
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Hammond, Simon D., Mudalige, Gihan R., Smith, J. A. and Jarvis, Stephen A., 1970- 
(2008) Performance prediction and procurement in practice : assessing the suitability of 
commodity cluster components for wavefront codes. In: 24th UK Performance 
Engineering Workshop (UKPEW 2008), London, UK, 3-4 July 2008. Published in: 24th 
UK Performance Engineering Workshop 3–4 July 2008 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/60483       
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 
 
 

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60483
mailto:publications@warwick.ac.uk


Performance Prediction and Procurement in
Practice: Assessing the Suitability of
Commodity Cluster Components for

Wavefront Codes

S.D. Hammond, G.R. Mudalige, J.A. Smith, S.A. Jarvis,
High Performance Systems Group,
Department of Computer Science,

University of Warwick,
Coventry, CV4 7AL, UK.

{sdh, g.r.mudalige, jas, saj}@dcs.warwick.ac.uk

Abstract

The cost of state-of-the-art supercomputing resources makes each individual pur-
chase an expensive and, in many cases, lengthy process. Often each candidate ar-
chitecture will need to be benchmarked using a variety of tools to assess potential
performance. However, benchmarking alone often provides only limited insight
into the potential scalability and suitability of each architecture for procurement.

In this paper we present a case study applying two recently developed perfor-
mance models to the Chimaera benchmarking code written by the United Kingdom
Atomic Weapons Establishment (AWE) with a view to analysing how the code will
perform and scale on a medium sized, commodity based InfiniBand cluster. Our
models are validated with average accuracies of 90% against an existing Infini-
Band machine and then used as the basis for predicting code performance on a
variety of hardware configurations including changes in the underlying network,
faster processors and high core density per processor.

The results of our experimentation with machine performance parameters demon-
strate the compute-bound nature of Chimaera and its sensitivity to network latency
at increased processor counts. By using these insights we are able to discuss poten-
tial strategies which may be employed during the procurement of future mid-range
clusters for a wavefront-code rich workload.

1 Introduction

Modern supercomputing resources are constantly evolving.Where once a ‘super-
computer’ may have been a shared memory machine comprising of tens of proces-
sors housed in a single structure, today supercomputing resources commonly utilise
multiple sub-structures such as cabinets, multiple-processor nodes and more recently
multiple-core processors. When combined with the complex network interconnects
found in modern systems, identifying and analysing the performance properties of the
machine as a whole becomes a significant challenge. With the growing core counts



of modern machines and the ever increasing complexity of each system the task of
procuring the ‘right’ computing machinery for purpose is fastly becoming a lengthy
and intricate process. Pure benchmarking of applications on candidate architectures
serves only limited purpose - the results will only highlight the performance of spe-
cific codes and often only for specific inputs. For organisations who want the very
best machine performance, a deeper knowledge of code behaviour with respect to each
prospective platform is needed.

Performance modelling has been used as a basis for machine comparison [8, 14]
and post-installation performance verification [15], and has been shown in a number
of examples to address many of the questions which may arise during procurement.
Whilst serving as a showcase for many performance modelling techniques, the focus
has been on very large emerging architectures and not the small to medium sized com-
modity or near-commodity clusters used in a number of research organisations. In
these procurement activities similar issues must be addressed but with hardware which
may have lower specification, be arranged differently or have alternative behaviour to
the expensive components that are common place in supercomputing systems.

In this paper we utilise two recently developed performancemodels to explore the
performance of the Chimaera neutron transport benchmark developed and maintained
by the United Kingdom Atomic Weapons Establishment (AWE), targetting a process-
ing element count of up to 4096 cores. The direct use and cross-comparison of predic-
tions from two performance modelling techniques aids not only in elucidating specific
code and machine behaviour but also in increasing the accuracies of our observations.
This work is not intended to comment on the respective costs of each strategy but to
provide some degree of quantitative exploration of varioushardware and application
configurations, which can in turn support the queries that may arise during the early
stages of a procurement activity. The specific contributions of this work are:

• The presentation of a performance study for the AWE Chimaera benchmark on
commodity or near-commodity hardware. This is the first suchstudy for the
Chimaera benchmark and is designed to support future procurement activities
for mid-range supercomputing resources at AWE. We use two approaches in
verifying our predictions: (1) based on analytic methods utilising the recently
developed “plug and play” reusable wavefront model [18] and(2) using a new
discrete even simulation toolkit. Both approaches show predictive accuracies of
over 90% and provide higher confidence in the conclusions obtained from our
performance engineering study.

• A quantitative exploration of the key parameters which affect the performance
of wavefront codes on modern commodity HPC systems, supporting the explo-
ration of prospective machine configurations for procurement.

• An exploration of the contention costs arising on a CMP-processor-based cluster
when executing Chimaera and the implications for code runtime and machine
procurement.

The remainder of this paper is organized as follows, Section2 provides a brief overview
of the two main approaches to application modelling - analytical studies and simula-
tion. We introduce the Chimaera benchmark in Section 3 continuing our discussion in
Section 4 by describing the development of two performance models using analytical
techniques and a new simulation-based toolkit. Sections 5 and 6 contain our case study



in which we benchmark an existing 11.5 TFLOP/s InfiniBand system and project run-
times for a variety of alternative application and machine configurations. Our paper
concludes in Section 7 with a summary of the results and a review of the implica-
tions for procuring a small to medium size cluster for sustained wavefront-dominated
computations.

2 Performance Modelling

Application performance modelling is principally chargedwith the derivation of mod-
els by which code behaviour can be analysed and predicted. Inthe main, the interest
in such models is in analysing how the computational and communication structures in
a code will change with respect to an increased processor count or change in applica-
tion problem size. By developing a deeper insight of the runtime fluctuations resulting
from such changes, an understanding of code bottlenecks, software optimisation and in
many cases optimal configuration can be developed.

Current techniques for developing application models predominantly fall into two
distinct categories - those based on analytical studies andthose based on simulation.
Although some conceptual work on a binding of the two is discussed in the POEMS
framework [1], there has been little practical demonstration reported in academic litera-
ture. Analytical studies [11, 13, 21] which seek to represent code behaviour by a series
of mathematical formula, are often developed within some modelling framework or
methodology (e.g. LogP[4], LogGP[2] and LoPC[5]). The use of rigid frameworks for
modelling helps to alleviate some of the complexity involved in modeling and provide
a generic basis upon which code behaviour can be judged. The challenges of using an
analytical approach are identifying the key application parameters which affect runtime
behaviour and how best to represent each parameter mathematically. The analysis of
code for modelling is often based on manual code inspection which, although time con-
suming, allows the performance modeller to develop a deeperunderstanding of specific
code behaviour from which further behavioural insights maybe garnered.

A brief overview of the recently developed “plug and play” reusable wavefront
model [18], which serves as the basis for our analytical exploration of Chimaera, is
presented in Section 4.1. Note that the development of a reusable model serves to
reduce the time required to model future wavefront codes, since a flexible framework
can now be applied to any wavefront application; this approach also permits cross-
application comparisons to be made within a highly algorithm-specific framework.

Simulation-based performance systems (e.g. Wisconsin Wind Tunnel [19], PRO-
TEUS [3] and the PACE toolkit [7, 12] ) were originally envisaged as a mechanism to
lower the burden of performance modelling by eliminating the need to manually inspect
application source code. The automated replay of applications either in source or bi-
nary form allowed developers and performance modellers alike to experiment with per-
formance by making direct changes to the application and simulating execution without
requiring direct access to the specific machine in question.In practice, the simulation
environments developed to date have attempted to directly simulate individual applica-
tion instructions making the simulation of large industrial codes infeasible in realistic
time frames. When the increase of modern application complexity is compounded with
increasing core counts of emerging cluster platforms, the use of simulation quickly
becomes intractable as a source of fast and efficient performance evaluation. In Sec-
tion 4.2 we present the development of a prototype simulation toolkit which seeks to
overcome some of the problems discussed, in particular the use of coarser grained
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Figure 1: Sweep execution through the data array in Chimaera.

computational timings (as opposed to individual instructions timings) and a ‘layered’
network modelling system, significantly reduce simulationtimes, whilst providing pre-
diction accuracies commensurate with leading analytical models.

3 The Chimaera Benchmark

The Chimaera benchmark is a three-dimensional neutron transport code developed and
maintained by the United Kingdom Atomic Weapons Establishment (AWE). On first
inspection the code shares a similar structure with the now ubiquitous Sweep3D ap-
plication described in numerous analytical performance studies [13, 14, 17]. Unlike
Sweep3D, however, the code employs a different internal sweep ordering and utilises
a complex convergence criteria to decide when execution is complete. In this section
of the paper we present a concise description of the wavefront algorithm employed
by both Sweep3D and Chimaera. Our discussion is purposefully brief as a number
of existing works describe the behaviour of the wavefront algorithm [16] and a short
overview is sufficient to enable an understanding of the key application behaviours.

3.1 The Generic Wavefront Algorithm

The generic three-dimensional wavefront algorithm operates over a data array of size
Nx ×Ny ×Nz. The data array is decomposed over a two-dimensional processor array
sizedm × n. Each processor receives a ‘column’ of data sizedNx/m × Ny/n × Nz.
For the purposes of our discussion it helps to consider this column as a stack ofNz tiles
eachNx/m×Ny/n× 1 in size. The algorithm proceeds by executingsweeps through
the data which pass from one vertex to its opposite. For Chimaera and Sweep3D eight
sweeps are used - one for each vertex of the three-dimensional space.

A sweep originates at a vertex of the processor array (the origins of each sweep for
Chimaera are shown in Figure 2). The computation required tosolve the first tile in the
originating processor’s stack is completed and boundary information is exchanged with
the two neighbouring processors. Once exchanges are complete the two neighbour-
ing processors solve the first tile in their stack whilst the originating processor solves
its second tile. On completion, boundary information is again passed downstream to
neighbouring processors. A sweep completes once all tiles in the last processor have
been solved. Figure 1 shows a partially complete sweep with dark grey tiles having
been solved in previous stages, light grey tiles are currently executing and white tiles
are awaiting boundary information from upstream processors (arrows are used to show
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Figure 2: Starting locations for sweep within the two-dimensional processor array
employed by Chimaera.

visible communications to downstream processors). A full ‘iteration’ of the wavefront
algorithm in Chimaera requires all eight sweeps to have completed.

4 Modelling Chimaera

The modelling of Chimaera has been conducted using two approaches - analytical mod-
elling based on the “plug and play” reusable model [18] and using the new WARwick
Performance Prediction (WARPP) simulation toolkit developed by the University of
Warwick.

4.1 Plug and Play Analytical Model

Model Parameter Chimaera Value
Nx, Ny, Nz Input size

Wg measured
Wg,pre 0

Htile(cells) 1
nsweeps 8
nfull 4
ndiag 2

Message 8Htile

SizeEW ×#angles
(Bytes) ×Ny/m

Message 8Htile

SizeNS ×#angles
(Bytes) ×Nx/n

Table 1: Reusable Wavefront Model Application Parameters.

The “Plug-and-play” reusable wavefront model developed in[18] represents the culmi-
nation of three individual application performance studies for the Sweep3D, Chimaera
and NAS-LU benchmarks. By using the insights obtained in modelling these three
wavefront codes, Mudalige, Vernon and Jarvis have extracted and abstracted the com-
mon parameters (shown in Table 4.1) which affect application runtime into a generic



Wpre = Wg,pre × Htile × Nx/n × Ny/m (r1a)
W = Wg × Htile × Nx/n × Ny/m (r1b)

StartP1,1 = Wpre (r2a)
StartPi,j = max(StartPi−1,j + Wi−1,j + Total commE + ReceiveN ,

StartPi,j−1 + Wi,j−1 + SendE + Total CommS) (r2b)
Tdiagfill = StartP1,m (r3a)
Tfullfill = StartPn,m (r3b)

Tstack = (ReceiveW + ReceiveN + W + SendE + SendS (r4)
+Wpre)Nz/Htile − Wpre (r4)

Time per iteration = ndiagTdiagfill + nfullTfullfill (r5)
+nsweepsTstack + Tnonwavefront (r5)

Table 2: Plug-and-play LogGP Model: Single Core Per Node.

model. The computational time required,Wg, and the computational time per cell prior
to the algorithm kernel,Wg,pre, are the only machine specific values for which bench-
marking of the application is required.. For our study this was obtained by using a
manually instrumented version of the benchmark which timesthe core computational
kernel of the wavefront algorithm.Wg,pre is unused in Chimaera since there are no
computational sections in the sweep algorithm prior to the main kernel.

The sweep ordering parameters,nsweeps, nfull andndiag represent the total num-
ber of sweeps per iteration, the number of full sweeps and thenumber of half sweeps
respectively. The concept of ‘full’ and ‘half’ sweeps relates to the ability of sweeps
within the application to overlap. Recall the sweep ordering presented in Figure 2.
Sweep 2 originates on the processor located in the top right corner of the processor
array. Once this sweep has successfully passed through the bottom right (the starting
location for sweep 3) the next sweep can begin. If this startsprior to sweep 2 fin-
ishing on the bottom left processor, overlapping occurs which serves to increase the
efficiency of the code. Overlapping can only occur if sweepi finishes at the starting
location for sweepi+1 whilst other downstream processors are still processing sweep
i. This occurs twice in Chimaera (sweep pairs 2,3 and 6,7) giving anndiag value of 2.
The full reusable model is presented in Table 2 with the complete equation for runtime
given in (r5). Explanations of each sub-equation are given in [18]. Note that in the
original paper describing the reusable wavefront model, the authors develop a complex
LogGP communications model for the Cray XT4 architecture. In this work we develop
a simpler regionalised least squares regression model to obtain times for MPI send and
receive operations (these are presented in Section 5.1.1).

4.2 Simulation using the WARPP Toolkit

The WARwick Performance Prediction (WARPP) toolkit presented in this paper is a
prototype performance prediction toolkit and evaluation engine, which has been de-
signed to support performance prediction and code analysison machines containing
thousands of processors. More specifically, we intend for our toolkit to provide accu-
rate simulations for modern Massive Parallel Processor (MPP) machines which might
consist of multi-core, multi-processor cabinet structures each having their own com-
plex interconnect or protocol. As the sizes of future machine architectures to continue
to grow, we expect that additional sub-structures will be required to support increasing
core counts, again each is likely to have its own performanceproperties adding further



complexity to modelling activities. With this in mind, the structure of a machine is
relayed to the simulator by a series of ‘profiles.’ Each profile has unique performance
properties such as network latency, outbound bandwidth etc. When developing a sim-
ulation the user is required to specify the respective values for each performance prop-
erty and a mapping of MPI processes to profiles for the specificmachine configuration
being analysed. By providing a generic basis for the description of a machine, arbitrar-
ily complex hardware models can be developed enabling the exploration not only of
modern machine structures but also future multi-structured computing resources.

Simulations developed using the WARPP toolkit build upon the observation that
parallel codes are ordered executions of basic blocks separated by control flow, calls
to network transmissions or I/O operations. Like previous simulators we recreate ap-
plication behaviour by replaying the code’s control flow, pausing during execution to
directly simulate computation, communication and I/O events. Communication be-
tween processes are simulated fully ensuring that transmissions between nodes block
when the transmissive partner is otherwise engaged. Computation is, however, mod-
elled quite differently to existing work in that it does not simulate each application
instruction directly. Instead, the toolkit jumps over whole basic blocks within the
control-flow recording the time that the block requires for execution on the target plat-
form. The switch to coarser grained computational timings significantly reduces the
time required for individual simulations aiding in improving the scalability of the sim-
ulator to considerably higher processor counts than previous toolkits. The issue which
arises in moving to coarser grained computational timings is precisely how the time for
the block is extracted from the application. To alleviate the manual instrumentation of
code to obtain such timings the toolkit includes an automated code analyser which in-
jects timing routines into the application source code directly creating an instrumented
benchmark version of the code. The analyser also generates acontrol flow represen-
tation of the code detailing where each block can be found andhow to identify it’s
associated execution time from the instrumented application output.

4.2.1 Developing a Simulation in WARPP

Developing a WARPP simulation involves three stages. In thefirst the application
source code is analysed using automated code analysis tools- these are responsible for
diagnosing the ‘basic blocks’ of the application and extracting a control flow graph for
each process in the parallel application. Basic blocks are considered to be separated by
either a change in the address counter (as would be caused by abranching statement
or loop) or a communication (such as anMPI Send or MPI Recv). Once the basic
blocks have been found, each is instrumented with timing routines to record the wall
time that is required for execution. Two outputs are produced at this stage of simulation
- an instrumented version of the application’s source code and a basic performance
model which describes the control flow of the application, the arrangement of basic
blocks within this control flow and the points at which communication and I/O occurs.

The second stage of simulation requires the user to benchmark the machine using
the instrumented version of the code and some reliable MPI benchmarking utility (such
as MPPTest [22] or the Intel MPI Benchmark [9]). The output ofthese benchmarks,
which takes the form of a ‘work time’ for each sequential block and a set of network
latencies and bandwidths, is then fed into the third stage ofsimulation where the control
flow is replayed using the wall clock times of each block to calculate the compute
resources required and the communication points in the application directly simulated
to obtain a communication model.



Network Profile Message Size) nl B
(Bytes) (microsec) (GBytes/s)

on-chip ≥ 0 0.655 2.70
(core to core)
off-processor < 2048 0.69 2.80

(processor to processor) ≥ 2048 0.91 3.83
off-node < 2048 2.64 0.46

(node to node) ≥ 2048 3.63 0.73

Table 3: Benchmarked Network Performance for the CSC-Francesca Machine
(measurements taken using the Intel MPI benchmarking utility version 3.0 [9]. The

Intel C compiler version 10 was used with default system MPI libraries.)

Core Problem Actual Analytical Sim. Analytical Sim.
Count Size Runtime Pred. Pred. Error Error

(sec) (sec) (sec) (%) (%)
32 1203 107.18 88.76 89.58 -17.19 -16.42
64 1203 56.72 47.59 48.75 -16.09 -14.04
128 1203 32.56 28.20 28.98 -13.40 -11.01
81 2403 342.33 326.45 330.46 -4.64 -3.47
96 2403 297.03 268.71 277.56 -9.54 -6.55
100 2403 278.37 243.36 248.32 -12.58 -10.79
128 2403 225.65 205.50 207.18 -8.93 -8.18
169 2403 174.35 174.35 177.09 -0.88 1.57
256 2403 129.65 115.58 117.98 -10.85 -9.01

Table 4: Model Validations on the CSC-IBM Francesca Machine - (Compiler - Intel
Fortran 10.0 with-O2 optimisation setting, OpenMPI 1.2.5, All runtimes given are

wall time for sweeping components in seconds, Negative values indicate
under-predictions)

During a simulation, data relating to the application’s performance and machine
utilisation is recorded enabling performance modellers toreplay the simulated execu-
tion at a later date and analyse where execution time was spent (for example, time spent
in communication, computation, idle etc). As our studies into the applications used at
AWE deepen we intend to use the simulation data to direct potential improvements in
code structure and resource allocation.

5 Modelling Code Performance on a Commodity High
Performance Cluster

In this section we present the results of a benchmarking and modelling exercise con-
ducted on the recently installed Centre for Scientific Computing (CSC)Francesca ma-
chine operated by the University of Warwick. The benchmarked values from this ma-
chine serve two purposes - firstly to allow us to verify our performance models against a
set of known runtimes ensuring accuracy, and secondly to form the basis of projections



for alternative machine configurations that may be considered during a procurement
exercise.

5.1 The University of Warwick Centre for Scientific Computing
(Francesca) Machine

The recently installed 11.5 TFLOP/s Centre for Scientific Computing (University of
Warwick) IBM supercomputer is typical of a large, sub-Million pound commodity
cluster available today. The system comprises of 240 dual-Intel Xeon 5160 dual-core
nodes each sharing 8GB of memory (giving 1.92TB in total). Nodes are connected
via a QLogic InfiniPath 4X, SDR (raw 10Gb/s, 8Gb/s data) QLE7140 host channel
adapters (HCAs) connected to a single 288-port Voltaire ISR9288 switch. Processor
core to HCA ratio is4 : 1. Each compute node runs the SUSE Linux Enterprise Server
10 operating system and has access to the IBM GPFS parallel file system [20]. For
our study the Intel C/Fortran 10 compiler suite was used in conjunction with OpenMPI
1.2.5 [6] and the PBS Pro scheduler. By default, jobs launched under PBS are allo-
cated ‘freely’ in the system -i.e. to any free core which meets the wall time or memory
resources requested by the job. Nodes and processors are shared between jobs unless
specifically requested during submission. Runtimes can therefore vary (by as much as
10-15%) between successive runs due to the ‘free’ placementof processes within the
machine and the potential sharing of node resources.

5.1.1 Machine Network Benchmarks and Models

The results of machine benchmarking demonstrating raw MPI latency and bandwidths
are shown in Table 3. Note that the network benchmarking is partitioned into two
regions by message size. The point at which the split in network performance occurs is
2048 bytes, indicating that the InfiniBand management system may be configured for
a maximum transmission unit (MTU) size of 2Kbytes (a maximumof 4K is supported
by the HCA and switch).

For both performance studies we model the communication time for a message
of lengthx bytes astsend(x) = (1/B)x + nl with the bandwidth (B) and latency
(nl) associated with the appropriate region forx . The time for a receive is mod-
elled by: trecv(x) = (1/B)x since the receiver does not experience the latency re-
quired to establish the connection but must spend at least the actual transmission time
in a locked state accepting data from the network interconnect. Using these val-
ues we can calculate the point at which bandwidth will dominate network transmis-
sions as:(2.62 × 10−6)/(1(/0.46 × 10243)) = 1304 bytes (small messages) and
(3.63× 10−6)/(1/(0.73× 10243)) = 2846 bytes for large messages. In the context of
Chimaera these values, where each cell contains 10 angles, each of which is a double
floating point value, equate to message sizes of17 and36 cells respectively. These val-
ues indicate the “see-saw” point at which the network operates, giving some indication
of whether bandwidth or latency is dominant for each MPI operation.

5.2 Performance Model Validation

Table 4 presents validations of both performance models forthe CSC-Francesca ma-
chine. For the results presented, the average prediction error is 10.46% for the analyt-
ical model and 9.03% for the simulation demonstrating the high degree of accuracy in
the models and the strong correlation between both studies.



Figure 3: Parallel Efficiency of Large Problem Sizes using the InfiniBand
Interconnect.

Note that the vast majority of the predicted runtimes are below the actual execution
time - the principle reason being that both performance models assume as ‘perfect’
allocation of processor cores within the machine, assumingthat neighbouring MPI
ranks will be allocated as closely as physically possible. In practice, the free placement
of processes causes some degree of increased execution timedue to the higher network
costs experienced. Similarly, the natural load and noise which occurs from shared
resources helps to create variation in execution. Additionally, predictions are taken
from averaged estimates of machine parameters for which rounding and measurements
may also occur.

6 Procurement: Assessing the suitability of machine
components

Following the benchmarking of the CSC-Francesca machine and validation of the per-
formance models, we present several sub-studies exploringalternative machine or ap-
plication configurations. In the following studies we analyse the effect on code runtime
of a change in (1) an increase in problem size, (2) moving to a gigabit ethernet network-
ing solution (3) the installation of InfiniBand resources with identical bandwidth but
increased latency (4) a change in the performance of individual processor-cores and (5)
a doubling of processor-core density.

6.1 Large Problem Sizes

New computing machinery is often purchased with the intention of not only running
current codes but also future higher complexity problems orlarger input sizes. The
decision of which machine to purchase today may often be governed by expectations
of how future users intend on using the system. Figure 3 presents the expected parallel
efficiency of an increased input size with increasing processor count. Note that there is
a significant decline in efficiency for each input size as the PE count rises. This effect
is attributable to the increasing proportion of runtime accounted for by communication



Figure 4: Chimaera Runtime using InfiniBand (4x, SDR) and Gigabit Ethernet
Interconnects.

resulting from decreasing computation time per processor and an increase number of
network transmissions in the system as a whole.

The measure of parallel efficiency is of particular interestto AWE since parallel
jobs are mandated to be in higher than 50% configurations wherever possible with a
number of users specifically choosing PE counts to target this value. For the 2403

problem this point occurs between 1024 and 2048 cores indicating the approximate
core count which may be required per job if targeted specifically for a 50% efficiency.
Depending on how many simultaneous jobs the organisation wants to execute at this
level of efficiency an approximate core count for procurement can be deduced. For
larger problem sizes a similar form of analysis is also applicable, however, significantly
more cores will be required before the 50% point is reached.

6.2 Choice of Networking Interconnect

For any machine intended to execute high performance parallel codes the choice of
interconnect is particularly accute. The precise mix of latency, bandwidth capacity
and cost must be balanced to support the compute resources indelivering smooth,
consistent performance. At the time of procurement it is common to want to assess not
only which interconnect will provide the best raw performance but also what the effect
of changing the interconnect or choosing a slightly lower specification will have on
overall runtime. We have modelled two such choices - (1) whether to select a Gigabit
network over an InfiniBand interconnect and (2) the effect ofpurchasing an InfiniBand
network with identical 4x, SDR bandwidths but 25%, 50% and 75% higher latencies.

Figure 4 presents the predicted runtimes for a hypotheticalmachine in which we
have replaced the InfiniBand interconnect with a gigabit ethernet network. The gigabit
runtime is consistently over 100 seconds slower than the InfiniBand system reflecting
the impact of increased latency and a significant decrease inbandwidth. In analysing
the results we propose that the reader considers the economics of purchasing either
fewer processors and a more expensive InfiniBand network or agreater number of
processors and a less expensive gigabit interconnect - a typical decision which may be



Figure 5: Increase in runtime from a 4x SDR InfiniBand network with varying
increases in latency.

faced in any procurement activity. For the Chimaera benchmark at least, the results
demonstrate that between two and four times as many processors will be required to
offset the degradation of using a slower interconnect - a significant increase which
will in turn make the machine more expensive to run and potentially more difficult to
administer. The runtimes marked in Figure 4 present this point for the 128 and 512
core cases.

In Figure 5 we demonstrate predictions for the percentage increase in runtime re-
sulting from the use of an 4x SDR InfiniBand interconnect with25%, 50% and 75%
higher latencies. For small processor counts (less than 1000) the increase in runtime is
less than 6% in all cases. After this point - where communication begins to become a
higher proportion of runtime - the runtime begins to increase rapidly with an increase
of at least 10%. In this scenario the purchase of a lower specification system may be
acceptable if the intention is to limit the maximum processor count of each job to 1024
cores or less.

We also believe that the use of machine configurations for node counts greater than
288 will cause increases in experienced wire latencies as tree based switch topolo-
gies will need to be employed in order to cope with the extra port count. These costs
are not included in this work as benchmarked values to support a predictive model
are not currently available and work completed in [10] provides some suggestion that
contention within InfiniBand switches may be reduced in future systems through the
use of advanced routing algorithms. Figure 5 does however help to give indication of
how sensitive the structured communication pattern used inChimaera is to even minor
increases in network latency.

6.3 Machine Compute Performance

The compute resources of the machine are usually the featurewhich draws the most
attention. Whilst only part of the picture for parallel systems, the computational as-
pects of a code are often better understood by domain expertsand developers. With
increasing variation in processors being offered in the form of increasing core counts
and arrangements, considerable clock speed differences and in some cases, varying



Figure 6: Increase in runtime from a varying changes in individual processor-core
performance.

cache implementations, choosing the ‘right’ processor foran application can be diffi-
cult. We present several studies in this section of the paperwhich attempt to quantify
the performance benefit of choosing either 10% or 20% faster processors, 10% slower
processors or making the move from the existing dual-core Intel Xeon 5160 proces-
sors to quad-core chips with the same per-core performance but high core-density per
processor.

6.3.1 Increased Individual Core Performance

Figure 6 presents the predicted change in runtime from usingdual core processors
with individual core performances of +10%, +20% and -10%. The diminishing returns
demonstrate the respective points at which communication begins to dominate runtime.
In each case the change in runtime performance is approximately equal to the change
in per core performance for small processor counts. As the processor count rises the
impact on runtime is reduced due to the increase proportion of runtime accounted for
by communication, reducing the contribution of faster computational resources to the
runtime. Note that at increased processor counts the impacton runtime of using a
slower processor is also reduced. The choice of core performance should therefore be
considered in the context of job size - at small job sizes the runtime is improved best by
using the fastest processors possible, as the core count in use rises there are diminishing
returns from employing faster computational resources.

6.3.2 Increased Core Density - Dual versus Quad Core

With an increasing variety of multi-core processors becoming available including dual,
quad and oct-core configurations, a common issue arising in procurement is which core
density to select in designing the machine’s compute architecture. On initial consider-
ation the economic advantages of higher core densities are consolidation and reduced
power or cooling demands per core, however, the increasing density often impacts on
runtime performance.

In Figures 7(a) and 7(b) we show a set of results obtained fromrunning the Intel



(a) Percentage change in time required to complete MPI send operation.

(b) Percentage change in per-core network bandwidth

Figure 7: Percentage change in time to send and per-core bandwidth when increasing
the MPI process per node from one to two and four.



Total Core Dual Core Quad Core Percentage
Count Runtime (s) Runtime (s) Change (%)

32 729.97 726.19 -0.52
64 376.46 373.62 -0.75
128 207.18 207.92 0.36
256 117.98 118.50 0.44
1024 66.64 66.33 7.88
4096 37.29 40.45 8.46

Table 5: Predicted Quad versus Dual Core Performance (The quad-coreconfiguration
is modelled with an increased in time to send and reduced bandwidth to account for

contention).

MPI benchmark in three configurations - one, two and four MPI processes per node re-
spectively. The increasing number of processes per node (which is the effect of higher
core densities) reduces the per-core network performance.The increased time to per-
form an MPI send, and the decreased per core bandwidth, result from high levels of
contention for the single InfiniBand HCA per node. Each process must wait longer
before having exclusive access to the machine network. If core densities continue to
rise then this will continue to impact performance unless the issue of contention is
addressed by increasing the number of networking channels per node - the economic
effect of this may be a significant addition to procurement cost.

We have modelled the effect on runtimes of replacing each existing dual-core pro-
cessor with a quad-core equivalent in which the per-core performance of the chip re-
mains identical. The network latency for the InfiniBand network has been left the same
for message sizes less than 2048 bytes, increased by 10% for message sizes ranging
from 2048 to 4096 bytes and increased by 20% for larger messages. Network band-
width has been changed by the same value but decreased. The changes in latency and
bandwidth are drawn from the observed values shown in the figures above. Table 5
presents our predicted runtimes for the quad core machine compared with the existing
dual core structure. Initially performance is improved since there are more cores utilis-
ing the fast core-to-core transmission speeds. Once core counts reach 1024 processors
the increased latency and reduced bandwidth create up to an 8% increase in runtime.

7 Conclusions

In this paper we have presented a case study detailing the application of two perfor-
mance models - one based on analytical techniques and the other based on simulation
- in supporting the procurement of a large, sub-Million pound commodity cluster for a
wavefront-code rich workload. The study explores the performance and scalability of
the Chimaera benchmark code used by the United Kingdom Atomic Weapons Estab-
lishment.

We demonstrate average predictive accuracies of 90% for a variety of processor
configurations and input sizes. The cross-correlation of predictions from two contrast-
ing performance models serves to increase the confidence in our predictions and the
insights obtained during our subsequent analysis.



More specifically, this paper shows:

• Quantitative estimates for the parallel efficiency of existing and future problem
sizes that are of interest to AWE;

• That a system with a low performance network will require a greater processor
count to offset the effect of higher latencies and lower bandwidth. We demon-
strate this by projecting the performance of a Gigabit ethernet network in com-
parison to a faster InfiniBand system, showing approximately between two and
four times as many processors are required by the ethernet system to achieve
comparable levels of performance at core counts less than 1024;

• Improving/reducing the latency performance by a factor of 2, results in up to
10% change in overall runtime;

• For small processor counts the overall runtime varies by thefactor of improve-
ment in per-core performance, but as core counts increase, the contribution of
faster per core performance provides diminishing returns;

• Increasing the core density per processor reduces the performance due to con-
tention for memory and network resources. We estimate the quantitative degra-
dation of overall runtime when doubling core-density from dual to quad core
processors to be approximately 8% up to 4096 cores on the commodity Infini-
Band system studied.

Our results demonstrate that the selection of machine configuration and processor count
should be directed by the average size of jobs the machine is intended to execute. For
multiple small jobs, individually faster processors should be prioritised over a faster
interconnect, since the code is predominantly compute bound at these points. For larger
jobs, the interconnect plays a more significantly role in performance indicating that a
more expensive, low latency network should be targetted during procurement.

The predictive models used in this study demonstrate efficient, low-cost and rapid
methods to gather quantitative and qualitative insights into questions which arise during
procurement for both currently available and future systems. In contrast, traditional
approaches such as direct benchmarking require significantand expensive machine
execution time and more effort to arrive at a subset of conclusions limited solely to
currently available machine configurations.
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