actual number of concepts for beginner students;

 while GM.Concept.label == beg (UM.GM.begnum += 1)
 while (GM.Concept.label == beg) (PM.GM.begnum +=1)

4) count and store the actual number of concepts for intermediate students;

while (GM.Concept.label=int) (
 PM.GM.Concept.show = false
 UM.GM.intnum +=1)

5) count and store the actual number of concepts for advanced students;

while (GM.Concept.label == adv) (
 PM.GM.Concept.show = false
 UM.GM.advnum += 1)

6) set the level of the student to beginner, for the first entry in the system;

 UM.GM.knowlvl = beg)
implementation(

7) UM.GM.Concept.beenthere computes the "number of times a Concept has been

accessed". The following keeps track of how many beginner, intermediate and

advanced concepts still need to be visited. These rules are checked each time a

concept is accessed. One concept is not ‘aware’ of other concepts, however.

if (UM.GM.Concept.Access==true) then (
 if (UM.GM.Concept.beenthere = 0) then
 if (GM.Concept.label == beg) then(

 UM.GM.begnum-=1)
 if (GM.Concept.label == adv) then(
 UM.GM.advnum-=1)
 if (GM.Concept.label ==int) then(
 UM.GM.intnum-=1)
 UM.GM.Concept.beenthere+=1)

8) Change the stereotype from beginner to intermediate; from intermediate to

advanced when appropriate; make relevant concepts visible;

 if enough(UM.GM.begnum < 1
 UM.GM.knowlvl==beg,2) then(
 UM.GM.knowlvl = int))
 if enough(UM.GM.begnum < 1
 UM.GM.knowlvl==int,2) then(
 UM.GM.knowlvl = adv))
 if (GM.Concept.label == UM.GM.knowlvl) then(
 PM.GM.Concept.show = true)))

The strategy above illustrates a classical case of adaptation, to students of varying

knowledge level7. The strategy works well because it ‘knows’ what labels to expect in

the CAF file representing the Goal & Constraints model: ‘beg’, ‘int’, ‘adv’.

Currently, if other labels are also present, the conversion ignores them. However,

what happens if we want to represent strategies with more complex labels, such as the

ones in section 3.2 There, we had, e.g., various labels starting with ‘beginner_’ or

‘intermediate_’, but we didn’t know in advance how many types of such labels exist.

Still, we should expect to be able to perform some adaptive strategy and express it in

the form of an adaptation program. As variables need to be instantiated, this

introduces an intermediate step in the processing, as the next section shows.

4. Solutions to Adaptation Engines Issues and Limitations

Previously (section 3.3), we have seen an illustration of two of the current limitations

listed in section 2: (L1) concept-based adaptation, where the same rule has to be

copied in all concepts, and one concept doesn’t (normally) affect other concepts

directly, and (L2) the fact that adaptation engines don’t allow for non-instantiated

variables. A straightforward way of defeating these problems would be to build new

adaptation engines. The first scenario could be achieved by establishing which labels

exist, in the initialisation step. The second issue could be overcome by either allowing

arrays of labels, or otherwise allowing multiple data to be stored in the label.

However, in order to function with current systems, these issues should be solved in

the authoring stage. For the third limitation (L3), the difficulty in application of

multiple strategies, the MOT to AHA! converter, e.g., has already implemented an

elegant solution (unique to our knowledge so far), in that it can apply multiple LAG

files, with different adaptation strategies, with the order of execution set by priorities

of the respective strategies (1: highest priority; any following number: lower priority):

7 For examples of strategies please visit: http://prolearn.dcs.warwick.ac.uk/strategies.html

priority x /* where x is a number */

Nevertheless, this method could override previous variables (e.g., if two strategies

use UM.Concept.knowledge, only the update of the highest priority strategy counts).

Thus, a unitary strategy merge, keeping track of all variables in use, based on

multiple labels for domain-related concepts and attributes, is preferable. Moreover,

many types of variables (e.g., arrays) are not allowed by Adaptation Languages, due

to lack of adaptation engine support, limiting the adaptation that can be expressed.

However, we have noticed that a) strategies have common patterns, as has already

been shown previously in [3], that could be reused; b) templates based on these

patterns could reduce the designers’ work; c) there is a strong preference towards

XML-based processing and interfacing. Thus, XML-based templates should be used

to move the processing to the authoring side and facilitate the extraction of re-use

patterns.

For the creation of LAG files based upon a LAG template, explicit knowledge

about the content is needed. CAF represents a flexible format for Adaptive

Hypermedia content and is also used by AHA!. Therefore, a CAF file will be our

choice for the content. For the LAG template files, the LAG files which follow the

extended LAG description introduced in section 3.3 will be required. A pre-processor

can replace the constructs added in section 5 by traditional LAG constructs. The

resulting LAG file will then describe the same adaptation behaviour as the template

LAG file, but for the specific labels encountered in the CAF lesson.

Implementing the pre-processor as a web-based application enables it to transfer

both the unchanged CAF file as well as the resulting LAG file to the AHA! system,

provided, of course, the appropriate rights are set and the pre-processor is on the same

system as AHA! (currently AHA! only allows uploading files through a Java tool). To

facilitate the use of multiple strategies, it should be possible to select multiple LAG

templates. The user should be given a choice between creating the AHA! lesson and

downloading the resulting LAG file. This process could, if the direct lesson creation is

used, smoothly replace the current process, without requiring any extra effort from the

user. This process is shown in the figure below.

Fig. 1. System setup of template LAG Pre-processor.

5. Meta-level addition to LAG

To solve the limitations mentioned in section 2, we add, as said, a pre-processing step

to the whole authoring process. This step takes a LAG template and the content, in the

form of a CAF file, and pre-processes it. The result is a new LAG file which extends

the strategy sketched by the LAG template for the specific content described in the

CAF file. We want to accommodate future changes to LAG, as well as have our

approach be reusable and easily implemented and maintained. Therefore we propose

an XML-based notation for the template LAG files, while keeping the orginal LAG

language unchanged for compatibility with current systems. Note that alternatively

the changes could be incorporated into the Lag language directly but then it would

lose its compatibility with existing systems. Since CAF is already written in an XML

based notation, both documents can be used as input for an XSLT transformation

which generates the resulting LAG file. Below we give the DTD (document type

definition) for the template LAG file.

<!ELEMENT TLAG ((LAGfragment*, LIKE*)*)>
<!ELEMENT LIKE attribute CDATA value CDATA
(LAGfragment, MATCH, LAGfragment, (LAGfragment*, LABEL,
LAGfragment*)*) >
<!ELEMENT LAGfragment (#PCDATA)>
<!ELEMENT MATCH EMPTY>
<!ELEMENT LABEL EMPTY>

A template LAG file consists of a number of blocks of the following kind: a

number of LAG fragments followed by a LIKE block. The LAG fragments contain

LAG adaptation program snippets, similar to the examples showed in section 3.3. The

LIKE blocks consist of an attribute and a regular expression against which it is

matched, followed by a fragment of LAG program. The word MATCH represents the

place where the LABEL needs to match the regular expression.

Below we show a fragment of the beginner-intermediate-advanced strategy. It

shows how template LAG can be used to create an adaptation strategy that works with

the CAF file example in section 3.2:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Server SYSTEM "tlag.dtd">
<TLAG> ...
 <LAGfragment>UM.GM.beginner_number= 0 </LAGfragment>
 <LIKE attribute='GM.Concept.label' value='*beginner*'>
 <LAGfragment> while(UM.GM.label= </LAGfragment>
 <MATCH/>
 <LAGfragment>)(UM.GM.beginner_number+=1)</LAGfragment>
 </LIKE> ...
</TLAG>

Following is an extract of the result of the pre-processing of a LAG template and

the CAF file of the earlier example. The complete result is a LAG file, tailored

towards the content of the CAF file. In the snippet below we see that the variable

UM.GM.beginner_number is increased by one for each variable using the label

UM.GM.label.beginner_title or UM.GM.label.beginner_text. These were exactly the

labels matching the regular expression ’*beginner*’. Applying (the DTD of) the LAG

template solves some of the problems mentioned in section 2.

...
while

(UM.GM.label.beginner_title||UM.GM.label.beginner_text.
)(UM.GM.beginner_number+=1) ...

L1. Problem: adaptation on a per-concept base; a broad knowledge of the whole

content at every step of the adaptation is (usually) unavailable.

Solution: such knowledge is not necessary in the adaptation engine. It is

acceptable that this type of knowledge can be acquired as a one-off, at authoring

time, as it is not to be expected that content labels will change at execution time.

Therefore, the authoring strategy should contain this knowledge. As for an author

it is difficult to manually extract all the pedagogical label types existent in a

course, templates such as the DTD of the template LAG above can help in

dealing with groups of labels (such as all labels containing ‘beginner’, i.e.,

‘*beginner*’). An author can then generate the appropriate adaptation strategy (of

which a snippet is shown above) in an easy and quick manner, making use of

existing patterns in the authoring strategy itself.

L2. Problem: adaptation engines don’t usually allow for non-instantiated program

variables.

Solution: Unknown domain-related variables can be instantiated in the authoring

stage, with the help of patterns specified via the LAG template language based on

the above DTD. It is not necessary for an author to perform these searches

manually; the two-step authoring system can extract unknown variables for him.

L3. Problem: the extreme difficulties arising when combining multiple strategies.

Solution: similar pattern extraction mechanisms have to be used in order to merge

adaptation strategies. In (nearly) every system there is a limited number of

weights and labels; this causes problems in combining a number of strategies

greater than the number of weights and labels available. A solution to this can be

to apply pattern matching on labels in order to be able to encode multiple

strategies, by using the same label field. This thus enhances simple prioritization

of strategies, as it allows the combination of multiple strategies which each

requires specific labels.

6. Conclusions and further work

In this paper we have analyzed adaptation problems inherent in current adaptation

engines, which reduce the power and generality of Adaptation Languages. We

described and exemplified these issues with the help of the LAG language, currently

one of the only exchange formats of Adaptation Language specification between

systems. Moreover, we have moved one step further, by proposing improvements that

can overcome run-time issues of adaptation engines, by solving them at the authoring

stage. More specifically, templates can be used to create adaptation strategies,

customized for the given domain models and pedagogical labels. For this purpose, we

have proposed the template LAG language. The process is technically implemented

by adding a pre-processor to the system setup, which has access to content at compile-

time, which is not available at run-time. In such a way, more powerful adaptation

strategies can be created for existing adaptation engines.

Acknowledgments. This research has been performed with the help of the EU ALS

Minerva project (Adaptive Learning Spaces, 229714-CP-1-2006-NL-MINERVA-M)

and the PROLEARN Network of Excellence.

References

1. AHA! Adaptive Hypermedia For All, http://aha.win.tue.nl

2. Abel, F., Brunkhorst, I., Henze, N., Krause, D., Mushtaq, K., Nasirifard, P., Tomaschewski,

K.: Personal Reader Agent: Personalized Access to Configurable Web Services. ABIS 2006

- 14th Workshop on Adaptivity and User Modeling in Interactive Systems, Hildesheim,

October 9-11 (2006)

3. Brown, E., Cristea, A., Stewart, C., and Brailsford, T. Patterns in Authoring of Adaptive

Educational Hypermedia: A Taxonomy of Learning Styles, International Peer-Reviewed

On-line Journal "Education Technology and Society", Special Issue on Authoring of

Adaptive Educational Hypermedia, (Volume 8, Issue 3). (2005)

4. De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Stanic, T., Smits, D., Stash,

N.: AHA! The Adaptive Hypermedia Architecture. Proceedings of the ACM Hypertext

Conference, Nottingham, Uk, August, 81--84 (2003)

5. De Bra, P., Smits, D., Stash, N., The Design of AHA!, Proceedings of the ACM Hypertext

Conference, Odense, Denmark, August 23-25, 2006 pp. 133, and

http://aha.win.tue.nl/ahadesign/, 2006.

6. Brailsford, T.J., Stewart, C.D., Zakaria, M.R. & Moore, A. (2002). Autonavigation, Links

and Narrative in an Adaptive Web-Based Integrated Learning Environment.11th

International World Wide Web Conference, Honolulu, Hawaii, 7-11 May 2002.

7. Brusilovsky, P.: Adaptive hypermedia, User Modelling and User Adapted Interaction, Ten

Year Anniversary Issue, (Alfred Kobsa, ed.) 11 (1/2), 87--110 (2001)

8. Cristea, A.I., Calvi, L.: The three Layers of Adaptation Granularity. UM’03, Pittsburg, US.

(2003)

9. Cristea, A.I., De Mooij, A.: Adaptive Course Authoring: My Online Teacher. Proceedings

of ICT'03, Papeete, French Polynesia (2003)

10. Cristea, A.I., De Mooij, A.: LAOS: Layered WWW AHS Authoring Model and their

corresponding Algebraic Operators. WWW03 (The Twelfth International World Wide Web

Conference), Alternate Track on Education,Budapest,Hungary (2003)

11. Cristea, A.I., Smits, D., De Bra, P.: Writing MOT, Reading AHA! - converting between an

authoring and a delivery system for adaptive educational hypermedia -, A3EH Workshop,

AIED'05, Amsterdam, The Netherlands (2005)

12. Eklund, J., Brusilovsky, P.: InterBook: An Adaptive Tutoring System UniServe Science

News Vol. 12. March 1999. 8--13 (1999)

13. Kostelník, R., Bieliková, M., Web-Based Environment using Adapted Sequences of

Programming Exercises. In Proc. of Information Systems Implementation and Modelling -

ISIM 2003. M. Beneš (Ed.). MARQ Ostrava, Brno, April 28-30, pp.33-40.

14. Moore, A., Stewart, C.D., Zakaria, M.R., Brailsford, T.J.: WHURLE - an adaptive remote

learning framework, International conference on Engineering Education (ICEE-2003), July

pp. 22-26, Valencia, Spain (2003)

15. Stash, N., Cristea, A.I., De Bra, P., Adaptation Languages as vehicles of explicit

intelligence in Adaptive Hypermedia, In International Journal on Continuing Engineering

Education and Life-Long Learning, vol. 17, nr 4/5, pp. 319-336, InderScience, 2007.

16. Zakaria, M.R., Moore, A., Stewart, C.D., Brailsford, T.J. (2003). “Pluggable” user models

for adaptive hypermedia in education. Proceedings of the Fourteenth ACM Conference on

Hypertext and Hypermedia, August 26-30, 2003, Nottingham, UK. pp 170-171

