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Experiences of Teaching a Lightweight Formal
Method

R.C. Boyatt1 and J.E. Sinclair2

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

Abstract

This paper reports our experience of using a “lightweight” formal approach, Alloy, and its associated tool
support for teaching a core undergraduate module introducing formal methods. It considers the benefits
and drawbacks in terms of both the student experience and our own aims and objectives for the module.
In addition, we link the practical, experimental approach supported by the Alloy Analyzer to educational
theory and consider the implications of such an approach to teaching and learning.
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1 Introduction

Despite an increasing focus on formal methods education in recent years, many in-
stitutions struggle to find a place for formal methods in the Computing (and even
Computer Science) curriculum. In many cases, formal methods appear to be a de-
creasing component rather than progressing towards pervading the curriculum as
advocated by many to be the ideal situation [Win00]. Reasons cited include the
difficulty of convincing students and staff of the relevance and usefulness of formal
methods; the “mathematics phobia” issue (together with falling entrance require-
ments and declining application numbers); pressure on the curriculum due to the
range of required components and the desire to provide popular modules for our
students (or customers). On the positive side, there are also reports of tools and
teaching approaches finding acceptance in the core curriculum by their own mer-
its (for example, Backhouse’s “Algorithmic Problem Solving” approach [Bac06]).
However, prevailing conditions remain unhelpful (for instance, in terms of student
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numbers [UCA07,Tod05]) and formal methods are likely to be under continued
pressure.

At the University of Warwick, recent changes to the Computer Science degree
have necessitated a rethink of our approach to teaching formal methods. In this
paper we describe the changes made and consider the implications in terms of the
student experience and what we can hope to achieve educationally. In particular,
we examine our decision to investigate the use of a “lightweight” formal method and
consider whether such an approach can provide an appropriate introduction. We
identify the distinctive features of lightweight formal methods that are well-suited
to a learning environment, and we identify areas in which caution may be needed.
Our motivation was to reflect on and assess the impact of specific changes at one
institution. This has led us to consider more general aspects of formal methods
education, such as the way students interact with tools and the degree to which
ideas in formal methods education align with certain strands of education theory.

2 The context for change

Until recently, Computer Science undergraduates at the University of Warwick
studied a core Formal Methods module in their second year. Using the Z nota-
tion [Spi89], this introduced a range of skills and concepts associated with formal
development and verification. Additional core modules in the first two years covered
aspects of discrete mathematics and logic which provided a good background. A
further, optional module is offered to fourth year students on an MEng degree.

Changes to the curriculum were motivated by a number of worthy considerations,
such as allowing students greater choice, but had the unfortunate (from our point of
view) result of combining the second year logic and formal methods offerings into a
single module. This posed the challenge of providing some meaningful and coherent
coverage of formal methods in just a few weeks. Trying to pick out parts of the
old module seemed unattractive. Any notation which involved too great a start-up
time or which required familiarity with too much syntax would not work. Teaching
a subset of syntax may result in insufficient knowledge of the language to be able to
specify things correctly. Or worse, students are forced to invent convoluted ways to
describe things that only reinforce a view of formal methods as being inaccessible.

This leads to the question of what can be achieved. What are the benefits of
teaching formal methods and which, if any, can be derived from just half a term’s
study? One answer to this might simply be to provide an existence proof to show
what formal methods are, how they are used, and why they are useful. However, we
want students to be involved with “doing” and to experience for themselves the im-
portant skills and benefits of abstract modelling and reasoning, rather than racing to
implementation. Many students arrive with an established procedural programming
mindset. The growing use of rapid application development techniques are appeal-
ing to students who like the immediacy of such approaches. Encountering formal
methods challenges preconceived ideas, particularly if the method allows students
to spot errors which would otherwise have resulted in a flawed implementation. To
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support this, it is useful to have a tool which can help reveal such errors and help
users explore implications of the specifications they write.

Our approach has been to adopt Jackson’s Alloy [Jac06] language, supported by
the Alloy Analyser, sometimes referred to as a “lightweight” formal method. We
have now used this approach for two successive cohorts of students.

3 Lightweight formal methods

The concept of a “lightweight” formal method is characterised by Jackson and
Wing [JW96] as a method which has a formal basis but is limited in its scope by
one or more of: partiality in language; partiality in modelling, partiality in analysis
and partiality in composition. The term is used both for the “light touch” appli-
cation of a traditional method and for methods which are designed specifically to
cover only certain aspects of concern. A number of studies demonstrate the former
approach, for example, in requirements analysis [ELC+98,AL98]. In formal meth-
ods education, Simpson [Sim06] refers to a “light touch” application to demonstrate
the relevance of formal methods to professional software engineers.

The relationship between the different uses of the terms “lightweight” and “light
touch” raises an interesting question. In this paper however we are concerned in
particular with one notable approach specifically designed (and designated) as a
lightweight method. Alloy [Jac06], inspired by the state-based Z notation [Spi89],
allows the user to express complex structures and constraints using a relational lan-
guage. The language is intended to be accessible and familiar (at least in part) to
programmers used to object modelling with notations such as UML’s Object Con-
straint Language [Gro03]. Properties of the model can be checked for a size of state
space suggested by the user. A further lightweight method is Escher Technologies’s
Perfect Developer [Cro03].

One aim of using a lightweight approach is that a lighter touch can provide
quicker (and hopefully automated) feedback on some properties of the system. Such
feedback can inform the ongoing construction of a specification and the development
of the system itself. In addition it may be hoped that a less ambitious method may
well consist of a smaller language and limited user options so that the learning time
required to start using the method could be less. Obviously, the partial nature of
the method (or of the way the method is applied) means that the results have to
be viewed in the light of the method’s limitations. For example, a property which
has been checked for a state space of limited size obviously does not have the same
status as a property which has been verified for all possible values.

The limited nature of lightweight methods has led to some scepticism over their
value. Boute characterises such a method as one which “attempts minimizing the
user’s exposure to mathematics, and therefore supposedly is more suitable to soft-
ware engineers” [Bou03]. He warns that marketing these methods as accessible to
users with little mathematical preparation may end in disappointing results which
may discredit formal methods in general. However, Boute is more optimistic about
the prospects for use in education: “For many, lightweight formal methods may be
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Fig. 1. Alloy Analyzer

very valuable as a means to illustrate more abstract concepts and thereby lowering
the threshold for the mathematics relevant to software engineering” [Bou03].

Our requirements were somewhat different from a desire to introduce “mathe-
matics by stealth”. Indeed, Alloy does not claim to do this. Our experience is that,
to make progress, the user must understand the logical and relational framework of
the notation and be able to use it to model at an abstract level. The attractions for
us were the compact language, the relative speed with which small models can be
written and explored and the guidance and feedback provided by small scope model
checking. We consider below how far these are achieved in practice.

The Alloy notation supports modelling by signature and constraint definition,
allowing quite complex structures. No particular methodology is enforced: Alloy
can be used in a Z-like state+operations approach or in a variety of other ways to
construct traces or describe (and solve) logical problems. Supporting the language
is the Alloy Analyzer 3 , a tool designed to explore models and check properties of
interest. The tool uses SAT solving techniques to find, where possible, an instance
of a given property which satisfies the definitions of the model. Limits must be
placed on the size of the model to check. Existence of an instance demonstrates
satisfiability, but failure to find an instance indicates only that one cannot be found
in the current scope. The Analyzer therefore does not provide general results in
the way that theorem proving can, but it does provide a quick, automatic way of
exploring specifications and generating counterexamples. Jackson’s “small scope
hypothesis” [Jac06] postulates that most flaws can be detected in a small model.

There are obvious limitations to this approach but, with time constraints in
mind, it seemed a possible way forward for students with some mathematical knowl-
edge embarking on their first foray into formal methods. The language is relatively
simple and tool support allows students to explore both the approach and the lan-
guage itself but without being weighed down in large amounts of complex syntax.

We have now been teaching Alloy for two years. In addition to lectures, a good
deal of teaching time is devoted to laboratory sessions in which the students can
work through practical exercises, receiving help as necessary. Below, we reflect on
the students’ experiences. Information was obtained by talking to students; noting
the questions they ask and the problems they meet; written feedback from module
assessment forms and students’ assessed work; observing students’ interaction with
the tool and the way they approach problem-solving.

4 Issues arising from students learning Alloy

This section identifies a number of issues commonly raised by students using Alloy.
One particular problem occurs in the shift from procedural programming. This

is partly due to the young age at which many students start to explore computer

3 Available from the Alloy website – http://alloy.mit.edu
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pred addReg [s:Student, t:Tutor, c,c’:Course] {
s !in c.reg
c’.reg = c.reg + s
c’.alloc = c.alloc ++ s -> t
c’.result = c.result
}

Fig. 2. Alloy predicate

programming, reinforced by undergraduate programming modules. This leads to en-
trenchment in procedural programming. Students fail to appreciate the differences
both in language terms and the shift in thinking required to model declaratively
rather than functionally. For example, consider the predicate shown in figure 2 in
which logical conjunction is implied between lines. Students view this predicate as
a series of sequential operations where, somehow, c’.reg = c.reg + s occurs fol-
lowed by c’.alloc = c.alloc ++ s -> t. Another example is the way in which
the predicate relates the two courses c and c’. Rather than mathematically con-
necting the two courses, we have observed students treating c’ as a modified version
of c. That is, where they have omitted part of the connecting statement, students
are surprised to find Alloy altering part of the course without telling them! These is-
sues are not confined to Alloy, but the examples generated by the tool force users to
confront misconceptions much earlier than with methods we have previously used.
The difficulty students encounter with moving from procedural thinking indicate
that it is an important consideration for any teaching approach.

Students are frequently observed to struggle with interpreting the visualisation
output of the tool. Using the Alloy Analyser can be a somewhat frustrating process.
There is certainly a degree of skill required in adjusting the display settings to
avoid a confusion of spaghetti lines. Careful thought, examination and sometimes
further experiment is required to understand the feedback provided. Efforts are
underway to provide an automatic way of arranging the visualisation output in
Alloy [RCD+07]. This includes improving the aesthetic qualities of the model and
also, by examining the structural properties of the model, manipulating the display
to ease understanding of complex results. Even when correctly specifying the model,
students can encounter difficulties when examining the feedback from the tool. A
common question from students is: “is it the correct answer?”. Understanding the
output from any tool can be an art in itself, particularly for any reasonably complex
models. Further experiment can be required to interrogate the tool in a different
way or to find further examples. With practice this improves but it takes time and
encouragement to cultivate the spirit of enquiry and practical skills necessary to
enable students to perform further meaningful experiments on their model.

The importance to students of tool support should not be underestimated. It
implies a certain level of maturity in the language, a commitment to the techniques
presented beyond that of an “academic exercise” and the ability to directly ex-
periment with the approach not afforded with a paper and pencil exercise. The
Analyzer leads students to develop a model incrementally and explore it as they go
along. This is popular with the students and helps reveal many errors. Laboratory
sessions are needed to support this. Issues relating to tool use are discussed below.

Another challenge commonly faced in formal methods education which has been

5



discussed elsewhere [RJ04] is that of motivation. Any curriculum which compart-
mentalises formal methods risks making this worse. This year, we have started to
link the formal approach in small ways to material from other modules. For exam-
ple, Alloy is well-suited to exploring logical puzzles and mathematical constructs
(such as partial orders and lattices) which the students meet in other contexts. This
has proved useful in making connections and introducing the tool as a useful aid
(particularly with visualisation) before considering it in the context of specification.
This was well-received by the students and is an area we plan to develop.

5 Issues of Students and Alloy

There is obviously a limit to what can be achieved in a short space of time no mat-
ter what method is used. Bearing this in mind, we were interested to see to what
extent our aims for the module could be met.
Does the approach show formal methods as useful and relevant?
The response to this is positive from two separate aspects. Firstly, only a small
amount of prerequisite material needs to be covered before some quite interesting
case studies can be tackled. Even students who found the material challenging ex-
pressed a respect for the subject and were interested by what could be achieved in
small case studies. Secondly, in their interaction with the tool, students could see
that flaws in their thinking were being picked up and demonstrated to them at a
very early stage of development. This again helps to show that formal methods can
extend our understanding of a specification and catch errors that otherwise head
unchecked into implementation. Whilst the possibilities are not as broad as with a
full formal approach, we were encouraged by the positive response of the students.
Does the approach encourage abstract thinking?
Writing an abstract model challenges students’ view of procedural behaviour. Per-
haps it is more accurate to say that the feedback from the Analyser provides the
challenge since, very often, simply writing the statements does not bring home the
point that the model is much different to a program. It is interesting to observe how
effectively a small amount of interaction with a tool can bring home points that we
might talk about at length in lectures! Both the explanation and the exploration
seem to be important here. Why abstraction is useful and what it allows us to do
are much easier to address when students can connect to the ideas in practice. As
an initial step to challenge students and present ideas of modelling and abstraction,
Alloy has been as effective as a full formal approach, and perhaps even better due
to the immediate feedback from the tool.
Does the approach hide the mathematics?
The model checking approach means that students do not have to battle with a proof
system or understand how to direct a theorem prover. However, they work with
an expressive notation and build fairly complex structures and relationships. How-
ever, this is not because the system is “hiding” anything from the user: it is simply
finding instances. Obviously, we would want students to go on to study verification
and refinement, but as a starting point, Alloy is quite honest in what it presents.
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Another interpret ation of this question might be whether users can effectively write
models without understanding the underlying logic and relational representation.
Whilst the use of a programmer-friendly syntax may make statements appear more
approachable to users, our experience is that to make any progress students need
to understand the relational and logical levels of the notation and to become com-
petent with abstract modelling. This perhaps means that the notation is not quite
so user-friendly as we might like it to be. To use it, you have to understand it.
Does the tool help student learning?
A number of authors have suggested that it is not necessary for a formal method
used in an educational setting to have tool support: indeed, it is also suggested that
it may be better for students to work with paper and pencil. For example, Bayley et
al [BLM06] raise the issue of students becoming discouraged by tools which reject
their early efforts with cryptic messages. They also refer to the danger that users
may take false assurance from a tool which checks only for syntactic correctness.
These are real concerns, but balanced against them is the very apparent fact that,
unchecked, it is all too easy to write rubbish. This is not confined to students and
new users! Without feedback, the user’s ideas are not scrutinised and challenged,
and human appraisal may leave many errors undetected. Of course, proving prop-
erties of a formal specification is one way of exploring it and demonstrating that it
has “correct” behaviour. However, many errors discovered when using Alloy relate
to validation, that is, to building “the right program”. By seeing examples, a user
realises that they have not modelled the system they had in mind. Or perhaps, a re-
quirement is only articulated as a result of behaviour viewed in the model. Verifying
a property of a specification is only helpful if it specifies the system we want.

Another class of errors we observed relates to the work of Vinter et al [VLK98]
which suggests that errors in mental constructions of certain logical expressions are
extremely common, even amongst experienced users. This relates to Boute’s com-
ments [Bou03] on the way that false conclusions are commonly drawn. Vinter et al’s
work confirms in a formal methods context some well-known psychological results
which demonstrate that logical reasoning is subject to cognitive bias and system-
atic misconstrual. While modelling in Alloy is just as prone to this as any other
formal method, the feedback from the analyzer does serve to confront the user with
instances that reveal and challenge such misconceptions.

As discussed in the previous section, another useful aspect of the tool and the
exploratory nature of using it is that students relate well to this way of working.
This should not outweigh the question of what is appropriate educationally, but if
the two are compatible then an approach which puts students at ease and which
appears to them to be relevant and usable is an advantage. We have found that
using the Alloy Analyser has been very beneficial in demonstrating the ideas from
lectures and notes and the practical aspect is very important for effective learning
(see Section 6). However, we do have some concerns about the way the tool is used.

Using a tool to provide feedback to inform the specification is very beneficial.
However, we have also observed students replacing guided thought with blind trial
and error. When a student reaches the point where they are not thinking about
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the underlying specification but repeatedly trying out minor changes with no real
understanding, the process changes from guided exploration to thoughtless hacking.
Even if a “good” answer is obtained (such as no counterexamples found) the student
really has little idea of what that means. This in turn can give rise to an unjustified
faith in the model with the feedback from the tool misinterpreted. This is an area we
would like to explore further to see if this is a significant problem and to understand
at what point students abandon logic and how best to guide them.

6 Formal Methods Education

The way of working supported by Alloy allows small experiments to be performed on
partial models, promoting exploration and interactive model-building. Properties
of the model can be explored without having to specify a complete system. This is
similar to the idea of “extreme specification” [Cro03] 4 in which functionality of a
specification is developed incrementally and guided by feedback at each iteration.
Examples (and counterexamples) that satisfy the current model can be generated.
Then, as these examples are understood in the context of the given model, more
complex and abstract ideas arise. Experiment and visualisation help shape the
mathematical understanding of a model and give insight beyond an understanding
of the mathematical symbols. This is similar to Lakatos’ notion of experimental
mathematics [Lak76] whereby understanding is developed through exploration and
(failed) proof. With a traditional approach, students typically have a view of formal
methods that is steeped in rule and rote, where the procedure is fixed and inflexible.
We have observed that students can lose touch with the “reality” of requirements
and connections to an end result, adopting a formalist approach in which they
become focused on manipulating symbols. Experimentation and visualisation, for
example, of the effects of a particular operation, can help to reconnect a student
to the purpose of the task. In addition, formal insight often comes from playing
informally with a model. Through small experiments that inform the developer’s
knowledge, the understanding of the model grows. These stages typically precede
any further formal representation of the model. The search for the finished model
is not blind but guided by experience and meanings extracted from interaction.

Students’ use of Alloy can be seen as a particular kind of exploratory learning.
Papert’s constructionism [Pap93], founded on Piaget’s constructivist ideas, argues
that students learn best when actively engaging in building knowledge structures
which can be discussed and further examined. Papert and Harel are careful to
establish that constructionism is not simply “learning-by-making” [PH91]. Con-
structionism places special emphasis on the correspondence between “making in
the world” supporting the mental processes of knowledge construction. Students
are constructing a public “product that can be shown, discussed, examined, probed
and admired” [Pap93, p. 142]. In practical terms, this means that a good deal of
time is devoted to laboratory sessions in which students can carry out their explo-
rations in an environment where help and direction is on hand. Model development

4 Variously credited to Susan Stepney and Helen Treharne!
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in Alloy is similar to the “bricolage” style of construction [LS68] where, as the model
is built and evolves, so does the student’s understanding of the situation. Testing
of the model is integrated into the task of construction. The ideas embodied in a
model are continually open for examination and, if necessary, revision.

Ideally, students develop a toolkit for tackling formal problems; providing them
with the capacity to extrapolate beyond the information given and to ask questions
of their model beyond the scope of the original question. The constructionist ap-
proach to learning is connected to motivation. Students must be willing and able
to learn about formal methods. This only succeeds if students can see its worth
and can engage with the material appropriately. If the students find some personal
interest and stake in the material, they are more likely to gain a deeper and fuller
understanding of the subject. This connects with some deeper issues of the role and
place of formal methods in the Computer Science curriculum.

7 Conclusion and future work

This paper is certainly not an endorsement for taking curriculum time away from
formal methods. Relegating them to a small corner of the timetable leaves little
room to explore ideas fundamental to any Computer Science degree. Also, it makes
these ideas appear unusual and less relevant to “normal” practice. The use of Alloy
described here is as an introduction to students who have already had reasonable
exposure to discrete maths and logic. There are many topics, such as verification
and refinement, which we do not have time to explore and which would require
moving beyond the bounds of the basic Alloy provision. Concerns also arise over the
way that some students, particularly weaker ones, interact with the tool. Without
engagement with the model and interpretation of feedback, a trial-and-error hacking
approach can result. Occasionally, students appear to lose all sense of context and
reality in an attempt to gain a formal tick of approval from the tool. It is also
possible to gain a false sense of security by misinterpreting the tool’s feedback.
Despite these concerns, our overall experience has been very positive.

We may still strive for a situation in which formal methods pervade and inform
the curriculum, but in the meantime a practical approach is needed. We have inves-
tigated one possibility - and therefore our findings apply to Alloy in particular rather
than to other methods and approaches referred to as “lightweight”. This has worked
well for our circumstances. In fact, it is interesting to consider whether this approach
would provide a good introduction even if time allowed a much fuller exploration
of formal methods. Although partial in some aspects, it provides an approachable
first encounter which is honest in its limitations and which can demonstrate a real
usefulness in identifying flaws. Whether this is enough to attract more students to
return for the later, optional formal methods module remains to be seen.

In this paper we have noted some of the benefits and limitations of the use of
an interactive tool. This is an area we are keen to explore further. By making some
minor alterations, we are planning to record information about how the tool is used
and what steps a student takes in creating and improving a model. This will allow
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both qualitative and quantitative analysis of aspects such as progress made towards
a correct solution, iterations required, timing between checks.
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