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Microwave-induced resistance oscillations (MIRO) have been extensively studied for more than a decade
but, until now, have remained unique to GaAs/AlGaAs-based 2D electron systems. Here, we report on the
observation of MIRO in a 2D hole gas hosted in Ge/SiGe quantum well. Our findings confirm that MIRO is
a universal phenomenon and demonstrate that microwave photoresistance can be utilized to probe the energy
spectrum and the correlation effects of 2D holes in Ge/SiGe quantum wells.
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Two-dimensional electron gases (2DEG) subject to both
perpendicular magnetic field B and microwave radiation
reveal a variety of fascinating nonequilibrium transport phe-
nomena [1]. Two prime examples of these phenomena are
microwave-induced resistance oscillations (MIRO) [2,3] and
zero-resistance states [4–10], which emerge from the MIRO
minima in ultrahigh mobility 2DEG [11]. MIRO appear in
microwave photoresistance, δRω, which is the difference
between the resistance of irradiated 2DEG and the resistance
measured without radiation, R0. Theoretically, MIRO can
be explained in terms of (i) the displacement mechanism
[12–16], which is based on the shift of the cyclotron orbit
due to microwave-assisted impurity scattering, and (ii) the
inelastic mechanism [16,17], stemming from the radiation-
induced modification of electron distribution function. Both
mechanisms predict that the photoresistance oscillates as

δRω/R0 = −2πηPλ2ε sin 2πε, (1)

where η is the dimensionless scattering rate, which contains
both displacement and inelastic contributions [16], P is the
dimensionless microwave power [17,18], λ = exp(−π/ωcτq)
is the Dingle factor, τq is the quantum lifetime, ε = ω/ωc,
ω = 2πf is the microwave frequency, and ωc = eB/m	 is the
cyclotron frequency of the charge carrier with the effective
mass m	.

While MIRO have been actively investigated for more than
a decade [1], their observation has remained unique to n-type
GaAs/AlGaAs. Indeed, experiments on microwave photoresis-
tance in p-type GaAs/AlGaAs [19], in n-type Si/SiGe [20], and
in HgTe/CdHgTe [21] revealed only a single photoresistance
peak owing to magneto-plasmon resonance [22]. Interest-
ingly, microwave-induced magnetoconductance oscillations
and associated zero-conductance states [6] have been recently
realized in a nondegenerate 2D system, electrons on liquid
helium surface [23,24]. These oscillations, however, appear
only under resonant excitation of the second subband and are
very different from MIRO in many other aspects [25].

In this paper, we report on an observation of MIRO in a new
material system, a high-mobility 2D hole gas (2DHG) hosted in
a pure Ge/SiGe quantum well. First, we have found that MIRO
exist over a wide range of microwave frequencies and are well
described by the hole effective mass of m	 ≈ 0.09m0, where

m0 is a mass of a free electron. Second, we have observed that
with increasing temperature T , the MIRO amplitude decays
roughly as T −2, suggesting the dominance of the inelastic
mechanism [17]. Finally, we have found that MIRO exhibit
a sublinear dependence on microwave power, consistent
with many MIRO experiments in GaAs/AlGaAs [3,26–28].
Taken together, these findings establish that MIRO are not
unique to GaAs/AlGaAs and demonstrate that microwave
photoresistance can be used to probe the energy spectrum
and correlations of 2D holes in Ge/SiGe quantum wells.
Future experiments utilizing higher microwave frequencies
and dc electric fields should yield unique information on the
correlation properties of the disorder potential.

Our sample was fabricated from a fully strained (0.65%),
20-nm-wide, 99.99% pure (Si-free) Ge quantum well grown
on Si0.2Ge0.8 by reduced pressure chemical vapor deposi-
tion [29,30]. Holes were supplied by a 10-nm-wide B-doped
layer separated from Ge channel by a 26-nm-wide undoped
Si0.2Ge0.8 spacer. The sample was a 4 × 4 mm square with
ohmic contacts formed by thermal evaporation of Al followed
by annealing in N2 at 425 ◦C. At T = 1.5 K, our 2DHG
has the hole density p ≈ 2.8 × 1011 cm−2 and the mobility
μ ≈ 0.4 × 106 cm2/V s [29,31,32]. Resistance measurements
were performed at T from 1 K to 5 K using a low-frequency
(13 Hz) lock-in detection in sweeping B. Radiation (f =
30–110 GHz) was delivered to the sample via a rectangular
(WR-28) waveguide.

A typical example of microwave photoresistance δRω

measured at f = 100 GHz and T = 1.5 K is shown in Fig. 1
as a function of magnetic field. At B � 0.3 T the data reveal
fast oscillations which reflect a reduction of the amplitude of
Shubnikov–de Haas oscillations in irradiated 2DHG due to
radiation-induced heating. In addition, one observes another
oscillatory structure which persists down to considerably lower
magnetic fields, B ≈ 0.13 T. This structure is represented
by two photoresistance maxima (marked by 1 + ,2+) and
one minimum (marked by 1−). One can clearly see that the
photoresistance at the minimum is negative indicating that
microwave radiation causes a reduction of resistance from its
dark value. This negative δRω is one characteristic feature of
MIRO which, in very clean GaAs/AlGaAs-based 2DEG, gives
rise to radiation-induced zero-resistance states [4–10].
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FIG. 1. (Color online) Microwave photoresistance δRω as func-
tion of B measured at f = 100 GHz and T = 1.5 K. Vertical lines
are drawn at ε = 1 and 2, as marked, computed using m∗ = 0.091m0.

Another generic MIRO feature is related to the positions
of the maxima and minima relative to the harmonics of the
cyclotron resonance. According to Eq. (1), MIRO maxima
(minima) occur near εi+ (εi−) given by

εi± = i ∓ 1/4, i = 1,2,3, . . . . (2)

Equation (2) thus prescribes that MIRO maxima and minima
should appear roughly symmetrically offset by a quarter-cycle
from the harmonics of the cyclotron resonance, ε = i. As
illustrated by vertical lines (marked by 1, 2) in Fig. 1, measured
photoresistance δRω conforms to Eq. (2) reasonably well if one
uses the effective hole mass value of m	 = 0.091m0 to calcu-
late the harmonics of the cyclotron resonance, ε = i = 1,2.

Equation (2) also predicts that the B positions of the MIRO
maxima and minima should scale linearly with f , according
to fi± = eBi±(i ∓ 1/4)/2πm	. To verify this prediction we
have carried out measurements at a variety of microwave
frequencies, from 30 to 110 GHz, at T = 1.5 K. The results of
this study are summarized in Fig. 2 showing f as a function
of B at the first maximum (1+, circles), the first minimum
(1−, squares), and the second maximum (2+, triangles)
of δRω. Solid lines emanating from the origin correspond to
ε1+, ε1−, and ε2+, computed using Eq. (2) with m	 = 0.091m0.
We observe good overall agreement between the experimental
data and Eq. (2) over the entire frequency range. This
finding confirms that δRω in our 2DHG is periodic in ε,
with a period equal to unity, in agreement with Eq. (1).
We therefore conclude that the photoresistance of 2DHG in
Ge/SiGe possesses all characteristic MIRO properties.

Another interesting feature of the data presented in Fig. 2
is that all MIRO extrema, independent of their order, cease
to exist below a certain, well-defined magnetic field. As
illustrated by a vertical dotted line, drawn at B0 = 0.13 T, this
observation holds true for all frequencies studied. The value of
B0 can therefore be used to obtain a rough estimate of quantum
lifetime in our 2DHG; setting ωcτq = 1 at B = B0 yields
τq = m	/eB0 ≈ 4 ps. This value is considerably lower than τq
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FIG. 2. (Color online) Frequency f as a function of B corre-
sponding to the first MIRO maximum (1+, circles), the first minimum
(1−, squares), and the second maximum (2+, triangles). Solid lines
correspond to ε1+, ε1−, and ε2+, computed using Eq. (2) with
m	 = 0.091m0. Vertical line marks the lowest B, B0 = 0.13 T, at
which MIRO first appear.

usually found in ultrahigh mobility 2DEG, where it typically
ranges from 10 to 20 ps [33–37], explaining why only two
MIRO maxima are detected in our data. It would be interesting
to extend the experiments to higher radiation frequencies,
where one expects to see more oscillations, and accurately
determine τq using a standard Dingle plot procedure [35].

We next discuss the temperature dependence of MIRO in
our 2DHG. In Fig. 3(a) we present δRω as a function of B mea-
sured at f = 100 GHz and different T , from 1 K to 5 K, in steps
of 1 K. The traces are vertically offset for clarity by 2.5 
 and
vertical lines are drawn at ε = 1,2, as marked. As anticipated,
we observe that MIRO gradually decay with increasing T .

In general, the decay of MIRO can be due to two distinct
factors. One of these factors stems from the carrier-carrier
interaction-induced correction to the quantum scattering rate,
τ−1

q [35,38,39], which is of the order of τ−1
in ∼ T 2/EF (EF is

the Fermi energy) [17,40,41] and enters λ2 = exp(−2π/ωcτq)
appearing in Eq. (1). This correction can be quite signif-
icant in ultrahigh-mobility 2DEG, where it can approach
and even exceed the disorder contribution at T of a few
kelvin [35,38,39]. In our 2DHG, however, the impurity
scattering rate is considerably larger and, as a result, one cannot
expect significant interaction-induced increase of τ−1

q . Indeed,
at T = 4 K, we estimate τ−1

in ≈ 0.2 K, which is an order of
magnitude smaller than impurity contribution τ−1

q ≈ 2 K [42].
Another T -dependent factor appears in the dimensionless

scattering rate η, entering Eq. (1), owing to the inelastic
contribution. More specifically,

η = τ

2τ	

+ 2τin

τ
, (3)

where the first (second) term represents displacement [16]
(inelastic [17]) contribution. We first recall that τ/2τ	 is
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FIG. 3. (Color online) (a) Photoresistance δRω as a function of
B measured at f = 100 GHz and T from 1 K to 5 K, in steps of 1 K.
Smooth curves represent the photoresistance without Shubnikov–de
Haas component. The traces are vertically offset for clarity by 2.5 
.
Vertical lines are drawn at ε = 1,2, as marked. Arrows mark an extra
feature which emerges near the cyclotron resonance (cf. ↓). (b) δRω

at ε = ε1+ (solid circles) and at ε = ε2+ (open circles) as a function
of T −2 on a log-log scale. Solid lines mark δRω ∝ T −2 dependence.

determined by the correlation properties of the disorder poten-
tial [43]. For purely smooth disorder (e.g., from remote ionized
acceptors), one finds τ/2τ	 ∼ 6τq/τ [17]. In the opposite
limit of only sharp disorder (e.g., from residual impurities
in the quantum well), the factor representing displacement
contribution attains its maximal possible value, τ/2τ	 = 3/2.
As a result, regardless of the specifics of the disorder potential,
τ/2τ	 � 1.

The inelastic contribution, given by 2τin/τ , is controlled by
the inelastic relaxation time, τin ∼ EF /T 2, and therefore can
be dominant at low T , especially in lower mobility samples. At
T = 4 K, we estimate τin 	 40 ps, 2τin/τ ≈ 4, and conclude
that the inelastic contribution should dominate the microwave
photoresistance over the entire temperature range.

Based on the above picture, the temperature dependence of
the MIRO amplitude can be described by a function F(T ) 	
1 + T 2

	 /T 2 ≈ T 2
	 /T 2, where T	 ∼ 10 K. We thus expect that

the MIRO amplitude should decay roughly as T −2 with
increasing temperature. To check this prediction we plot the

MIRO amplitude δRω at ε = ε1+ (solid circles) and at ε = ε2+
(open circles) as a function of T −2 in Fig. 3(a) on a log-log
scale. At higher temperatures, we observe good agreement
with T −2 dependence, which is illustrated by solid line [44]. At
lower temperatures, however, the data fall below the expected
dependence which can be attributed to the radiation-induced
heating of the 2DHG. The observed temperature dependence
of the oscillation amplitude suggests that MIRO originate from
the inelastic mechanism of microwave photoresistance [17].

More careful examination of the data in Fig. 3(a) also
reveals an extra photoresistance feature which occurs close
to the cyclotron resonance (cf. ↓). While the exact origin of
this feature is unclear at this point, its shape and position
are consistent [45] with the dimensional magnetoplasmon
resonance which is frequently detected in experiments using
GaAs/AlGaAs quantum wells [2,22,46,47]. To confirm the
origin of this feature, future experiments should employ Hall
bar-shaped 2DHG, where the magnetoplasmon dispersion
differs significantly from that of the cyclotron resonance.

Finally, we briefly discuss the power dependence of MIRO
in our 2DHG. Figure 4(a) shows δRω as a function of B
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FIG. 4. (Color online) (a) Photoresistance δRω as a function of
B measured at f = 38 GHz, T = 1.5 K, and different microwave
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traces are vertically offset for clarity by 1 
. (b) δRω at ε = ε1+ a
function of P on a log-log scale. Solid (dotted) line marks δRω ∝ P 0.7
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measured at f = 38 GHz [48], T = 1.5 K, and different
microwave powers, marked by attenuation factors, from 0 dB
to 20 dB. The traces are vertically offset for clarity by 1 
.
At this microwave frequency we are able to detect only the
fundamental MIRO maximum which occurs at B ≈ 0.17 T and
becomes weaker with decreasing power. In Fig. 4(b) we present
the magnitude of this MIRO peak as a function of microwave
power P (normalized to its maximum value) on a log-log
scale. At lower intensities, the amplitude grows roughly as
P α , with α ≈ 0.7 (cf. solid line). At higher intensities, the
dependence gets weaker and the data are best described
by P α with α ≈ 0.3 (cf. dotted line). Theoretically, one
expects that the linear P dependence, δRω ∝ P , crosses over
to the square-root dependence, δRω ∝ √

P , with increasing
P , as a result of saturation effects [17,28] or increased
importance of multiphoton processes [18,28,49]. While this
crossover has been recently observed in GaAs/AlGaAs-based
2DEG [28], there exist a number of experiments reporting
only sublinear power dependence with a rather wide range of
exponents [3,26,27,50].

In summary, we have observed microwave-induced resis-
tance oscillations in 2DHG hosted in a pure Ge/SiGe quantum
well, demonstrating that MIRO are not restricted to 2DEG in
GaAs/AlGaAs. We have found that MIRO are well described
by the hole effective mass of m	 ≈ 0.09m0 over the wide
range of microwave frequencies. We have further shown that
the MIRO amplitude decays as T −2 indicating the dominant
contribution of the inelastic mechanism [17]. Finally, we
have observed that MIRO exhibits a sublinear dependence on
microwave power, consistent with many MIRO experiments
on GaAs/AlGaAs.

Observation of MIRO in Ge/SiGe opens a pathway
to further interesting experiments. In particular, employing
higher microwave frequencies should increase the number
of observed oscillations allowing a reliable measurement
of quantum lifetime, knowledge of which is crucial for
understanding the disorder potential in Ge/SiGe systems [51].
It will also be interesting to see if other nonlinear phenomena,
such as Hall field-induced resistance oscillations [33,34,52],
can be realized in Ge/SiGe-based 2DHG. Such an observation
would provide direct information on the amount of background
impurities in the Ge channel which cannot be obtained
from conventional transport methods. Understanding transport
properties of this material system might be important for
future Ge-based devices which are attractive candidates for
non-silicon-based semiconductor technology [53].
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