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We compare two approaches to the study of Galois module structures: on the one hand,
factor equivalence, a technique that has been used by Fröhlich and others to investigate
the Galois module structure of rings of integers of number fields and of their unit groups,
and on the other hand, regulator constants, a set of invariants attached to integral group
representations by Dokchitser and Dokchitser, and used by the author, among others,
to study Galois module structures. We show that the two approaches are in fact closely
related, and interpret results arising from these two approaches in terms of each other.
We then use this comparison to derive a factorizability result on higher K-groups of
rings of integers, which is a direct analogue of a theorem of de Smit on S-units.
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1. Introduction

Let G be a finite group. Factor equivalence of finitely generated Z-free Z[G]-modules
is an equivalence relation that is a weakening of local isomorphism. It has been used,
e.g., in [8, 14, 5] among many other works to derive restrictions on the Galois module
structure of rings of integers of number fields and of their units in terms of other
arithmetic invariants.

More recently, a set of rational numbers has been attached to any finitely gen-
erated Z[G]-module, called regulator constants [7], with the property that if two
modules are locally isomorphic, then they have the same regulator constants. These
invariants have been used in [1] and in [2] to investigate the Galois module structure
of integral units of number fields, of higher K-groups of rings of integers, and of
Mordell–Weil groups of elliptic curves over number fields.

It is quite natural to ask whether there is a connection between the two
approaches to Galois modules and whether the results of one can be interpreted
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in terms of the other. It turns out that there is indeed a strong connection, which
we shall investigate here. We will begin in the next section by recalling the defi-
nitions of factorizability, of factor equivalence, and of regulator constants. We will
then establish some purely algebraic results that link factor equivalence and regu-
lator constants. In Sec. 3 we will revisit the relevant results of [8, 5, 1, 2] on Galois
module structures and will use the link established in Sec. 2 to compare them to
each other. Finally, in Sec. 4 we will use the results of Sec. 2 to prove a factorizability
result on K-groups of rings of integers that is a direct analogue of [5, Theorem 5.2].

Throughout the paper, whenever there will be mention of a group G, we will
always assume it to be finite. All Z[G]-modules will be assumed to be finitely gen-
erated and all representations will be finite-dimensional.

2. Factorizability and Regulator Constants

2.1. Factorizability and factor equivalence

We will begin by recalling the definition of factorizability and of factor equivalence,
and by discussing slight reformulations. This concept first appears in [11] and plays
a prominent role, e.g., in the works of Fröhlich.

Definition 2.1. Let G be a group (always assumed to be finite), and let X be
an abelian group, written multiplicatively. A function f : H �→ x ∈ X on the set
of subgroups H of G with values in X is factorizable if there exists an injection
of abelian groups ι : X ↪→ Y and a function g : χ �→ y ∈ Y on the irreducible
characters of G with values in Y , with the property that

ι(f(H)) =
∏

χ∈Irr(G)

g(χ)〈χ,C[G/H]〉

for all H ≤ G, where Irr(G) denotes the set of irreducible characters of G, and 〈·, ·〉
denotes the usual inner product of characters.

The definition one often sees in connection with Galois module structures is a
special case of this: X is usually taken to be the multiplicative group of fractional
ideals of the ring of integers Ok of some number field k, and Y is required to be the
ideal group of OK for some finite Galois extension K/k with Galois group G, with
ι being the natural map I �→ IOK .

Let us introduce convenient representation theoretic language to concisely
rephrase the above definition.

Definition 2.2. The Burnside ring B(G) of a group G is the free abelian group on
isomorphism classes [S] of finite G-sets, modulo the subgroup generated by elements
of the form

[S] + [T ]− [S � T ],

and with multiplication defined by

[S] · [T ] = [S × T ].
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Definition 2.3. The representation ring RK(G) of a group G over the field K is the
free abelian group on isomorphism classes [ρ] of finite-dimensional K-representations
of G, modulo the subgroup generated by elements of the form

[ρ] + [τ ] − [ρ ⊕ τ ],

and with multiplication defined by

[ρ] · [τ ] = [ρ ⊗ τ ].

In the case that K = Q, which will be the main case of interest, we will omit
the subscript and simply refer to the representation ring R(G) of G.

There is a natural map B(G) → R(G) that sends a G-set X to the permutation
representation Q[X ]. Denote its kernel by K(G). By Artin’s induction theorem, this
map always has a finite cokernel C(G) of exponent dividing |G|. Moreover, C(G)
is known to be trivial in many special cases, e.g., if G is nilpotent, or a symmetric
group. The cokernel C(G) is important when strengthenings of the notion of factor-
izability are considered, such as F -factorizability, but will not be important for us.

It follows immediately from Definition 2.1 and from standard representation
theory that for f to be factorizable, it has to be constant on conjugacy classes of
subgroups. There is a bijection between conjugacy classes of subgroups of G and
isomorphism classes of transitive G-sets, which assigns to H ≤ G the set of cosets
G/H with left G-action by multiplication, and to a G-set S the conjugacy class
of any point stabilizer StabG(s), s ∈ S. An arbitrary G-set is a disjoint union of
transitive G-sets, and so an element of B(G) can be identified with a formal Z-
linear combination of conjugacy classes of subgroups of G. So if f is a factorizable
function, then it can be thought of as a function on conjugacy classes of subgroups
of G, equivalently on transitive G-sets, and then extended linearly to yield a group
homomorphism B(G) → X .

Proposition 2.4. Let f : B(G) → X be a group homomorphism, where X is an
abelian group. The following conditions are equivalent :

(1) f is factorizable in the sense of Definition 2.1.
(2) There exists an injection ι : X ↪→ Y of abelian groups such that the composition

ι ◦ f factors through the natural map B(G) → RC(G).
(3) There exists an injection ι′ : X ↪→ Y ′ such that ι′ ◦f factors through the natural

map B(G) → R(G), i.e. there is a homomorphism g′ : R(G) → Y ′ that makes
the following diagram (whose first row is exact) commute:

0 �� K(G) �� B(G) ��

f

��

R(G)

g′

��

�� C(G) �� 0

X
� �

ι′
�� Y ′.

(4) The homomorphism f is trivial on K(G) = ker(B(G) → R(G)).
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Proof. The condition (2) is just a reformulation of (1).
Suppose that condition (2) is satisfied, and let us deduce (3). Let g be the map

RC(G) → Y whose existence is postulated by (2). Define Y ′ to be the subgroup of
Y generated by ι(X) and by g(R(G)), define g′ to be the restriction of g to R(G),
followed by the inclusion g(R(G)) ↪→ Y ′, and ι′ to be ι, followed by the inclusion
ι(X) ↪→ Y ′. Then Y ′, ι′, g′ satisfy (3).

A brief diagram chase shows that (3) implies (4): since ι′ is an injection, ker(ι′ ◦
f) = ker f . So for the diagram in (3) to commute, we must have ker f ≥ ker(B(G) →
R(G)) = K(G). Incidentally, exactly the same proof shows also that (2) implies (4).

Finally, the implication (4) ⇒ (2), (3) follows from two standard facts about
abelian groups:

• any abelian group can be embedded into a divisible abelian group,
• and any homomorphism from a subgroup A of an abelian group B to a divisible

group D extends to a homomorphism from B to D.

Since f is trivial on K(G), it induces a homomorphism from B(G)/K(G), which
is canonically identified with a subgroup of R(G) ≤ RC(G). Now, embed X into a
divisible group Y , and extend f : B(G)/K(G) → Y to a homomorphism R(G) ↪→
RC(G) → Y .

Remark 2.5. (1) It follows from the last part of the proof that if X is divisible,
then Y ′ can be taken to be equal to X in Proposition 2.4. Also, if C(G) is
trivial, then B(G)/K(G) ∼= R(G), and again Y ′ can be taken to be equal to X .

(2) If X is the group of fractional ideals of a number field k, and if f vanishes on
K(G), then Y ′ can always be taken to be the group of fractional ideals of a
suitable Galois extension K/k, so this is not an additional restriction. Indeed, a
sufficient condition on Y ′ is that elements of B(G)/K(G) that are n-divisible in
R(G) are mapped under f to elements of X that become n-divisible in Y ′. So if
X is the group of fractional ideals of a number field k, this condition translates
into relative ramification indices of some integral ideals of K being divisible by
some integers, and some elements of k having certain nth roots in K.

Remark 2.6. In [6], the word “representation-theoretic” has been used in place of
“factorizable”.

Definition 2.7. Let G be a group, and let M , N be two Z-free Z[G]-modules such
that there is an isomorphism of Q[G]-modules M ⊗Q ∼= N ⊗Q. Fix an embedding
i : M → N of G-modules with finite cokernel. Then M and N are said to be factor
equivalent, written M ∧ N , if the function H �→ [NH : i(MH)] is factorizable.

The notion of factor equivalence is independent of the choice of the embedding i,
and defines an equivalence relation on the set of Z-free Z[G]-modules. If M ⊗Zp

∼=
N ⊗Zp for some prime p, then i can be chosen to have a cokernel of order coprime
to p. Indeed, M ⊗Zp

∼= N ⊗Zp if and only if M ⊗Z(p)
∼= N ⊗Z(p) (see [10, 12]), and
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an isomorphism M ⊗ Z(p) → N ⊗ Z(p) gives rise to an embedding i with cokernel
of order coprime to p, by composing it with multiplication by an integer to clear
denominators. It follows that two modules that are locally isomorphic at all primes
p are factor equivalent.

The above definition is the one usually appearing in the literature, but it will be
convenient for us to follow [5] in defining factor equivalence for Z[G]-modules that
are not necessarily Z-free.

Definition 2.8. Let G be a group, and let M , N be two Z[G]-modules such that
there is an isomorphism of Q[G]-modules M ⊗ Q ∼= N ⊗ Q. Fix a map i : M → N

of G-modules with finite kernel and cokernel. Then M and N are said to be factor
equivalent if the function H �→ [NH : i(MH)] · |ker(i)H |−1 is factorizable.

Again, this notion is independent of the choice of the map i, and defines an
equivalence relation on the set of Z[G]-modules that weakens the relation of lying in
the same genus (where M and N are said to lie in the same genus if M⊗Zp

∼= N⊗Zp

for all primes p).

2.2. Regulator constants

We continue to denote by G an arbitrary (finite) group. We also continue to use the
identification between conjugacy classes of subgroups of G and isomorphism classes
of transitive G-sets. Under this identification, a general element of B(G) will be
written as Θ =

∑
H≤G nHH with the sum running over mutually non-conjugate

subgroups, and with nH ∈ Z. An element of K(G) is such a linear combination
with the property that the virtual permutation representation

⊕
H Q[G/H ]⊕nH is

0. Alternatively, more down to earth, if we write Θ as Θ =
∑

i niHi −
∑

j n′
jH

′
j

with all ni, n′
j non-negative, then Θ is in K(G) if and only if the permutation

representations
⊕

i Q[G/Hi]⊕ni and
⊕

j Q[G/H ′
j ]
⊕n′

j are isomorphic.

Definition 2.9. An element Θ =
∑

H nHH of K(G) is called a Brauer relation.

The following invariants of Z[G]-modules were introduced in [7] and used, e.g.,
in [1, 2] to investigate Galois module structures, as we shall review in the next
section.

Definition 2.10. Let G be a group and M be a Z[G]-module. Let 〈·, ·〉 : M ×
M → C be a bilinear G-invariant pairing that is non-degenerate on M/tors. Let
Θ =

∑
H≤G nHH ∈ K(G) be a Brauer relation. The regulator constant of M with

respect to Θ is defined by

CΘ(M) =
∏

H≤G

det
(

1
|H | 〈·, ·〉

∣∣MH/tors
)nH

∈ C×.

Here and elsewhere, the abbreviation tors refers to the Z-torsion subgroup.
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This is independent of the choice of pairing [6, Theorem 2.17]. As a consequence,
CΘ(M) is always a rational number, since the pairing can always be chosen to be
Q-valued. It is also immediate that CΘ1+Θ2(M) = CΘ1(M)CΘ2(M), so given a Z[G]-
module, it suffices to compute the regulator constants with respect to a basis of
K(G). In other words, this construction assigns to each Z[G]-module essentially a
finite set of rational numbers, one for each element of a fixed basis of K(G).

One can show that if M , N are two Z[G]-modules such that M ⊗Zp
∼= N ⊗Zp,

then for all Θ ∈ K(G) the p-parts of CΘ(M) and CΘ(N) are the same. So, like
factor equivalence, regulator constants provide invariants of a Z[G]-module that,
taken together, are coarser than the genus.

2.3. The connection between factor equivalence

and regulator constants

Let M , N be two Z[G]-modules with the property that M ⊗ Q ∼= N ⊗ Q, and
let i : M → N be a map of G-modules with finite kernel and cokernel. Fix a C-
valued bilinear pairing 〈·, ·〉 on N that is non-degenerate on N/tors. The following
immediate observation is crucial for linking regulator constants with the notion of
factorizability:

det(〈·, ·〉 | i(M)/tors) = [N/tors : i(M)/tors]2 · det(〈·, ·〉|N/tors)

=
[N : i(M)]2

|ker i|2 · |Mtors|2
|Ntors|2 · det(〈·, ·〉|N/tors).

We deduce the following lemma.

Lemma 2.11. Let M, N be two Z[G]-modules such that M ⊗ Q ∼= N ⊗ Q, and let
Θ =

∑
H nHH be a Brauer relation. Then

CΘ(M) =
∏
H

(
[NH : i(MH)]
|ker(i|MH )| · |M

H
tors|

|NH
tors|

)2nH

· CΘ(N)

for any map i : M → N of G-modules with finite kernel and cokernel.

By combining this with Proposition 2.4, we obtain the following corollary.

Corollary 2.12. Two Z[G]-modules M and N with the property that M ⊗Q ∼=
N⊗Q are factor equivalent if and only if

CΘ(M)/CΘ(N) =
∏
H

( |MH
tors|

|NH
tors|

)2nH

for all Brauer relations Θ =
∑

H nHH. In particular, if M and N are Z-free and
satisfy M ⊗Q ∼= N⊗Q, then they are factor equivalent if and only if CΘ(M) =
CΘ(N) for all Θ ∈ K(G).
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3. Galois Module Structure

We shall now show by way of several examples how Lemma 2.11 and Corollary 2.12
link known results on Galois module structures with each other.

Throughout this section, let K/k be a finite Galois extension of number fields
with Galois group G. The ring of integers OK , and its unit group O×

K are both
Z[G]-modules. More generally, if S is any G-stable set of places of K that contains
the Archimedean places, then the group of S-units O×

K,S of K is a Z[G]-module. It
is a long standing and fascinating problem to determine the G-module structure of
these groups, e.g., by comparing it to other well-known G-modules or by linking it
to other arithmetic invariants.

A starting point is the observation that OK ⊗Q ∼= Q[G]⊕[k:Q] as Q[G]-modules.
Also, by Dirichlet’s unit theorem, O×

K,S ⊗ Q ∼= IK,S ⊗ Q, where

IK,S = ker(Z[S] → Z),

with the map being the augmentation map that sends each v ∈ S to 1. It is therefore
natural to compare the Galois module OK to Z[G]⊕[k:Q] and O×

K,S to IK,S .

3.1. Additive Galois module structure

It had been known since E. Noether that OK lies in the same genus as Z[G]⊕[k:Q] if
and only if K/k is at most tamely ramified. The following is therefore particularly
interesting in the wildly ramified case.

Theorem 3.1 ([5, Theorem 3.2], see also [8, Theorem 7 (Additive)]). We
always have that OK is factor equivalent to Z[G]⊕[k:Q].

We will now give a very short proof of this result in terms of regulator constants.
First, note that by Corollary 2.12 the statement is equivalent to the claim that for
any Θ ∈ K(G), CΘ(OK) = CΘ(Z[G]⊕[k:Q]). Since regulator constants are multiplica-
tive in direct sums of modules (see [6, Corollary 2.18]), and since CΘ(Z[G]) = 1 for
all Θ ∈ K(G) (see [6, Example 2.19]), we have reduced the proof of the theorem to
showing that CΘ(OK) = 1 for all Θ ∈ K(G).

If we choose the pairing on OK defined by

〈a, b〉 =
∑

σ

σ(a)σ(b)

with the sum running over all embeddings σ : K ↪→ C, then the determinants on
OH

K , H ≤ G, appearing in the definition of regulator constants are nothing but the
absolute discriminants ∆KH . The fact that these vanish in Brauer relations follows
immediately from the conductor-discriminant formula.

3.2. Multiplicative Galois module structure

As we have mentioned above, it is natural to compare O×
K,S with IK,S , since they

span isomorphic Q[G]-modules. For H ≤ G, let S(KH) denote the set of places of
KH below those in S, and let hS(KH) denote the S-class number of KH .
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Theorem 3.2 ([5, Theorem 5.2], see also [8, Theorem 7 (Multiplica-
tive)]). Fix an embedding i : IK,S ↪→ O×

K,S of G-modules with finite cokernel.
For p ∈ S(KH), let fp be its residue field degree in K/KH , define

n(H) =
∏

p∈S(KH)

fp, l(H) = lcm{fp | p ∈ S(KH)}.

Then the function

H �→ [O×
KH ,S

: i(IK,S)H ]
n(H)

hS(KH)l(H)

is factorizable.

As in the additive case, we want to understand and to reprove this theorem in
terms of regulator constants. More specifically, we will show it to be equivalent to
the following.

Theorem 3.3 ([1, Proposition 2.15 and Eq. (1)]). For p ∈ S(k), let Dp be the
decomposition group of a prime P ∈ S above p (well-defined up to conjugacy). For
any Brauer relation Θ =

∑
H nHH ∈ K(G), we have

CΘ(O×
K,S) =

CΘ(1)∏
p∈S(k) CΘ(Z[G/Dp])

∏
H

(
w(KH)
hS(KH)

)2nH

,

where w(KH) denotes the number of roots of unity in KH , i.e. the size of the torsion
subgroup of O×

KH ,S
.

Note that since IK,S is torsion free and IK,S ↪→ O×
K,S is injective, Proposition 2.4

and Lemma 2.11 imply that Theorem 3.2 is equivalent to the following statement:
for any Brauer relation Θ =

∑
H nHH ,

CΘ(O×
K,S) = CΘ(IK,S)

∏
H

(
w(KH)n(H)
hS(KH)l(H)

)2nH

.

The equivalence of Theorems 3.2 and 3.3 will therefore be established if we show
that

CΘ(IK,S) =
CΘ(1)∏

p∈S(k) CΘ(Z[G/Dp])

∏
H

(
l(H)
n(H)

)2nH

.

This is just a linear algebra computation that we will not carry out in full detail,
since it is a combination of the computations of [5, 1]. Indeed, it is shown in [5] that
under the embedding

Z[S(KH)] ↪→ Z[S], p �→
∑

q∈S,q | p
fpq (3.1)

we have [(IK,S)H : IKH ,S] = n(H)
l(H) . So, instead of computing

CΘ(IK,S) =
∏
H

det
(

1
|H | 〈·, ·〉

∣∣(IK,S)H

)nH
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for a suitable choice of pairing 〈·, ·〉 on IK,S , we may compute

∏
H

det
(

1
|H | 〈·, ·〉

∣∣IKH ,S

)nH

, (3.2)

where IKH ,S is identified with a submodule of IK,S as in (3.1). To do that, we
note that for any H ≤ G, IKH ,S is generated by p1 − pi, pi ∈ S(KH)\{p1} for
any fixed p1 ∈ S(KH), and that there is a natural G-invariant non-degenerate
pairing on IK,S that makes the canonical basis of Z[S] orthonormal. It is now a
straightforward computation, which has essentially been carried out in [1], to show
that the quantity (3.2) is equal to

CΘ(1)∏
p∈S(k) CΘ(Z[G/Dp])

,

as required.

4. K-groups of Rings of Integers

As another illustration of the connection we have established, we will give an easy
proof of an analogue of [5, Theorem 5.2] for higher K-groups of rings of integers. The
main ingredient will be the compatibility of Lichtenbaum’s conjecture on leading
coefficients of Dedekind zeta functions at negative integers with Artin formalism,
as proved in [4].

Let n ≥ 2 be an integer. Let S1(F ), respectively S2(F ), denote the set of real
embeddings, respectively of representatives from each pair of complex conjugate
embeddings, of a number field F , and denote their cardinalities by r1(F ), respec-
tively r2(F ). Denote S2(F ) ∪ S2(F ) by S∞(F ). It is shown in [3] that the ranks of
the higher K-groups of rings of integers are as follows:

rk(K2n−1(OF )) =

{
r1(F ) + r2(F ), n odd,

r2(F ), n even.

Let K/k be a finite Galois extension with Galois group G, and let Sr(K/k) denote
the set of real places of k that become complex in K. For p ∈ Sr(K/k), let εp denote
the non-trivial one-dimensional Q-representation of the decomposition group Dp,
which has order 2.

By Artin’s induction theorem, a rational representation of a finite group is deter-
mined by the dimensions of the fixed subrepresentations under all subgroups of G.
It therefore follows that we have the following isomorphisms of Galois modules:

K2n−1(OK) ⊗ Q ∼= Q[S∞(K)]

∼=
⊕

p∈S∞(k)

Q[G/Dp] if n is odd, (4.1)
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and

K2n−1(OK) ⊗ Q ∼=
⊕

p∈Sr(K/k)

IndG/Dp
εp ⊕

⊕
p∈S2(k)

Q[G]

∼=
⊕

p∈Sr(K/k)

Q[G]
/
Q[G/Dp] ⊕

⊕
p∈S2(k)

Q[G] if n is even. (4.2)

We are thus led to compare, using the machine of factorizability, the Galois
module structure of K2n−1(OK) with Z[S∞(K)] when n is odd, and with⊕

p∈Sr(K/k)

IndG/Dp
(εp) ⊕

⊕
p∈S2(k)

Z[G]

when n is even. Here and elsewhere, we write εp interchangeably for the ratio-
nal representation and for the unique (up to isomorphism) Z-free Z[Dp]-module
inside it.

Theorem 4.1. Let K/k be a finite Galois extension of number fields with Galois
group G, let n ≥ 2 be an integer. Then the function

H �→ [K2n−1(OK)H : i(M)H ]
|K2n−2(OKH )|

is factorizable at all odd primes, where

M = Z[S∞(K)] ∼=
⊕

p∈S∞(k)

Z[G/Dp] if n is odd,

and

M =
⊕

p∈Sr(K/k)

IndG/Dp
(εp) ⊕

⊕
p∈S2(k)

Z[G] if n is even,

and where i : M ↪→ K2n−1(OK) is any inclusion of G-modules.

Proof. Proposition 2.4 and Lemma 2.11 imply that the assertion of the theorem is
equivalent to the claim that for any Brauer relation Θ =

∑
H nHH ,

1 =2′
∏
H

[K2n−1(OK)H : i(M)H ]2nH

|K2n−2(OKH )|2nH

=2′
CΘ(M)

CΘ(K2n−1(O))
·
∏
H

( |K2n−1(OK)H
tors|

|K2n−2(OKH )|
)2nH

,

where =2′ means that the two sides have the same p-adic valuation for all odd
primes p.

Now, for any odd prime p and any subgroup H ≤ G, we have

(K2n−1(OK) ⊗ Zp)H ∼= K2n−1(OKH ) ⊗ Zp.

This is a consequence of the Quillen–Lichtenbaum conjecture (see, e.g., [9, Propo-
sition 2.9 and the discussion preceding it]), which is known to follow from the
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Bloch–Kato conjecture, which in turn is now a theorem of Rost, Voevodsky, and
Weibel [13, 15, 16]. Moreover, it follows from [4] (see [2, Eq. (2.6)]) that

∏
H

( |K2n−1(OKH )tors|
|K2n−2(OKH )|

)2nH

=2′ CΘ(K2n−1(OK)).

Putting this together, we see that the assertion of the theorem is equivalent to the
claim that CΘ(M) =2′ 1 for all Brauer relations Θ. But CΘ(M) = 1 (not just up
to powers of 2) by [6, Corollary 2.18 and Proposition 2.45(2)], and because cyclic
groups have no non-trivial Brauer relations.
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