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Abstract 
 

The performance capabilities of Fourier transform ion cyclotron resonance (FTICR) 

mass spectrometry are higher than any other type of mass spectrometer, making this 

technique suitable for a range of analytical applications.  Here, FTICR mass 

spectrometry has been used for the structural analysis of polyketides and non-

ribosomal peptides, and in the identification of peptide binding sites of ruthenium(II) 

arene anticancer complexes.  In both these applications, methods have been 

developed involving complementary tandem mass spectrometry techniques, 

specifically collision activated dissociation (CAD), electron induced dissociation 

(EID), and electron capture dissociation.  In particular, CAD and EID have been 

shown to be effective in the structural characterisation of polyketides, with a method 

developed for distinguishing between two isomers of the polyketide lasalocid A.  

This method has been optimised and extended for application to non-ribosomal 

peptides enabling detailed structural information to be obtained with very high 

accuracy.  Using CAD and ECD has enabled the identification of amino acids 

involved in binding ruthenium(II) complexes.  Binding to phenylalanine and 

glutamic acid was observed in this work for the first time; coordination by histidine 

and methionine was also observed and is in agreement with previous work.  Overall, 

new methods for highly accurate structural characterisation and binding site 

identification have been successfully designed and implemented.   
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1.1 FTICR Mass Spectrometry as an Analytical Tool   

Mass spectrometry has long been realized as a powerful analytical tool and, as such, 

can be used successfully in a wide range of applications, from small molecule 

structural characterization to the analysis of posttranslational modifications of 

proteins.  The principle of a mass spectrometry experiment is to determine the mass 

of a molecule through measurement of its mass-to-charge (m/z) ratio, where m is a 

molecular weight measured in Da, and z is the elementary charge.  By measuring the 

accurate mass of a molecule, the exact chemical composition can then be obtained.  

The m/z ratio of an analyte is determined by the behaviour of a charged particle in an 

electric field, or in a combination of electric and magnetic fields.  In order to achieve 

this, a mass spectrometer is composed of three main parts: first, an ionisation source 

to transfer the analyte into the gas phase; secondly, a mass analyser to separate the 

ions based on their m/z ratio; and third, a detector.  There are various types of mass 

analysers in use ranging from a simple quadrupole to an ion trap; the most 

sophisticated of which is a Fourier transform ion cyclotron resonance (FTICR) mass 

spectrometer. 

FTICR mass spectrometry was first developed by Comisarow and Marshall1 

in 1974 and has the highest performance capabilities of any mass spectrometer in 

terms of resolving power and mass accuracy.  The development of this technique has 

expanded the range of applications where mass spectrometry is advantageous over 

other methods.  Examples of this include proteomics applications, where higher 

resolving powers enable the separation of peptide mixtures of large protein 

complexes, therefore increasing the accuracy of protein identification; natural 

product analysis, where the greater variety of tandem mass spectrometry techniques 

available with FTICR enable complementary, high mass accuracy data to be 
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obtained for the structural characterization of new compounds; and finally, in the 

analysis of complex mixtures, where a combination of high resolution and mass 

accuracy enable the identification of large numbers of compounds.   

 

1.2 Ionization Techniques 

1.2.1 Electrospray Ionisation (ESI) 

Electrospray ionisation is a technique used to produce gaseous ions from a liquid 

under atmospheric pressure conditions and was developed by John Fenn2-3 in the late 

1980’s based on work conducted by Dole in 1968.4  It has become one of the most 

widely applicable ionisation techniques as it offers several advantages, including the 

detection of a wide range of masses without significant fragmentation, as well as 

preserving non-covalent interactions in the gas phase.5  

There are three main stages in ESI, namely droplet formation, droplet 

shrinkage, and gaseous ion production.  The solution containing the analyte of 

interest is pumped through a needle and a strong electric field (generally ~3-5 kV) is 

applied between the needle and the entrance to the instrument, in this case, the spray 

shield.  The polarity of the voltage applied can be changed depending on whether 

positive mode or negative mode is required for analysis.  The electrostatic field 

produced as a result of the potential difference between the needle capillary and the 

spray shield causes charge to accumulate at the tip of the needle, and is drawn out in 

a downfield direction, establishing a Taylor cone,6 as illustrated in Figure 1.1. 
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Figure 1.1: Illustration of electrospray ionisation process, adapted from references 

[6,7] 

When the charge repulsion exceeds the surface tension of the liquid, a process 

known as “budding” occurs, resulting in the formation of highly charged droplets.  

Due to their charge, these droplets then migrate towards the entrance of the 

instrument.  Droplet evaporation can be enhanced by the use of a nebulising gas, 

generally nitrogen, which is applied along the outside of the needle capillary. 

There are two main mechanisms proposed for the shrinkage of the droplets 

before they enter the instrument.7  The first, known as the charge residue mechanism 

(CRM),4 involves evaporation of the solvent as the droplets move downstream, 

resulting in an increase in charge repulsion inside the droplet.  At the point where the 

Coulombic repulsion exceeds the surface tension, known as the “Rayleigh Limit”, 

droplet fission occurs, resulting in the formation of droplets with smaller radii.  The 

Rayleigh limit can be defined by equation 1.1. 

  �� � 8����	
��
/�     (1.1) 
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This process continues until the production of droplets containing one analyte 

molecule, with one or more charges, has occurred.  The second mechanism, known 

as the ion evaporation mechanism (IEM),8 involves the desorption of a single analyte 

molecule into the gas phase, through Coulombic repulsion causing its ejection from 

the droplet.  Both mechanisms can be used to explain the observed formation of ions 

from ESI; however, it is generally thought that IEM is applied to small (> 10 nm 

radius) droplets, whilst CRM applies more to larger biomolecules such as proteins.7, 

9-10 

Nanospray ionisation, or nanoESI, is a variation of ESI that uses much 

smaller needle tips, on the order of a few µm instead of ~100 µm, so that smaller 

droplets are produced.11  A lower voltage, ~0.8-1.2 kV, is applied between the needle 

and the spray shield, and the sample is delivered at lower flow rates.  This is 

particularly advantageous in biological analyses where sample volumes are often 

limited.  Although smaller tips are more prone to clogging, reducing the amount of 

sample entering the instrument has the added benefit of reducing contamination in 

the source.  For these reasons, it is often preferable to use nano-ESI in a number of 

applications.    

1.2.2 Matrix Assisted Laser Desorption Ionisation (MALDI) 

Matrix assisted laser desorption ionisation (MALDI) is, like ESI, an important 

ionisation technique which can be used to analyse non-volatile, high molecular 

weight compounds.12  The compound of interest is mixed with a matrix, typically an 

organic acid, before being crystallised on a metal plate.  The sample is irradiated 

with a laser, typically at wavelengths in the ultraviolet, such as a nitrogen laser (λ = 
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337 nm), causing ablation and creating a plume of analyte and matrix molecules, as 

illustrated in Figure 1.2. 

 

Figure 1.2: Illustration of ion formation using MALDI 

Within the plume, ionisation of the analyte (A) molecules can occur; the most 

common mechanism by which this is thought to occur is through proton transfer13 

from the matrix (M), as illustrated by equations 1.2. 

  M + hυ → M+* 

  M+* + A → [M-H] - + [A+H]+    (1.2) 

An alternative theory, known as the lucky survivor model,14 suggests the analyte 

molecules preserve their charge states, together with associated counterions, from 

solution as they are incorporated with the matrix.  The presence of matrix excess 

charges i.e. [M+H]+ or [M-H]- in the clusters of molecules generated by laser 

irradiation can result in counterion neutralisation or analyte deprotonation 
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respectively, leading to the formation of mostly singly protonated species, as 

illustrated by equation 1.3.14-16   

  AHn
n+ + nX- → AH+ + X- + (n-1)HX   (1.3) 

Whilst the processes involved in MALDI are not completely understood, evidence 

for both mechanisms has been reported16 showing neither mechanism can be applied 

to explain all results observed using MALDI.  MALDI is now widely used for the 

analysis of biomolecules and polymers due to its simplicity and ease of use.  One of 

the disadvantages of this ionisation technique lies in the generation of singly charged 

species, which limits the use of some tandem mass spectrometry techniques, such as 

electron capture dissociation (ECD), which require multiply charged species.  

1.2.3 Electron Ionisation (EI) 

Electrons produced by a heated filament are accelerated by an electric field to 70 eV 

and focussed into a continuous electron beam.  The gaseous sample is passed 

through the beam in the perpendicular direction, whereby the close passage of highly 

energetic electrons causes fluctuations in the electric field around the sample 

molecules, consequently inducing ionisation and extensive fragmentation.17-18  A 

schematic of the setup in an EI source is shown in Figure 1.3.  
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Figure 1.3: Schematic of an EI source, adapted from reference [17] 

At energies of 70 eV, the de Broglie wavelength of the electrons closely matches the 

bond lengths of typical organic molecules (~ 0.15 nm), thereby maximising energy 

transfer.  If the energy transferred is greater than the ionisation potential of the 

neutral molecule (M), ionisation occurs resulting in the formation of a radical 

cation,17, 19 as illustrated in equation 1.4. 

  M + e-  →  M+· + 2e-     (1.4) 

Approximately 10-20 eV is transferred to the molecules; since about 10-15 eV is 

required for ionisation for volatile, organic molecules, the excess energy results in 

extensive fragmentation, consequently providing product ions that can aid with 

structure elucidation.  A disadvantage of this technique, however, is that the 

molecular ion of a compound is not always observed.  Since the introduction of ESI 

and MALDI, which are gentler ionisation techniques and do not result in 

fragmentation, EI is generally used for the analysis of volatile, low molecular weight 

compounds, particularly in instruments coupled to gas chromatography systems. 
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1.3 Mass Analysers 

Once the sample has been ionised, the ions can be separated according to their m/z 

and a mass spectrum produced.  There are various types of mass analyser available 

for this purpose, including quadrupole, ion trap, time-of-flight, and FTICR analysers.  

Each differs according to its mode of operation, detectable mass range, sensitivity, 

cost, and two important performance capabilities: mass accuracy and resolving 

power. 

1.3.1 Resolving Power and Mass Accuracy 

Resolving power (RP) is important for separating closely spaced signals, such as in 

the analysis of multiply-charged ions, particularly in large proteins, and in the 

analysis of complex mixtures.  The resolving power can be calculated by equation 

1.5. 

  
�	 � 	 �∆�      (1.5) 

where m corresponds to the m/z of the peak of interest and ∆m is the width of the 

peak.  Generally, the full width at half maximum (FWHM) definition for peak width 

is used, where the width is measured at 50% of the height of the peak. 

 Mass accuracy, measured in parts-per-million (ppm), is a measure of how 

well the measured m/z correlates with the theoretical value20 and can be calculated 

by equation 1.6. 

  ����	�������� � 	�/����� 	�/�!"�#�/�!"�# 	× 	10'   (1.6) 

where m/zmeas and m/ztheo are the measured and theoretical values for the peak of 

interest respectively. 
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 There are a number of characteristics that indicate the performance 

capabilities of different mass analysers, and are used to judge the best mass 

spectrometer for the type of analysis to be performed.  Resolving power and mass 

accuracy are two examples of such characteristics; others include scan speed, 

sensitivity, and the detectable mass range.  Quadrupoles are the simplest but are 

limited in terms of their resolving power and mass accuracy; on the other hand, 

FTICR mass spectrometers can achieve resolving powers on the order of millions, 

and mass accuracies of 1 ppm and below, making it suitable for a wide range of 

applications but a very expensive instrument.  Since the FTICR mass analyser is the 

focus of this work, it will be discussed in detail in section 1.4.   

1.3.2 Quadrupole Mass Analyser 

Quadrupoles are the most common analyser in mass spectrometers and consist of 

two sets of two cylindrical rods lying parallel to each other, as shown in Figure 1.4. 

 

Figure 1.4: Schematic of a quadrupole 

Ions are separated according to the stability of their trajectory through the oscillating 

electric field produced via a combination of direct current (DC) and radio frequency 

(RF) potentials applied to the rods.  The motion of ions in a quadrupole can be 

described by the solutions to the Mathieu equation,21-22 which determine regions of 
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stability and instability.  These solutions can be used to describe the trajectories of 

ions in a quadrupole and to define the limits for a stable trajectory.  The Mathieu 

stability diagram, illustrated in Figure 1.5, can be used to visualise the solutions to 

the Mathieu equation and therefore determine which ions will pass through the 

quadrupole and be detected. 

 

 

Figure 1.5: Illustration of a Mathieu stability diagram 

The Mathieu stability diagram is prepared by plotting the two Mathieu parameters, au 

and qu.  These parameters are related to the DC (U) and RF (V) voltages 

respectively, and are defined by equations 1.7 and 1.8. 

  �( � )*+
�,#-.-      (1.7) 

  �( �  /*0
�,#-.-      (1.8) 

where u represents either the x- or y-direction, e is the elementary charge, m is the 

mass, ro is the radius of the ion path, and ω is the angular frequency. 
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The quadrupole can therefore be used either as a mass filter for selection of an ion 

with a particular m/z, or it can be used as a mass analyser and scan for a range of m/z 

values by varying the RF voltage.  However, the achievable mass accuracies and 

resolving powers are limited at ~100 ppm and ~1000 Da, respectively. 

1.3.3 Linear Ion Traps 

Linear ion traps confine ions along the axis of a quadrupole by the application of a 

2D radio frequency field, with additional DC voltages applied to two end trapping 

segments.23  As well as acting as a mass analyser, linear ion traps are often used for 

storing ions as part of a hybrid instrument, or for isolating ions of a specific m/z for 

tandem mass spectrometry experiments. 

1.3.4 Quadrupole Ion Trap (QIT) Mass Analyser 

Quadrupole ion trap instruments originate from the work of Wolfgang Paul24 and 

operate similarly to a quadrupole but instead of passing through, the ions are trapped 

in 3D for detection.  A QIT consists of two endcap electrodes and a ring electrode in 

between.  By applying oscillating RF voltages to the ring electrode and static DC 

voltages to the endcaps, a 3D quadrupolar electric field is created.  By changing the 

electric field on the endcap, the ions can be sequentially ejected according to their 

mass through a small gap in one of the endcaps towards the detector.  Although 

higher resolving powers are achievable with a quadrupole ion trap (~10,000 Da), 

mass accuracies are similar to those achievable with a quadrupole alone.  The 

advantage of using an ion trap is the increase in sensitivity through the accumulation 

of ions for a specified time period before detection. 
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1.3.5 The Orbitrap 

The Orbitrap25-26 is an example of a modified Kingdon trap whereby ions are stored, 

not in a potential well, but through their angular momentum about a central 

electrode.  The trap consists of a spindle contained within a barrel and it is this 

spindle to which the ions are attracted and rotate around, as illustrated in Figure 1.6. 

 

Figure 1.6: Schematic of the Orbitrap, illustrating ion rotation around a central 

spindle 

The angular frequency (in the z-direction) of the rotation around the spindle is 

detected as an image current which is then processed using a Fourier transform to 

give a frequency spectrum and, ultimately, a mass spectrum.  The Orbitrap can 

achieve resolving powers of ~2-300,000 and mass accuracies of 1 ppm with internal 

calibration making it the highest performing mass analyser next to FTICR 

instruments.  

1.3.6 Time-of-Flight (TOF) Mass Analyser 

In a time-of-flight, or TOF, analyser, the ions are accelerated by an electric field of a 

constant, known strength and therefore exit this region with the same kinetic 

energy.27  The velocity of an ion depends on its m/z ratio, so the time taken to reach a 

detector at a known distance is measured.  Since lighter ions have higher velocities, 
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these will reach the detector first, and the times (t) recorded can then be converted to 

values for m/z using equation 1.9. 

  1 � 2
√�+4

�
5       (1.9) 

where d is the length of the flight tube and U is the acceleration voltage applied.  A 

TOF mass analyser is commonly associated with MALDI ionisation; however, initial 

MALDI-TOF instruments demonstrated poor resolution, mainly due to the fact that 

the ions were accelerated as soon as they were produced through laser irradiation.  

Since this process lasts for a specified time period, ions of the same m/z value arrived 

at the detector at slightly different times through spreading out of the ion packet 

causing a distribution in kinetic energies of the ions.  To overcome this, there are two 

solutions implemented in most TOF instruments; first, a reflectron was introduced 

into the instrument.28  This effectively acts as a mirror by using an electric field to 

reflect the ion beam back to the detector whilst simultaneously improving the 

achievable resolving power.  Ions of the same m/z but with higher kinetic energy will 

travel further into the reflectron than those with lower kinetic energy, therefore 

compensating for the difference in time taken for the ions to travel to the detector.  

Second, a technique known as delayed (or pulsed) ion extraction is used.29-30  In this 

process, both the target plate and a second voltage plate separated by a few mm are 

initially held at the same voltage.  After a delay of typically a few hundred 

nanoseconds, the voltage on the second plate is reduced by 2-3 kV generating an 

electric field to which all ions are drawn.  The ions that are further away from this 

plate when the voltage is dropped are exposed to more of the potential than those 

that are already closer to the plate; consequently the initially slower moving ions will 

move faster in the field free region of the flight tube, compensating for their slower 
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initial velocity.  As a result, all ions of the same m/z ratio will reach the detector at 

the same time, increasing both the resolution and the sensitivity.   Resolving powers 

and mass accuracies vary for TOF instruments; the introduction of longer flight tubes 

and a reflectron has increased achievable resolving powers to ~15-20,000 Da with 

mass accuracies around 10 ppm.  In linear mode, the sensitivity is generally better 

due to the shorter flight time; however, the lack of a reflectron reduces resolving 

powers to ~8-10,000 with mass accuracies increasing to 200 ppm.  High resolution 

TOF instruments usually incorporate additional analysers such as a quadrupole 

thereby increasing resolving powers to ~20-40,000.  An additional advantage of a 

time-of-flight analyser is the quicker scan speed which is on the order of 

milliseconds, as opposed to 1 second for ion traps, quadrupoles and FTICR 

instruments.   

 

1.4 FTICR Mass Analyser 

In an FTICR mass analyser ion detection occurs in an ICR cell, in which the ions are 

trapped radially by a magnetic field, and axially by an electric field.  The behaviour 

of the ions in this combination of fields is the basis for FTICR mass spectrometry, 

and will be explained in detail in section 1.4.2.   

1.4.1 The ICR Cell 

The ICR analyser cell, or Penning trap, is at the core of the instrument, in that ions 

are trapped, excited, and detected here during the course of an experiment.  The cell 

is positioned in the centre of a superconducting magnet and is composed of three 

pairs of plates, namely trapping, excitation, and detection plates.31  The trapping 
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plates lie perpendicular to the magnetic field, whilst the excitation and detection 

plates lie in the plane of the field, as illustrated in Figure 1.7.   

 

Figure 1.7: Schematic of a cylindrical ICR cell showing the trapping, excitation, and 

detection plates 

Cell design is an important avenue of research in FTICR instrumentation, with the 

aim of improving the performance of these instruments through increasing attainable 

resolving powers and mass accuracies.  Designs have moved on from the original 

cubic analyser cell,32 to those based on a cylindrical geometry.  Over the years the 

designs have been optimised so as to produce an “ideal” electrostatic potential for 

trapping the ions.33  The open cylindrical cell,34 Infinity cell,35 compensated open 

cylindrical cell,36-38 and the dynamically harmonised cell39 are all examples of cell 

designs with different features for improving instrument performance.  
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1.4.2 Ion Motion 

Once inside the ICR cell, an ion with mass m, charge q, and velocity v, moving in a 

magnetic field of magnitude B, experiences a force known as the Lorentz force, and 

as a result, moves in a circular orbit in the plane perpendicular to the direction of the 

magnetic field, as shown in Figure 1.8.   

 

Figure 1.8: Illustration of the Lorentz force acting on a charged particle in a 

magnetic field 

The magnitude of the force experienced by the ion is given by equation 1.10. 

  67 � �879:;<7�=>?     (1.10) 

where θ is the angle between the axis of the ion’s motion and the axis of the 

magnetic field strength, B.  Equation 1.10 can be simplified to equation 1.11 due to 

the fact that the direction of ion motion and magnetic field are perpendicular. 

  67 � �879:;<7       (1.11) 

The Lorentz force is balanced by the centrifugal force, described by equation 1.12. 

  67 � @� � �A<7-
,      (1.12) 
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Since the sum of the forces is equal to zero, equations 1.11 and 1.12 can be set as 

equal to each other (equation 1.13). 

  �879:;<7 � �A<7-
,        (1.13) 

Rearrangement of equation 1.13 and substituting for the angular frequency, ω, where 

v=ωr, yields an expression for the cyclotron frequency that characterises the circular 

motion of an ion in a magnetic field.  The cyclotron frequency, which is related to 

the mass-to-charge ratio of the ion, is defined by equations 1.14 and 1.15. 

  BC �	 5D�       (1.14) 

  E � 5D
�F�      (1.15) 

In an FTICR experiment, the cyclotron frequency, ωc, is measured so as to determine 

its mass-to-charge ratio, m/z, where z = q/e and e is the elemental charge. 

Equations 1.14 and 1.15 describe the cyclotron motion in the presence of a 

magnetic field only; in an FTICR experiment, an electric field is applied to the 

trapping plates in order to confine the ions in the axial (z) direction i.e. parallel to the 

magnetic field.  As a result, the ions oscillate backwards and forwards along the z 

axis and are trapped in the ICR cell.  The equation for the axial force in the z-

direction is defined by equation 1.16. 

 6 � 	�2-�2G- � �H<7      (1.16) 

where H<7 is the electric field.  From this equation, it is possible to obtain an equation 

for the trapping frequency, ωz, at which the ion oscillates along the z-axis, and this is 

defined by equation 1.17. 
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  B� �	4�50IJ�K-        (1.17) 

where VT is the trapping potential applied to the plates, a is the distance between the 

trapping plates, and α is a coefficient dependent on the geometry of the trap. 

 The addition of a potential term in the z-direction also produces a radial force 

and so introduces another term to equation 1.11, leading to equation 1.18: 

  67 � �LM79: × ;<7N + �H<7    (1.18) 

where H<7 is the electric field, and �H<7 � 	 50IJK- �.  The radial electric field produces an 

electric force that acts on the ion so as to push it away from the centre of the cell, 

thus opposing the Lorentz force from the magnetic field.  The equation for ion 

motion can now be defined by equation 1.19: 

  6P��Q � @B�� � �;B� − 50IJ
K- �  (1.19) 

Equation 1.19 can be re-written in the form of a quadratic in ω, as shown in equation 

1.20:  

  B� − 5D.
� + 50IJ

�K- � 0    (1.20) 

The solutions of this quadratic equation correspond to two rotational frequencies in 

the plane perpendicular to the magnetic field i.e. the xy plane, as shown by equations 

1.21 and 1.22: 

  BS � .T
� +4U.T� V

� − .W-
�    (1.21) 
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  B � .T
� −4U.T� V

� − .W-
�     (1.22) 

Where:  BC � 5D
�       (1.14) 

  B� � 4�50IJ�K-      (1.17) 

These resulting frequencies correspond to the reduced cyclotron frequency, ω+ 

(1.21), and the magnetron frequency, ω- (1.22).  The magnetron frequency is a result 

of the contradictory forces acting on an ion from the magnetic and electric fields, 

causing the ions to experience a third type of motion, namely magnetron motion, 

which offsets the centre of the ion’s cyclotron motion causing a shift in its cyclotron 

frequency. 

1.4.3 Excitation and Detection 

In order to detect the ions in the cell, they must first be excited into a larger radius of 

cyclotron motion, so as to pass closer to the detection plates.  A radiofrequency (RF) 

pulse is applied to the two excitation plates; when the frequency of the pulse matches 

the cyclotron frequency of an ion, i.e. it is in resonance, the ion absorbs energy and 

spirals outwards into a larger orbit, as shown in Figure 1.9.   
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Figure 1.9: Illustration of excitation and detection processes in an FTICR 

experiment 

The RF pulse is swept linearly through frequencies matching the m/z range of 

interest, thus exciting all ions in that range.  Ions of the same m/z ratio are excited 

coherently and so orbit the cell as a tight packet at the same cyclotron frequency.  

Different types of excitation waveforms can be used for tandem mass spectrometry 

experiments whereby a single peak is selected for fragmentation.  These waveforms 

form part of a pulse program, which defines each stage of an FTICR experiment, 

from an initial quench to remove all ions from the cell, to isolation and 

fragmentation, accumulation, and finally excitation and detection.  A method for 

producing the optimal excitation waveform required with high selectivity was 

reported by Marshall et al.40 and is known as stored waveform inverse Fourier 

transform, or SWIFT.  The frequency domain excitation spectrum required is first 

specified so that the resonant frequencies of the selected ions only are excited.  The 

inverse Fourier transform is taken to convert this frequency domain to a time domain 

excitation signal, and is therefore simply the reverse process for acquiring a mass 

spectrum in FTICR.  SWIFT has been used to isolate individual isotope peaks41-42 as 

well as in  multiple stages of tandem mass spectrometry (MSn) for the structural 
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elucidation of small molecules.43  Other methods of excitation used for the selection 

of ions include correlated harmonic excitation field, or CHEF,44 and an extension of 

this known as multi-CHEF.45  In CHEF, single- and swept-frequency excitation 

fields are used to eject unwanted ions from the cell, and in multi-CHEF, this is 

extended from to include a set of known reference peaks which are isolated 

simultaneously with the precursor ion.  These reference peaks can then continue to 

be detected as multiple stages of tandem mass spectrometry are performed, enabling 

accurate internal calibration of the product ions.  

As the ions pass the two detector plates, an image charge is induced, which is 

then converted into an alternating current and recorded as a time domain signal 

known as a transient.  A Fourier transform is applied to the transient to create a 

frequency domain spectrum, which is calibrated and converted to a mass spectrum 

using the relationship between frequency and m/z ratio.  It is this non-destructive 

nature of FTICR mass spectrometry, and the fact that the ions can be detected for 

long periods of duration, that leads to the observation of ultra-high resolving power 

and mass accuracy.  

1.4.4 Data Post-Processing 

Once the data has been acquired, there are a number of post-processing functions 

that can be applied in order to enhance resolution further. 

1.4.4.1 Apodisation 

The time-domain signal, or transient, is acquired for a finite time period; 

consequently, the abrupt ending of the signal results in the generation of tails located 

on either side of the main peak in the frequency-domain spectrum.  These tails can 

interfere with the identification of low-intensity peaks but can be reduced by 
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applying time-domain weight functions before Fourier transformation, a process 

known as apodisation.46  There are several different weight functions that can be 

applied to the data, including Gaussian, sine-bell, and Hamming functions.47  

Application of one of these functions results in a reduction of the amplitude of peak-

tails, but at the cost of broadening of the spectral peak thereby reducing resolution 

and signal-to-noise ratio.  The extent of this effect varies from spectrum to spectrum, 

as it is dependent on the data acquisition time and the level of decay of the transient 

signal.48 

1.4.4.2 Zero-filling 

The use of the zero in FTICR mass spectrometry is two-fold; first, zeroes can be 

used to replace some of the data signal in order to filter out noise and improve the 

signal intensity.  Second, zeros are generally added to the end of the time-domain 

data set in order to interpolate extra points aiding peak fitting algorithms to improve 

mass accuracy, by increasing the acquisition time of the signal.47  The number of 

data points recorded in the time domain spectrum increases from N to 2N for one 

zero-fill thereby decreasing frequency point spacing resolution since point-resolution 

is proportional to acquisition time. 

1.4.5 Instrument Developments 

FTICR mass analysers are currently the best performing instruments in terms of 

achievable resolution and mass accuracy, although the mass range is limited to a few 

thousand m/z while high performing TOF analysers can detect in the tens of 

thousands.  Resolving powers of ~500,000 can be obtained routinely but can be 

pushed to a few million in heterodyne mode, where a narrow m/z range is studied 

under high resolution conditions.49  Although ultra-high resolution and mass 

accuracy are routinely achieved with FTICR mass spectrometers, the number of 
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unresolved peaks increases at higher m/z due to decreased resolving power and an 

increase in the number of possibilities of elemental compositions.  The complex 

nature of current applications being explored has therefore resulted in a need for 

further improvements and optimisation of FTICR technology.50  Developments in 

the hardware components contribute greatly to improvements in its performance; for 

example, increasing the magnetic field strength leads to a linear increase in 

achievable resolving power.  The introduction of 14.5 T magnet51 gave results with 

resolving powers two-fold better than that obtained with a 7 T magnet.  Other 

features of the instrument have been improved over the years, including the vacuum 

system, to ensure detection occurs at a sufficiently low pressure (~ 10-10 mbar) and 

prevent sudden damping of the transient signal.  The data acquisition system has also 

been improved to increase acquisition speeds and data storage space.52   

 

1.5 Tandem Mass Spectrometry (MS/MS) 

The principle of a tandem mass spectrometry experiment is to obtain structural 

information on a precursor compound through isolation, fragmentation, and 

subsequent analysis of the product ions detected.  The process can be repeated a 

number of times by further selection of a specific fragment ion in each fragmentation 

spectrum, and subjecting it to dissociative processes, therefore yielding multistage 

mass spectrometry or MSn experiments.  There are a number of tandem MS 

techniques that can be used for this purpose, involving both neutral molecules and 

electrons. 
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1.5.1 Collision Activated Dissociation (CAD) 

The most widely used tandem mass spectrometry technique is collision activated 

dissociation (CAD),53 or collision induced dissociation (CID).54-55 During CAD, the 

precursor ion is subjected to collisions with a neutral gas, such as argon.  These ions 

become activated through the conversion of translational energy to vibrational 

energy thereby increasing the internal energy of the precursor.  Since intramolecular 

vibrational energy redistribution (IVR) often occurs before fragmentation, the bonds 

with the lowest dissociation energy are preferentially broken, which, for peptides and 

proteins, corresponds to the peptide bond, forming the characteristic b- and y-ions,56-

58 as shown in Figure 1.10. 

 

 

Figure 1.10:  Illustration of the types of product ions formed during fragmentation in 

tandem mass spectrometry experiments 

One of the main disadvantages of using CAD is the tendency for labile groups to be 

cleaved during the process making it an unreliable technique in the analysis of 

protein post-translational modifications.  CAD still provides useful sequence 

information but the development of alternative tandem mass spectrometry techniques 

means it is often used to provide complementary information in addition to other 
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methods.  One such technique is infrared multiphoton dissociation (IRMPD).59 

IRMPD involves the use of a laser, generally a CO2 laser with a wavelength of 10.6 

µm, which is directed at a sample so that the precursor ion absorbs one or more 

photons, causing the internal energy of the molecule to increase and fragment.  

IRMPD has been shown to produce significant fragmentation of large proteins, 

producing a number of additional sequence ions to CAD, and therefore improving 

the structural information obtainable on larger molecules.41  

1.5.2 Sustained Off-Resonance Irradiation (SORI) - CAD 

Sustained off-resonance irradiation (SORI)-CAD60 is an alternative method for 

fragmenting molecules and can be performed in the ICR cell itself.  The precursor 

ion is excited by the application of a pulse with a frequency slightly higher than its 

natural cyclotron frequency.61  This causes the ions to repeatedly accelerate and 

decelerate as their cyclotron radii continuously expand and contract.  A collision gas 

such as argon is then pulsed into the cell to cause dissociation of the analyte ions.  

The advantage of SORI-CAD is that the ions can be excited for longer periods of 

time (generally hundreds of milliseconds) and so more collisions can occur in this 

time thereby increasing the degree of fragmentation. 

1.5.3 Electron Capture Dissociation (ECD) 

The advent of techniques based on ion-electron interactions has broadened the 

applications where tandem mass spectrometry has significant advantages, such as in 

proteomics.  Electron capture dissociation (ECD) in particular has been instrumental 

in this field due to its ability to provide detailed sequence information in proteins, 

complementary to CAD, as well as preserving post-translational modifications.62  

ECD involves the capture of an electron by a multiply-charged cation e.g. a 

polypeptide, subsequently forming a cation radical through neutralisation of a 
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charge, which results in bond cleavage; in the case of peptides, this bond is normally 

the N-Cα forming c and z• ions.  The exact mechanism of ECD is under heavy debate 

in the literature;63-67 the technique was originally developed in the late 1990’s by 

Zubarev et al.67 who proposed that electron attachment occurs at a protonated site 

forming a hypervalent radical site, stabilised due to solvation of a proton by a 

backbone amide carbonyl.  The energy released upon attachment of the electron 

(recombination energy) is sufficient to enable the ejection of a hydrogen radical with 

enough kinetic energy to transfer to the oxygen of an amide carbonyl.  This 

mechanism, known as the Cornell, or hot hydrogen, mechanism is illustrated in 

Figure 1.11. 

  

 

Figure 1.11:  Illustration of the Cornell mechanism for ECD 

An alternative mechanism was developed to explain where, for steric reasons, 

hydrogen radical transfer from a protonated site is unable to occur, but cleavage of 

the molecule is still observed.  Syrstad and Turecek66 proposed that electron capture 

occurs directly in an amide π* orbital whereby a number of electronic states of the 

charge reduced ion are sampled consecutively.  If the ground state is reached, 

hydrogen transfer onto a solvated amide carbonyl group can occur, leading to 
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cleavage of the N-Cα bond.  Simultaneously, Simons et al.65, 68 reported a similar 

mechanism but proposed that the electron is most likely to attach to a Rydberg 

orbital localised on a positively charged site.69 The electron can then undergo fast 

intramolecular transfer to a π* amide orbital enabling cleavage of the N-Cα bond to 

occur.  Consequently these collective results constitute the Utah-Washington 

mechanism for ECD, whereby an electron is captured directly into a Rydberg orbital 

and transferred to an amide π* orbital stabilised by local intramolecular electrostatic 

potentials provided by protonated sites within the molecule, as shown in Figure 1.12. 

 

Figure 1.12:  Illustration of the Utah-Washington mechanism for ECD 

The unique fragment patterns able to be produced using ECD has led to the rapid 

development of a number of other electron-based dissociation techniques.  Electron 

detachment dissociation (EDD)70 can be applied to anions to cause fragmentation 

through electron ejection from the precursor ion.  Electron transfer dissociation 

(ETD)71 was developed for use in instruments other than FTICR mass spectrometers.  

In this case, electrons are transferred to the precursor ion via radical anions, which 

are produced in a negative chemical ionisation source and are generally molecules 

consisting of aromatic rings systems, such as anthracene (C14H10) or fluoranthene 
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(C16H10).  Transfer of an electron forms the radical cation species that leads to 

fragmentation analogous to that observed in ECD.  ETD is therefore also 

advantageous in proteomics due to the preservation of labile groups during 

fragmentation, enabling analysis of protein post-translational modifications to be 

performed.72 

Since ECD involves the capture of an electron and subsequent neutralisation 

of a charge site, molecules must carry a charge ≥ 2 in order for fragments to be 

detected.  Therefore, this technique cannot be applied to molecules which can only 

carry a single positive charge, as is common with fatty acids and polyketides.  As a 

result, ionisation methods like MALDI, which produce mainly singly charged 

species, cannot be used in conjunction with electron capture dissociation.  There is, 

therefore, a drive to find tandem mass spectrometry techniques which are compatible 

with small, singly charged species, and that can produce extensive fragmentation of 

these molecules.     

1.5.4 Electron Induced Dissociation (EID) 

One of the first studies conducted on singly charged ions was reported in 1979 by 

Cody et al.73 who used electrons to fragment substituted benzene radical cations.  

The technique was termed electron impact excitation of ions from organics (EIEIO) 

and the authors reported that similar fragmentation to CAD was observed when the 

molecules were fragmented using electrons with energies below the second 

ionisation energies of the cations.  Wang and McLafferty took the technique further 

in 1990 and demonstrated its ability to fragment large biomolecules, like gramicidin 

S, using 70 eV electrons; again, they reported similar fragmentation patterns to 

CAD.74   
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Since then, several studies have reported on the fragmentation patterns 

obtained when singly charged molecules, such as biomolecules75 and inorganic 

complexes,76 are allowed to interact with electrons, a technique termed Electron 

Induced Dissociation (EID).  More recently, Lioe and O’Hair compared EID spectra 

of singly protonated amino acids and their simple peptides, obtained using electron 

energies around 20 eV, to those obtained using CAD.77  This approach is similar to 

hot ECD (hECD),78 where electrons with high energies, typically around 10 eV, 

induce fragmentation in multiply charged molecules.  The authors reported extensive 

fragmentation of the amino acids and peptides that was different and complementary 

to CAD.  Generally, this has been the case reported in subsequent studies.  Feketeova 

et al. demonstrated that EID produced more extensive fragmentation than CAD 

when applied to betaine76 and to NaCl cluster cations,79 and Kaczorowska and 

Cooper showed that EID was particularly effective in fragmenting polynuclear metal 

complexes,80 and the metallo-porphyrin, octaethylporphyrin.81 

The role of metals in EID has been investigated using tryptophan82 and it has 

been shown that more fragments were produced than with CAD.  This suggests that 

more electronic excited states can be accessed via an interaction between the metal 

ion and the electrons.  Similar work undertaken by Mosely et al.83 demonstrated that 

the charge carrying species of small, pharmaceutical-type molecules influenced the 

degree of fragmentation.  They showed that sodium and potassium were retained by 

nearly all the product ions, and provided complementary data to the protonated and 

ammonium adducts.  Work carried out by Kalli et al.84 showed that radical ions 

unique to EID were formed when singly deprotonated peptides were irradiated with 

electrons.  Differences were observed in the EID spectra of the amidated and the free 
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acid forms of substance P and LHRH, suggesting that the charge location may also 

have an impact on the fragmentation pattern observed. 

 

1.6 Bruker solariX 12 T FTICR Mass Spectrometer 

The majority of the work in this thesis was carried out on a Bruker solariX 12 T 

FTICR mass spectrometer (Bruker Daltonics, Coventry, UK).  A schematic of this 

instrument is shown in Figure 1.13.  

 

Figure 1.13: Schematic of the Bruker solariX FTICR mass spectrometer (reproduced 

and adapted from the Bruker solariX user guide with permission) 

The instrument has a dual ESI and MALDI source for the generation of ions which 

are then transferred through a heated glass capillary, positioned perpendicular to the 

main axis of the instrument.  A series of electrostatic and octapole ion optics guide 

the ions to the quadrupole and hexapole collision cell.  Ions can be isolated by the 

quadrupole, before being transferred to the collision cell for fragmentation by CAD 
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or ETD, or for accumulation.  For ETD, a negative chemical ionisation (nCI) source 

is located above the split octapoles for generation of the radical anions.  The ions are 

transferred via a hexapole to the Infinity35 ICR cell  for detection.  On the far side of 

the ICR cell, a hollow cathode is located for ECD and EID experiments inside the 

cell.  The use of a hollow cathode further enables the positioning of an IR laser at the 

back of the instrument for IRMPD experiments.  This instrument can routinely 

achieve 500,000 resolving power at m/z 400 and, with internal calibration, mass 

accuracies of <0.5 ppm. 

 

1.7 Applications of FTICR-MS 

The high performance capabilities of FTICR mass spectrometry make this 

instrument suitable for a number of different applications.  The identification of 

thousands of components in complex mixtures is possible due to the ultra-high 

resolving powers achievable.50 In proteomics, this enables the separation of 

overlapping isotopic distributions, and therefore charge state determination, for 

large, multiply charged biomolecules.85  The variety of tandem mass spectrometry 

techniques available on an FTICR mass spectrometer, including CAD, ECD, EID 

and IRMPD enable detailed, complementary data to be obtained for small molecule 

structural analysis, as well as identifying modifications on peptides and proteins.  

High mass accuracy further supports the identification of elemental compositions 

with a high degree of confidence.  The use of FTICR mass spectrometry in small 

molecule structural analysis and protein modifications is explored in chapters 2-4, 

and is introduced in the following sections.  
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1.7.1 Structural Characterization in Natural Product Analysis 

Natural products have been a source of clinical drugs for a number of decades, with 

investigations into the discovery of novel therapeutic compounds peaking in the 

1970s and ‘80s.86 The increased resistance of bacterial strains to antibiotics has 

driven the need to develop new drugs;87-88 natural products, such as polyketides and 

non-ribosomal peptides, in particular have displayed a remarkable range of 

pharmaceutical properties, and subsequently account for a significant number of 

clinical drugs currently available.89-90 Polyketides include antibiotics (e.g. 

erythromycin A), anticancer drugs (e.g. epothilones), and cholesterol-lowering drugs 

(e.g. lovastatin).  Non-ribosomal peptides also include antibiotics, such as tyrocidine, 

as well as antifungal, antiviral, and immunosuppressant drugs.91   

The process of the discovery of natural product compounds, and its 

progression towards the development of new drugs, is challenging as it involves 

several stages, namely the extraction of the product from its source, concentration, 

fractionation, and purification yielding a single, bioactive compound.86  Structural 

characterization is necessary to eliminate already known compounds from further 

investigation, a process known as “dereplication”,92-94 by comparing the chemical 

and mass spectral properties of the unknown with the known compounds.  

Traditionally, structural information has been obtained using a variety of different 

analytical techniques, including nuclear magnetic resonance (NMR), mass 

spectrometry, and chromatographic separation techniques such as gas 

chromatography (GC), and liquid chromatography (LC).94  The timescale for the 

subsequent identification of the compound was considered to be a limiting factor in 

the discovery process, as structure determination would take on the order of weeks to 

months.  Improvements in resolution of analytical techniques like mass spectrometry 
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have reduced this timescale significantly, meaning the identification of new 

compounds can be achieved at a faster rate than was previously possible.92  High 

resolution mass spectrometry is generally used in the first instance to identify the 

molecular formula, which has the advantage that only micrograms of material is 

required, with NMR providing additional structural information.86  As a result, 

combining both of these techniques has proved to be a powerful method for 

elucidating the structures of novel compounds. 

 In this work, a method using complementary tandem mass spectrometry 

techniques has been developed for the structural characterisation of polyketides and 

non-ribosomal peptides, which is explored in chapters 2 and 3.   

1.7.2 Protein Binding Site Analysis of Anticancer Compounds  

Cisplatin [Pt(NH3)2Cl2] is one of the most widely used anticancer drugs due to its 

high success rate in the treatment of ovarian and testicular cancers.95   However, on 

entering the blood plasma, cisplatin binds to proteins; some of these, such as human 

serum albumin, are thought to play a role in the distribution of the drug,96 but with 

others, the binding is irreversible.  This causes the deactivation of the drug and 

reduced urinary excretion, resulting in deposition of platinum in tissue.97  It is 

believed that these interactions are the principal cause of the severe side effects 

observed, such as nephrotoxicity and ototoxicity.98  Various papers report the results 

of binding studies carried out with cisplatin and a variety of proteins such as human 

serum albumin,96 cytochrome c,97 ubiquitin,98 insulin,99 transferrin,100-101 and 

calmodulin.102-103 

Complexes based on alternative metals to platinum are being developed; in 

particular, compounds based on ruthenium are promising and there are two 
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compounds, namely NAMI-A104-105 and KP1019,106 that are currently in phase 2 of 

clinical trials.107  The major differences between ruthenium and platinum are the 

range of accessible oxidation states, coordination numbers, and geometries available.  

Potentially, ruthenium binding to biomolecules may be reversible, in contrast to 

platinum, which subsequently reduces the toxicity of the metal.  Ruthenium is in the 

same group of the periodic table as iron (group VIII) and may mimic iron in its 

binding to biomolecules which, as tumour cells have a great demand for iron, would 

enable the drug to be delivered more effectively to the target site.95, 108  Platinum also 

shows a lack of activity towards certain cancers, so developing different metal-based 

compounds might lead to effective treatment for other types of cancer.109   

Mass spectrometry has proved to be a powerful tool for the elucidation of the 

binding sites of metal complexes.  In particular, the use of FTICR-MS has been 

beneficial in this area due to the ultra-high resolving power and mass accuracy 

achievable, enabling clear isotope patterns to be distinguished.  Metals like platinum 

and ruthenium have distinct isotope patterns,110 enabling the identification of metal-

containing species to be made with high mass accuracies, therefore ensuring that 

confident assignments are made. 

 

1.8 Thesis Overview 

In this thesis, a number of different applications of FTICR mass spectrometry have 

been investigated where high mass accuracy is demonstrated to be essential in order 

to achieve the objectives of the projects.  Chapter 2 begins with the use of tandem 

mass spectrometry for the structural characterization of small molecules, specifically 

polyketides.  By combining CAD and EID, a method has been developed that 
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enables detailed structural information to be obtained on these compounds and 

allows two isomers to be distinguished.  In chapter 3 this method is extended so as to 

be applied to the larger class of natural products, the non-ribosomal peptides.  As a 

test case, the method is focussed on the compound actinomycin D and combines 

multiple ion isolation with tandem mass spectrometry to produce detailed, accurately 

calibrated structural information.  In chapter 4, tandem mass spectrometry is also 

used to develop a method for identifying the binding sites of potential ruthenium 

anticancer compounds on peptides and proteins.  The importance of obtaining mass 

accuracies below 1 ppm has been demonstrated and the coordination of ruthenium to 

certain amino acids has been seen for the first time.  The final chapters, 5 and 6, are 

further applications of FTICR mass spectrometry but are ongoing projects.  Chapter 

5 involves analysing mixtures where there are a large number of unknown peaks, and 

high resolving power and mass accuracy are necessary for the accurate identification 

of the different compounds.  The mixture used is alcohol, with FTICR mass 

spectrometry used specifically to identify differences in genuine and counterfeit 

vodkas.  Chapter 6 is an application involving MALDI and using carbon nanotubes 

as an alternative to a matrix for detecting peptides polymers.  Overall, this thesis has 

demonstrated a number of applications involving FTICR mass spectrometry, in 

which a combination of high resolution and mass accuracy are necessary to achieve 

the end goal.          
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Chapter 2:  Characterizing the 
Structures of Polyketides Using 
High Mass Accuracy Tandem Mass 
Spectrometry 
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2.1 Introduction 

Understanding the biosynthetic pathways of natural products such as polyketides is 

of great interest for the drug discovery process as it can enable scientists to perform 

modifications in order to generate novel compounds with bioactive properties.111  

Type I polyketides are produced through the action of a series of enzymes that are 

organized into modules forming an assembly line, and are known as polyketide 

synthases (PKSs).  These enzyme complexes are composed of individual domains, 

namely ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP), as 

shown in Figure 2.1 (A), and are coordinated within the complex so as to incorporate 

a small set of linear units into a chain through consecutive condensation reactions.112   

 

Figure 2.1: (A) Arrangement of the PKS domains, KS = ketosynthase, AT = acyl 

transferase, ACP = acyl carrier protein; (B) example building blocks in polyketide 

synthesis, adapted from reference [2] 

Polyether ionophores are a group of polyketides that comprise a carboxylate group, 

and several tetrahydropyran (THP) or tetrahydrofuran (THF) rings.  Amongst 

polyketides, polyether antibiotics constitute a unique class of compounds broadly 

used in veterinary medicine and in animal husbandry for their ability to complex 

inorganic cations and aid their transport across membrane barriers.113-115  There is, 
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however, a growing concern about the presence of these compounds in the 

environment; specifically, the potential toxicity to organisms in aquatic 

environments and the contamination of drinking water.  In order to quantify the 

amount of these antibiotics present in the environment, a reliable method of 

identification is needed.116-118  Different tandem mass spectrometry techniques have 

been applied to assist in the structural characterisation of polyketides.119-124  CAD119-

122 and IRMPD120 have been used previously and produce few diagnostic ions for 

macrolides such as erythromycin A.  This is due to the successive loss of water 

molecules being the dominant dissociation pathway under these conditions, resulting 

in little cleavage of the macrocycle itself.  Similar studies have been conducted on 

polyether ionophores such as lasalocid,113,125 tetronasin,114 and monensin.113  The 

ability of these compounds to complex metal ions has been utilised whereby the 

effect of adding different metal cations was investigated through a comparison of the 

CAD spectra obtained.  The location of the charge has been found to vary according 

to whether a metal cation or a proton is bound, resulting in different fragmentation 

patterns being accessed.113,119,120  The development of ion-electron fragmentation 

techniques has been advantageous in terms of providing complementary structural 

information to CAD and IRMPD; however, the use of odd-electron tandem mass 

spectrometry techniques, specifically electron induced dissociation (EID), has not, as 

yet, been explored as a method for characterising the structures of these molecules.  
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2.2 Experimental 

2.2.1 Chemicals and Reagents 

The polyketides erythromycin A, lasalocid A and iso-lasalocid A were provided after 

being isolated by fermentation of S. erythraea and S. lasaliensis, and extracted with 

ethyl acetate as previously reported.126,115  The extracts were concentrated and then 

dissolved in 50% methanol and 50% Milli-Q water (Millipore Inc., Durham, UK) 

prior to analysis by ESI.  Extracts containing intermediate mixtures were also 

provided after being extracted with ethyl acetate as previously described.115  HPLC 

grade methanol was purchased from Fisher Scientific (Loughborough, UK), and 

lithium chloride was obtained from Sigma Aldrich (Gillingham, UK).   

2.2.2 Analysis of Polyketides by ESI-MS 

The extracts were analysed on a 12 T Bruker SolariX FTICR mass spectrometer 

(Bruker Daltonics, Billerica).  The sodium and ammonium adducts of the 

polyketides occurred naturally in the cell extracts; the lithium adduct was produced 

by adding LiCl (1 mM) to the samples.  The samples were injected directly into the 

source using a syringe pump with a flow rate of 200 µL/hour and sprayed from a 

solution of methanol/water (50:50).  A nebuliser gas of nitrogen was used at a 

pressure of 1.2 bar, and a drying gas, also nitrogen, flowed at 4 L min-1 at 

temperature of 200 ºC.  A voltage of -4500 V was applied to the glass capillary for 

analysis in positive mode, and an offset of 500 V was applied between the capillary 

and the spray shield at the entrance to the instrument.  For CAD experiments, the 

precursor ion was isolated in the first quadrupole and fragmented in the collision cell 

with argon as the collision gas, and at energies of 18 V.  For EID experiments, the 

precursor ion was isolated in the quadrupole and externally accumulated in the 
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collision cell for 2-5 seconds before being transferred to the ICR Infinity Cell.35  The 

ions were then irradiated with electrons from a 1.7 A heated hollow cathode 

dispenser, biased with an offset potential of between 13 and 15 V, for 1 ms.  Fifty 

scans were recorded for CAD experiments, and 100 were recorded for EID 

experiments; both used a dataset size of 4M.  Trapping voltages were maintained at 

0.5 V on the front plate and 0.6 V on the back plate for all experiments.  In post-

processing, one zero-fill was added and a sine-bell multiplication apodisation 

function was applied; finally the data was calibrated both internally and externally. 

 

2.3 Results and Discussion 

2.3.1 Fragmentation of Erythromycin A 

In order to compare the fragmentation efficiency of EID to that of CAD, both 

techniques were initially performed on the molecule erythromycin A.  Erythromycin 

A is a macrolide antibiotic, consisting of a 14-membered macrocycle with two 

sugars (D-desosamine and L-mycarose) attached, that has been in clinical use for the 

treatment of infections by Gram-positive bacteria since 1952.  The main species 

observed in the ESI-MS spectrum of erythromycin A was that of the protonated 

molecule (m/z 734.47) and this was selected for fragmentation.  Figure 2.2 shows the 

EID (A) and CAD (B) spectra obtained for erythromycin A, and Figures 2.2 (C) and 

(D) illustrate the fragments detected using both the techniques.   
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Figure 2.2: CAD (A) and EID (B) spectra of erythromycin A (precursor ion m/z 

734.47), and identified fragments using CAD (C) and EID (D).  Harmonics of these 
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peaks are marked ω3 and ω5.  A full list of peak assignments can be found in Tables 

A-1 and A-2 of Appendix A 

Table 2.1 lists the most abundant cleavages of erythromycin A observed in both EID 

and CAD, together with the proposed molecular formulae of each fragment and its 

associated mass error.  The nomenclature system used here for fragment assignments 

is that each letter in the figure illustrations represents cleavage of that bond; the 

peaks are then assigned these letters depending on the bonds broken.  For example, 

the peak at m/z 604.37 assigned “ac” in Table 2.1, indicates a product ion formed 

through cleavage at the bonds labelled “a” and “c”, in the direction of the arrows 

shown in Figure 2.2 (D).   
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Table 2.1: Main fragment assignments of erythromycin A from CAD and EID 

(peaks used as internal calibrants are marked ▲) 

Observed m/z Proposed 
Formula 

Mass Error 
/ ppm 

Fragment 
Cleavages 

EID 
604.36912 C30H54NO11

+ -0.03 ac 
602.38994 C31H56NO10

+ 0.12 bd 
▲576.37429 C29H54NO10

+ 0.12 e 
514.33743 C27H48NO8

+ 0.14 f – C2H5O 
512.29823 C27H44O9

+• 0.23 g – C2H8O 
490.30105 C24H44NO9 -0.02 hi 
489.32988 C25H47NO8

+• 0.35 jk 
486.34228 C26H48NO7

+ -0.41 flm 
464.30067 C26H42NO6

+ 0.02 hk – H6O3 

472.29050 C24H42NO8
+ 0.02 il 

444.29557 C23H42NO7
+ -0.02 np 

429.24843 C22H37O8
+ 0.14 qr 

408.27474 C23H38NO5
+ 0.71 ij 

404.26415 C20H38NO7
+ -0.30 is 

▲365.23224 C21H33O5
+ -0.03 fg 

360.23796 C18H34NO6
+ -0.28 it 

335.18521 C19H27O5
+ -0.27 fguv 

▲174.11250 C8H16NO3
+ 0.00 w 

158.11760 C8H16NO2
+ 0.19 x 

 Mean Absolute Average 0.04  
 Std Dev. 0.25  

CAD    
658.41557 C34H60NO11

+ -0.79 a 
602.38949 C31H56NO10

+ -0.63 b 
592.36878 C29H54NO11

+ -0.61 c 
▲576.37407 C29H54NO10

+ -0.26 d 
500.32154 C26H46NO8

+ -0.50 ef – H2O 
444.29534 C23H42NO7

+ -0.54 gh – H2O 
438.32128 C25H44NO5

+ -0.27 fi – H4O2 

▲365.23227 C21H33O5
+ 0.05 jk 

360.23804 C18H34NO6
+ -0.06 hl 

316.21192 C16H30NO5
+ 0.22 fm 

307.19048 C18H27O4
+ 0.29 jnp 

158.11765 C8H16NO2
+ -0.57 q 

 Mean Absolute Average -0.30  
 Std Dev. 0.34  

 

As shown in Table 2.1, when an internal calibration was performed, the mass 

accuracy for each proposed formulae for the fragments is well below 1 ppm, 

ensuring confident assignment.  In order to achieve this, after an external calibration 
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was performed, a comparison with the CAD data was made and several peaks, 

present in both spectra, were chosen for internal calibration.  As can be seen from the 

data in the supplementary tables of Appendix A, the assignments did not change on 

internal calibration, but the mass accuracy improved to well below 1 ppm.  On this 

basis, the assignments of the product ions were made with greater accuracy so it is 

with greater confidence that the molecular formulae are presented and identification 

of the fragments made.   

As shown in Figure 2.2 (A), the intensities of the fragments formed through 

EID are about 100-fold less intense than the precursor ion.  Despite attempts to 

improve these intensities, including the use of a single frequency shot to improve the 

overlap of the ions with the electron beam,127 no significant increase was detected.  

Similar results have been observed previously with Wolff et al.7 and Yoo et al.9 

reporting intensities 50-100 fold and 50-200 fold lower than the precursors. Ly et al.3 

propose that the lower fragment intensities imply that the most frequent ion-electron 

interaction leads to the non-dissociative scattering of the electrons; however, a more 

likely explanation may be neutralisation of the fragments through interaction with 

the electrons.  

Although similar fragments were detected using both CAD and EID, a 

greater number and variety of product ions were detected by EID.  Fragmentation 

using CAD provides fewer ring cleavages and more neutral molecule losses, mainly 

water.  EID results in fewer neutral losses and more cleavage of the macrocycle, 

therefore providing more information about the structure of the polyketide.  It was 

thought that the charge would be located on the more basic amine group of the D-

desosamine moiety, rather than one of the carbonyl oxygen atoms.  However, since 

no fragmentation was observed in this ring, this is not likely to be the case.  Studies 
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carried out by Gates et al.121 used 18O-labelling to demonstrate that the first water 

loss in CAD occurred from the carbonyl at the top of the macrocycle, indicating that 

this is the likely location of the proton. 

CAD data for erythromycin A has been reported previously120-122 with few 

characteristic ions detected and mainly neutral, small molecule loss occurring.  The 

most abundant losses observed here were the same as those reported previously, 

including ions at m/z 716, corresponding to [M+H-H2O]+, and 698, corresponding to 

[M+H-H4O2]
+, formed through the sequential loss of water, and at m/z 576, 

corresponding to “d” in Figure 2.2A, formed through the loss of the L-mycarose 

group.  The data also shows cleavage of the intact D-desosamine sugar from the 

main ring, detected at m/z 158 (“q”), which has previously only been observed with 

IRMPD.120   Some of the fragments observed in CAD were also observed using EID; 

however, EID resulted in more extensive fragmentation of the macrocycle, enabling 

complementary data to be obtained.    

2.3.2 EID for Distinguishing Isomers: Lasalocid A and iso-Lasalocid A 

Two polyether isomers, lasalocid A and iso-lasalocid A, isolated from cultures of 

S.lasaliensis115 were both characterised by CAD and EID in order to determine if the 

greater fragment efficiency of EID could help distinguish the two polyether 

structures.  Lasalocid A (Figure 2.3) features a tetrahydrofuran (THF) and a 

tetrahydropyran (THP) ring, whereas iso-lasalocid A (Figure 2.4) comprises two 

THF rings.  Although investigations into the mechanism of formation of the two 

isomers have been previously conducted,128-129 as yet, there is no report of a method 

using mass spectrometry that can distinguish the subtle structural differences 

between the two molecules.  The main species observed in the ESI-MS spectra were 

that of the sodium and ammonium adducts; the protonated molecules were observed 
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but at low abundance.  As the sodium adduct was clearly the dominant ion present, 

this was selected for both CAD and EID.  Figure 2.3 shows the CAD (A) and EID 

(B) spectra of lasalocid A together with illustrations of the fragments detected by 

both techniques in Figures 2.3 (C) and (D).   
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Figure 2.3: CAD (A) and EID (B) spectra of sodiated lasalocid A (precursor ion m/z 

613.37) with illustrations of the detected fragments by CAD (C) and EID (D).  

Harmonics of these peaks are marked ω2 and ω3.  A full list of peak assignments can 

be found in Tables A-3 and A-4 of Appendix A 
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CAD of lasalocid A resulted in very little fragmentation of the molecule compared 

with EID.  Four major fragments were observed comprising two main chain 

cleavages and two cleavages of the tetrahydropyran ring, as illustrated in Figure 

2.3(C).  All other peaks observed were assigned as the loss of neutral molecules, 

mainly H2O and CO2, as was observed with erythromycin A.  In contrast, EID 

provided a much more detailed fragment pattern with cleavages in both the THF and 

the THP rings occurring, as well as along the main chain.  A number of 

complementary pairs were identified, mainly around the centre of the molecule, such 

as the pairs j and v, and m and s.  Previous work113,117,125 conducted on lasalocid A, 

where CAD was utilised, report a diagnostic ion at m/z 377, corresponding to the 

cleavage at “d” (Figure 2.3C), as well as the loss of several H2O molecules, which is 

consistent with the data presented here.   

The same experiments were conducted on iso-lasalocid A, and Figure 2.4 

shows the EID and CAD spectra, together with illustrations of the fragments 

detected by each technique. 
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Figure 2.4: CAD (A) and EID (B) spectra of sodiated iso-lasalocid A (precursor ion 

m/z 613.37); fragments identified by CAD (C) and EID (D).  Harmonics of these 

peaks are marked ω3.  A full list of peak assignments can be found in Tables A-5 and 

A-6 of Appendix A 
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As can be seen in both Figures 2.3 and 2.4, CAD did not provide much structural 

information on the two molecules so the more detailed EID spectra were analysed 

for key fragments that could be used to distinguish the two isomers.  Differences 

were observed between the EID spectra of the two isomers; specifically of interest 

were the fragments resulting from cleavage of the THP ring of lasalocid A and the 

THF ring of iso-lasalocid A.  Interestingly, cleavage of the terminal THF ring of iso-

lasalocid A was not observed, whereas the THP ring of lasalocid A was cleaved to 

form three fragments.  As this is where the structural difference between the two 

isomers occurs, it may be that this has a role in directing the fragmentation observed 

with EID.  The terminal THF ring was only observed to fragment when MS3 

experiments were conducted as discussed below.  

2.3.3 Effect of the Charge Carrier on the Fragmentation Pattern 

Given that previous studies with CAD113, 117,125 and EID83 have shown the number 

and type of fragments vary according to which cation is coordinated by the molecule, 

different precursor ions were selected for fragmentation, namely the lithiated species 

(m/z 597.39).  The protonated species (m/z 591.39) was not present in sufficient 

abundance to allow fragmentation with either CAD or EID, and the ammonium ion 

adduct (m/z 608.42) fragmented well with CAD but only to a limited extent with EID 

as shown in Figure 2.5.   
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Figure 2.5:  CAD spectra of Lasalocid A (A) and iso-Lasalocid A (B), NH4
+ adduct 

(precursor ion m/z 608.42); illustrations of the corresponding fragments identified for 

Lasalocid A (C) and iso-lasalocid A (D).  A full list of peak assignments can be 

found in Tables A-7 and A-8 of Appendix A 
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Figure 2.6 illustrates the fragments of the lithiated adduct of lasalocid A obtained by 

CAD (A) and EID (C), as well as the CAD (B) and EID (D) fragments of the 

lithiated adduct of iso-lasalocid A.    

 

 

Figure 2.6: Illustrations of the CAD and EID fragments of Lasalocid A (A and C) 

and iso-lasalocid A (B and D) with the lithiated precursor ion (m/z 597.39) selected 

for fragmentation.  A full list of peak assignments can be found in Tables A-9 to A-

12 of Appendix A  

The addition of the lithium ion to the molecules resulted in a similar EID 

fragmentation pattern as that observed for the sodium adduct, but provided a greater 

degree of fragmentation in CAD.  The advantage of using the lithium adduct is that 

nearly all fragments retain the lithium ion, which has a readily identifiable isotope 

pattern, as shown in Figure 2.7, and, combined with the high resolution of FTICR-

MS, means the fragments are easily distinguishable.   
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Figure 2.7: Natural abundance isotope pattern of lithium 

For iso-lasalocid A, the CAD spectrum showed much greater cleavage of the 

molecule than obtained with the sodiated species.  Interestingly, the EID spectra for 

the lithiated and sodiated adducts of iso-lasalocid A were almost identical, with no 

cleavage being observed in the terminal THF ring. 

2.3.4 MS3 experiments – CAD/EID of Lasalocid A and iso-Lasalocid A    

Due to the intense nature of the fragment at m/z 361.29, (m/z 377.27 with sodium 

ion), corresponding to “f” in Figures 2.6A and B, MS3 experiments were attempted 

in order to promote further cleavage of both isomers.  CAD was performed on the 

lithiated species at m/z 597.39 and high collision energies (22.0 V) were used so as 

to increase the intensity of the product ion at m/z 361.29.  This ion was then isolated 

in the ICR cell and fragmented further with EID.  Figure 2.8 illustrates the CAD/EID 

spectra of lasalocid A and iso-lasalocid A. 
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Figure 2.8: CAD/EID MS3 spectra of lasalocid A and iso-lasalocid A.  The lithiated 

adduct (m/z 597.39) was selected for CAD and the resulting product ion at m/z 

361.29 was isolated and fragmented further using EID.  A full list of peak 

assignments can be found in Tables A-13 and A-14 of Appendix A  

The spectra show that for both lasalocid A and iso-lasalocid A, upon further 

fragmentation of the selected ion using EID, different fragment patterns were 

obtained for the two isomers.  The intensities of the fragments shown in Figure 2.8 

are approximately 1000 times lower than the precursor ion.  This was expected due 

to the peaks in previous EID spectra already being 100-fold less intense than the 

precursor.  Despite this, the use of CAD combined with EID was successful for 

producing further fragmentation of the peak at m/z 361 corresponding to 

[C21H38O4Li] +.  This method was also applied to the equivalent sodiated fragment at 
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m/z 377 but no significant cleavage was observed.  Again, as with the EID spectra of 

the entire molecule, different fragments were observed for each isomer.  In this case, 

the THP ring of lasalocid A was not found to fragment, but the terminal THF ring of 

iso-lasalocid A was cleaved.  As differences were detected in the spectra for the two 

molecules, this method can now be exploited in order to determine which isomer is 

present in the intermediate structures as the biosynthesis proceeds. 

2.3.5 Structural Characterization of Biosynthetic Intermediates 

The isolation and identification of intermediate species represents a significant 

obstacle, as they remain covalently tethered to the PKSs and NRPSs throughout the 

assembly of the natural product.90  More recently, mass spectrometry has proved an 

extremely powerful tool for the detection of covalently-bound intermediates,130 and 

the investigation of different active site occupancy.131  However, the majority of 

enzyme-bound species remain undetectable due to their rapid elaboration, and novel 

approaches to biosynthetic studies are still needed in order to elucidate the molecular 

basis of the sophisticated PKS programming.  

Recently, a chemical method for identifying the intermediate structures along 

the biosynthetic pathways of polyketides has also been developed.115, 126, 132-133  This 

involves the capture and the off-loading of intermediates from polyketide synthases 

using synthetic mimics of malonate units that compete with the ACP domain for the 

growing polyketide chain (Figure 2.9); prematurely-truncated intermediates are 

generated and, unable to be “reloaded” onto the biosynthetic enzymes, they diffuse 

out of the active site.   
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Figure 2.9: Standard chain growth mechanism for polyketide biosynthesis (A); use 

of competing malonate mimic to trap intermediate structure (B), adapted from 

reference [2] 

Characterization of these intermediates can then be performed using high resolution 

tandem mass spectrometry techniques suitable for the analysis of small molecules, 

subsequently providing detailed insights into the biosynthetic pathways of these 

compounds.  

This method of using multiple tandem mass spectrometry techniques has 

shown great potential for obtaining detailed structural information on polyketides, 

and can be applied to identifying the structures of intermediates formed throughout 

the biosynthetic process.  The cell culture containing the off-loaded intermediates 

was analysed to determine if any structures could be identified.  Figure 2.10(A) 
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shows the mass spectrum obtained for the extract of the intermediates for lasalocid 

A.  The inset shows an expanded region of the spectrum in the expected m/z range of 

the intermediate, with the structure of the synthetic mimic used to off-load the 

intermediates shown in blue.  
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Figure 2.10: (A) Mass spectrum of the cell extract for lasalocid A, inset shows 

expanded region containing potential intermediate structures, and the chemical probe 

used to off-load the intermediates; (B) CAD spectrum of previously identified 

intermediate structure at m/z 694.44; (C) CAD spectrum of possible intermediate 

structure at m/z 570.37 
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As shown in Figure 2.10 (A), the synthetic mimic used to off-load the intermediates 

is identified as a major component at m/z 224.09 but there are a very large number of 

additional peaks in the mass spectrum, making identification of potential 

biosynthetic intermediates difficult.  The structures of a few intermediates have been 

characterised previously using an LC-MS method115 so these peaks were used as a 

starting point.  Figure 2.10 (B) shows the CAD spectrum of a proposed intermediate 

that was identified at m/z 696.44 together with a possible structure.  The main peak 

of interest is at m/z 377.62, which corresponds to one of the diagnostic ions 

identified for lasalocid A, as shown in section 2.3.2.  A few other peaks were also 

detected but, as before, CAD does not provide detailed structural information of the 

compound showing the need to also use EID.  In order to try and identify new 

intermediate structures, a few peaks in this m/z region were selected and fragmented 

using CAD.  Figure 2.10 (C) shows one such spectrum and, although the fragmented 

peak was not very intense, the main fragment observed was also that of m/z 377.62, 

therefore it is likely that this peak also corresponds to a biosynthetic intermediate.  

The use of this diagnostic peak in CAD can provide the first-step in the identification 

of new intermediates for lasalocid A and other polyketides.  More detailed structural 

information can then be provided by EID in order to elucidate the correct structure 

for the intermediate, with its additional advantage of being able to distinguish 

between lasalocid A and its isomer, iso-lasalocid A.  

EID was attempted on the two ions in Figure 2.10 (B) and (C); however, 

given that EID spectra of lasalocid A have shown the product ions to be 

approximately 100 times less intense than the precursor ion, the intermediates shown 

here were not present in sufficient abundance to use this technique successfully.  As 

EID is necessary to provide a greater amount of structural information on these 
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compounds, an additional analytical step is first required in order to purify and 

concentrate the mixtures containing the off-loaded intermediates.  This has started to 

be investigated using liquid chromatography in order to purify the cell extract and 

separate the intermediate compounds before analysis by mass spectrometry but this 

is an ongoing method development step and needs refining before it can be applied 

to the analysis of these intermediates.   

 

2.4 Conclusion 

This study has demonstrated the effectiveness of combining CAD and EID as 

fragmentation techniques for singly charged polyketide molecules.  Using EID 

results in more extensive fragmentation compared with CAD, and so enables detailed 

structural information to be obtained, especially when utilising the different adducts 

formed through coordination of metal cations.  The ability of the technique to 

distinguish between isomers has been demonstrated for lasalocid A and iso-lasalocid 

A, with different fragmentation patterns observed in both EID and CAD/EID 

experiments.  Further application of the technique to biosynthetic intermediates will 

help achieve structural elucidation of these molecules with a high degree of 

accuracy, enabling a detailed understanding of the biosynthetic pathways of these 

natural products.       
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Chapter 3: Characterizing the 
Structures of Non-Ribosomal 
Peptides Using Tandem Mass 
Spectrometry 
 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been partially reproduced from the following publication: 

R.H.Wills and P.B.O’Connor, Characterizing the structure of Actinomycin D using 

multiple ion isolation and electron induced dissociation, accepted in JASMS, 2013. 
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3.1 Introduction 

Non-ribosomal peptides, like type I polyktides, are biosynthesized by large 

multienzyme complexes known as non-ribosomal peptide synthetases (NRPSs), 

which consist of a series of modules divided into catalytic domains.  The three main 

domains utilize a large variety of amino acids to assemble structurally and 

functionally diverse peptides with interesting pharmaceutical properties, and include 

A (adenylation), PCP or T (peptidyl carrier protein or thiolation), and C 

(condensation) domains, 112, 134-135 as illustrated in Figure 3.1.  

 

 

Figure 3.1: (A) Arrangement of the C-A-PCP domains comprising NRPS modules; 

(B) example building blocks for non-ribosomal peptide synthesis  

This process is not limited to the 20 proteinogenic amino acids that constitute 

ribosomally-produced peptides; instead there are approximately 500 different 

building blocks, including modified amino acids, such as ornithine, fatty acids, and 

α-hydroxy acids. 134, 136 The large variation in monomer units can result in the 

formation of linear, cyclic, and branched peptides, which can be further modified by 

acylation, glycosylation or heterocyclic ring formation.  As a result, non-ribosomal 

peptides are structurally diverse and have a range of biological activities, which can 

be exploited in the drug discovery process. 134-135, 137  
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Sequencing non-ribosomal peptides is a challenging process, in that hundreds of 

possible building blocks are potentially present in a compound.  These building 

blocks are often variations of the structures of the twenty standard amino acids, are 

often non-linear, include a non-standard backbone, and have modified structures; all 

of these factors complicate tandem mass spectra, making structural characterization 

difficult.138  Several mass spectrometry based approaches have been reported for the 

sequencing of cyclic or non-ribosomal peptides,138-141 including the use of multiple 

stages of tandem mass spectrometry.138, 140  One of the difficulties faced with cyclic 

peptides is that fragmentation can occur through multiple ring-opening pathways, 

resulting in product ions that can originate from any of these different forms.140  

Multiple stages of tandem mass spectrometry therefore result in the successive 

deletion of amino acids, enabling the sequence to be constructed in the correct order. 

The use of ion-electron interactions, specifically electron capture dissociation 

(ECD), has proved useful in the fragmentation of cyclic peptides,63 through the 

observation of a radical cascade mechanism that results in the production of 

numerous fragments.  Combining CAD and EID with the high resolution and mass 

accuracy of FTICR mass spectrometers, enables significant structural information to 

be obtained on a short timescale, making mass spectrometry a powerful tool for the 

analysis of these compounds. 

Another advantage of using FTICR mass spectrometry is its ability to isolate 

ions of interest in the ICR cell itself, as well as externally.  This enables the 

application of ion isolation techniques such as stored waveform inverse Fourier 

transform (SWIFT),142 correlated harmonic excitation field (CHEF),44 or multi-

CHEF.  The latter technique has been demonstrated for the accurate analysis of the 

peptide antibiotics rapamycin45 and the muraymycins.143 The compounds of interest 
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were isolated along with a set of reference peaks and fragmented by SORI-CAD 

(sustained off resonance irradiation),60 in multiple MSn stages, enabling structure 

elucidation through accurate mass assignments of the product ions.  This technique 

has facilitated the assignment of the elemental formulae of unknown compounds.  

 

3.2 Experimental 

3.2.1 Chemicals and Reagents 

Actinomycin D (Figure 3.2) and vancomycin were prepared in acetonitrile/water 

(50:50) at a concentration of 0.5 µM.  The sodium, lithium, potassium, and silver 

adducts were produced by adding NaCl, LiCl, KOH, and AgNO3 (1 mM) to the 

samples.  D-Arginine was prepared in Milli-Q water (Millipore Inc., Durham, UK) at 

a concentration of 1 mM.  Actinomycin D, vancomycin, and D-arginine were all 

purchased from Sigma Aldrich (Gillingham, UK).  Acetonitrile, sodium chloride, 

lithium chloride, potassium hydroxide, and silver nitrate were all purchased from 

Fisher Scientific (Loughborough, UK). 

3.2.2 Analysis by MS/MS 

The samples were analysed on a 12 T Bruker SolariX FTICR mass spectrometer 

(Bruker Daltonics, Coventry, UK), using a nanospray ionization source.  A capillary 

voltage of -900 V was applied, together with a drying gas flow rate of 2.5 L min-1 

and temperature of 180 ºC, and a nebuliser gas pressure of 1.2 bar.  For CAD 

experiments, the precursor ion was isolated in the first quadrupole and fragmented in 

the collision cell with argon at collision energies of 12 V, and an isolation window of 

4 m/z.  For EID experiments, the precursor ion was isolated in the quadrupole and 

externally accumulated in the collision cell for 2-5 seconds before being transferred 
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to the ICR Infinity cell.35  The ions were then irradiated with electrons from a 1.7 A 

heated hollow cathode dispenser, biased with an offset potential of between 13 and 

15 V, for 10-50 ms.  In-cell isolation was conducted using multi-CHEF,45 whereby 

the precursor ion and selected calibrant ions of D-arginine clusters were selected 

simultaneously, before being irradiated with electrons, using the same experimental 

parameters as for EID-only experiments.  Trapping plate voltages of 0.5 V and 0.6 V 

were applied to the front and back trapping plates respectively, with dataset sizes of 

4 MW and 100-150 scans recorded.  Finally, post-processing functions of one zero-

fill and sine-bell apodisation were applied. 

 

3.3 Results and Discussion 

3.3.1 CAD and EID of Actinomycin D 

The structure of the non-ribosomal peptide actinomycin D, shown in Figure 3.2, is 

well characterized and, as such, was used as a test case for comparing structural data 

obtained using the complementary techniques CAD and EID.   

 

Figure 3.2: The structure of the non-ribosomal peptide, actinomycin D 
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This non-ribosomal peptide is composed of two identical peptidic rings and a 

chromophore composed of three aromatic rings.  The sequence of the rings includes 

the amino acids valine, threonine and proline, with two modified amino acids, 

namely methyl glycine and methyl-valine, as well as a lactone moiety.  Figure 3.3 

shows the CAD (A) and EID (B) obtained for protonated actinomycin D (m/z 

1255.63 Da), with Figures 3.3 (C) and (D) illustrating the main product ions 

assigned. 
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Figure 3.3: CAD (A) and EID (B) mass spectra of protonated actinomycin D (m/z 

1255.63 Da), with illustrations of the fragments assigned from CAD (C) and EID 

(D).  A full list of peak assignments can be found in Tables A-15 and A-16 of 

Appendix A  
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Fragmentation by CAD, as shown in Figure 3.3, is limited but some sequence 

information is obtained, which is in agreement with data reported previously.144 The 

peptidic rings are identical, so the fragments illustrated could originate from either 

one.  Barber et al.144 suggested initial ring opening occurs at the lactone moiety, i.e. 

at the ester bond between the bridging oxygen and threonine side chain (highlighted 

in Figure 3.3C as “a”), resulting in the successive loss of amino acids.  Ring opening 

at this linkage has been shown to occur preferentially in the presence of sodium ions, 

due to the strong interaction between Na+ and the bridging oxygen, resulting in the 

formation of a linear acylium ion.145 The main fragments detected here support this 

occurrence for the protonated molecule also, with additional peaks observed at m/z 

974.46 (“ab”), 928.46 (“cd”), 875.39 (“ae”), and 829.39 (“cf”), which provide new 

diagnostic ions that could be used for identifying this cyclic structure.   

EID has proved to be beneficial for structural characterization, in that a 

greater degree of fragmentation is generally observed compared to CAD.  As shown 

in Table 3.1, sixteen extra peaks are observed, which are not restricted to the b/y ion 

formation observed in CAD through preferential cleavage of the amide bonds. 
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Table 3.1: Main fragment assignments of actinomycin D from CAD and EID (peaks 

used as internal calibrants are marked ▲) 

Observed m/z 
Proposed 
Formula 

Mass Error 
/ ppm 

Fragment 
Cleavages 

CAD    
974.46184 C48H64N9O13

+ 0.03 ab 
▲956.45129 C48H62N9O12

+ - ab – H2O  
928.45644 C47H62N9O11

+ 0.12 cd 
875.39345 C43H55N8O12

+ 0.06 ae 
▲857.38288 C43H53N8O11

+ - ae – H2O 
829.38784 C42H53N8O10

+ -0.10 cf 
657.26635 C34H37N6O8

+ -0.60 bcgh 
558.19828 C29H28N5O7

+ -0.07 bcgi 
▲459.12992 C24H19N4O6

+ - cegi 
399.26020 C19H35N4O5

+ 0.00 jk 
EID     

1183.61508 C59H83N12O14
+ 0.39 lm 

1156.56816 C57H78N11O15
+ 0.71 en 

1127.54180 C56H75N10O15
+ 0.90 eqr 

1124.54153 C56H74N11O14
+ 0.36 cp 

1057.49868 C52H69N10O14
+ -0.23 ft 

974.46146 C48H64N9O13
+ -0.36 ab 

▲956.45126 C48H62N9O12
+ - ab – H2O 

928.45676 C47H62N9O11
+ 0.46 cd 

875.39296 C43H55N8O12
+ -0.45 ae 

▲857.38274 C43H53N8O11
+ - ae - H2O 

829.38744 C42H53N8O10
+ -0.58 cf 

803.37273 C40H51N8O10
+ 0.57 fm 

776.36116 C39H50N7O10
+ -0.27 u 

675.27686 C34H39N6O9
+ -0.65 bcgh + H2O 

657.26677 C34H37N6O8
+ 0.05 bcgh  

576.19840 C29H30N5O8
+ -0.38 bcgi + H2O 

558.19840 C29H28N5O7
+ 0.14 bcgi 

508.27650 C24H38N5O7
+ -0.16 v 

▲459.12998 C24H19N4O6
+ - cegi 

431.13515 C23H19N4O5
+ 0.35 cfgi 

399.26009 C19H35N4O5
+ -0.28 jk 

381.24968 C19H33N4O4
+ 0.13 kx 

354.23861 C18H32N3O4
+ -0.34 lw 

300.19169 C14H26N3O4
+ -0.30 nx + H2O 

282.18121 C14H24N3O3
+ -0.04 nx 

169.09707 C8H13N2O2
+ -0.47 np 

 

Average (CAD) 
                (EID) 
Std. Dev. (CAD) 
                 (EID) 

0.14 
0.37 
0.19 
0.21  
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The same nomenclature system for fragment assignments used in chapter 2 is used 

here.  Each letter in the illustrations in the figures represents cleavage of that bond; 

the peaks are then assigned these letters depending on the bonds broken.  For 

example, the peak at m/z 974.46 assigned “ab” in Table 3.1, indicates a product ion 

formed through cleavage at the bonds labelled “a” and “b”, in the direction of the 

arrows shown in Figure 3.3 (D).   

A technique such as EID that can cause greater fragmentation of a molecule 

will be extremely beneficial for the characterization of unknown compounds.  One 

additional feature observed is that of complementary fragment pairs, for example the 

peaks and m/z 974 and 282.  These peaks correspond to cleavages at “ab” and “nx”, 

shown in Figure 3.3 (D), which helps improve the confidence of the peak 

assignments since the whole ion is being detected. 

3.3.2 Changing the charge carrier in EID  

It has been shown previously82-83, 146 that changing the charge carrier from a proton 

to a metal cation, such as sodium or lithium, can affect the resulting fragmentation 

spectrum, with lithium in particular improving fragmentation in CAD.  Figure 3.4 

shows the EID spectra obtained for the sodium adduct of actinomycin D (A) and the 

lithium adduct (B), with illustrations of the fragments assigned in (C) and (D).  
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Figure 3.4: Comparison of EID spectra for Actinomycin D, with fragmentation of 

the sodium adduct, m/z 1277.62 Da (A), and lithium adduct, m/z 1261.64 Da (B), 
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with illustrations of the fragments detected (C and D).  A full list of peak 

assignments can be found in Tables A-17 and A-18 of Appendix A  

The sodium adduct was found to be more effective in producing fragments by EID, 

with cleavage of both peptide rings occurring, as well as cleavage of the 

chromophore (shown by cleavage site “u” in Figure 3.4).  In addition to the main 

ring fragments, a number of small neutral losses were observed, including 

predominantly CO, H2O, NH3 and CH2, therefore giving an indication of the 

functional groups attached to the main ring.  Fragmentation of the lithium adduct 

was somewhat limited; the work conducted on polyketides demonstrated more 

effective fragmentation in EID with lithium than sodium.  Non-ribosomal peptides 

are larger molecules than polyketides, so it is plausible that a larger charge carrier is 

required to direct fragmentation. 

3.3.3 CAD and EID of Vancomycin 

Vancomycin is an example of one of the larger peptide antibiotics with a mass of 

1448 Da, and was fragmented by using both CAD and EID to determine whether 

there is a mass restriction for this method of structural characterization.  Figure 3.5 

shows the CAD spectra of (A) the lithium adduct, and (B) the sodium adduct of 

vancomycin, with the corresponding fragments shown in Figures 3.5 (C) and (D) 

respectively. 
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Figure 3.5: (A) CAD spectrum of the lithium adduct of vancomycin; (B) CAD 

spectrum of the sodium adduct of vancomycin, with inset illustrating an expanded 

region at m/z 1020 to 1140; (C) and (D) illustrations of the main fragments observed 

for the lithium adduct and sodium adduct respectively indicated by red arrows 

As shown in Figure 3.5, fragmentation of the sodium adduct is more extensive than 

the lithium adduct, but both are still fairly limited in terms of providing structural 

information on this compound.  To determine whether a larger charge carrier would 

aid further fragmentation of the resulting ion, potassium (K+) and silver (Ag+) 
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adducts were fragmented by CAD.  Figure 3.6 shows the CAD spectrum of the 

potassium adduct of vancomycin with an illustration of the fragments observed. 

 

Figure 3.6: CAD spectrum of the potassium adduct of vancomycin, with the inset 

illustrating the main bond cleavage sites observed 

Although the silver adduct was also fragmented by CAD, it did not provide any more 

detailed structural information than that obtained with the lithium, sodium and 

potassium adducts.  As shown in Figure 3.6, use of a larger charge carrier such as 

potassium did not increase the degree of fragmentation observed; however, given 

similar fragments are observed with each carrier, this is more likely to be an 

indication of the difficulty in fragmenting the ring system of the molecule, 

particularly as the charge appears to be located in one of the sugar rings.  This is 

indicated by the product ion formed by cleavage at “c” which was observed both 

with and without the potassium adduct, showing it had been cleaved with this sugar 
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ring.  As this location of the charge carrier is removed from the rest of the molecule, 

cleavage within the main ring system is unlikely.   

In addition, due to the increased size of vancomycin compared to 

actinomycin D, the 1+ species, [M+K]+, was only present at low abundance, with the 

2+ species, [M+K+H]2+, being the dominant charge state through addition of a 

proton as well as the metal cation.  Since the [M+K]+ species was not present in 

sufficient abundance, EID could not be performed successfully.  There are other 

alternative techniques to EID that may prove more successful in this case.  Using 

ECD or hot ECD on the [M+K+H]2+ species may cause fragmentation similar to that 

observed with ECD.  Alternatively, the use of MS3 techniques such as that utilised in 

chapter 2 on polyketides where EID is perfomed on the most abundant fragment 

observed in the CAD spectrum in order to fragment this part of the ion.  IRMPD 

could also be used first in order to activate the ion for fragmentation by either of 

these techniques.  Since fragmentation of vancomycin was difficult using EID and 

needed further investigation, the remaining experiments were conducted on 

actinomycin D only. 

3.3.4 Combining EID and Multiple Ion Isolation for Internal Calibration 

Although EID has proved to be a reliable technique for obtaining structural 

information on these types of compounds, there is a limitation to the method as 

demonstrated above.  In order to achieve an accurate internal calibration for the 

product ions, a comparison of the peaks in both the CAD and EID spectra was made 

to identify a selection of peaks that could be used for internal calibration.  Peak 

assignments following a lock mass calibration (using the precursor ion peak) 

revealed a number of fragments that were the result of a water loss, making them 

easily identifiable and usable as internal calibrants.  Although this method has been 
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shown to work well, there are still many different possible combinations of 

elemental formulae for a given fragment, particularly when working with 

compounds that are generally >1 kDa in mass, making peak assignment more 

challenging.  Additionally, when dealing with unknown structures, such neutral 

losses may not always be so easily identifiable, and therefore it may be difficult to 

find suitable peaks to use as internal calibrants.   

In order to overcome the difficulties in internal calibration, multiple ion 

isolation was utilised, whereby the sample solution was mixed with a solution of an 

internal calibrant, in this case D-arginine, which, at a high enough concentration 

(~100 µM), generates clusters over a relevant mass range for the product ions.  The 

calibrant peaks in the desired mass range were isolated as well as the actinomycin D 

precursor ion (both sodium and lithium adducts were used), and were detected with 

the product ions generated through performing EID.  Although the arginine clusters 

are also exposed to the electron beam, and should therefore fragment, only a slight 

decrease in the relative intensities of these peaks (compared to the precursor ion 

peak) was observed with EID turned on, as shown in Figure 3.7.   
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Figure 3.7: (A) Isolation of the arginine clusters and the sodiated precursor of 

actinomycin D without EID; (B) Isolation of the arginine clusters (*) with EID on 

Dissociation therefore simply reduces the size of the clusters so there is no observed 

change in the m/z of these peaks making them ideal to use as internal calibrants.  

This method enables an accurate internal calibration to be performed and confident 

assignments to be made.  

Figure 3.8 shows the EID spectra obtained for the sodium adduct (A) and 

lithium adduct (B) of actinomycin D, combined with multiple ion isolation, whereby 

four peaks of arginine clusters were isolated simultaneously and used as internal 

calibrants.  Figures 3.8 (C) and (D) illustrate the fragments identified for both 

adducts. 
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Figure 3.8: A comparison of EID spectra for the sodiated (A) and lithiated (B) 

actinomycin D, combined with multi-CHEF, with illustrations of the fragments 

identified; cleavages highlighted in red are new peaks detected using this method.  



103 
 

The peaks due to arginine clusters, used as internal calibrants, are marked with *.  A 

full list of peak assignments can be found in Tables A-19 and A-20 of Appendix A 

The fragments of actinomycin D shown in red in Figures 3.8 (A) and (B) indicate 

additional cleavages that were not observed when using EID alone.  By combining 

EID with multiple ion isolation, a much greater degree of fragmentation of the 

peptide was achieved.  This is presumably due to the increase in intensities of the 

product ion peaks relative to the precursor (discussed in section 3.3.5), whereby 

peaks that were most likely hidden in the baseline when EID was applied without 

multiple ion isolation (Figure 3.4) can now be observed.  The sodium adduct, as 

before, produced a greater degree of fragmentation of both rings, enabling detailed 

structural characterization to be performed.  The use of the arginine clusters as 

internal calibrants provided a reliable, accurate method for internal calibration, with 

mass accuracies of all peaks calculated to be well below 1 ppm.  Table 3.2 provides a 

comparison of mass accuracy for a selection of peaks in the EID spectrum of the 

sodium adduct, with and without multiple ion isolation.  
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Table 3.2: A comparison of mass accuracies for a selection of assigned product ions, 

with and without the use of multiple ion isolation, for the sodium adduct of 

actinomycin D 

Proposed 
Formula 

Fragment 
Cleavage 

Mass Error 
/ ppm 

Without 
CHEF 

Mass Error / 
ppm 

With CHEF  

C61H86N12O14Na+ ab 0.34 0.00 
C60H83N11O15Na+ cd 1.02 0.11 
C57H79N11O15Na+ fg 0.67 0.11 
C56H75N11O15Na+ hi 0.09 -0.28 
C55H75N11O13Na+ dj 0.50 -0.09 
C48H61N9O12Na 

+ jr -0.01 -0.42 
C42H54N8O10Na+ js -0.67 -0.35 
C39H47N7O10Na+ t 0.13 0.36 
C38H49N7O9Na+ u 0.22 -0.42 
C24H37N5O7Na 

+ λ -0.57 -0.26 

 
Absolute Average 

Std. Dev. 
0.42 
0.32 

0.24 
0.14 

 

It is clear to see that by using multiple ion isolation, a more accurate internal 

calibration is achieved, enabling the fragments assignments to be made with greater 

confidence.  Both the absolute average and standard deviation of the mass accuracy 

values for the selected peaks in Table 3.2 are reduced by approximately half, 

showing the calibration is more consistent, and thereby providing a more reliable 

method for characterizing the structures of unknown compounds. 

3.3.5 Improving Fragment Efficiency in EID 

A further limitation currently associated with EID is the significantly lower peak 

intensities observed compared to the precursor ion.  Low fragment intensities have 

been reported previously in EID experiments, with Wolff et al.147 and Yoo et al.148 

reporting intensities 50-100 fold and 50-200 fold lower than the precursors.  

Although the signal-to-noise ratio in FTICR is such that the fragments are still 

identifiable in the noise, potentially there are many more peaks hidden in the noise 
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that may provide additional important structural information.  This is illustrated by 

Figure 3.9, which shows an expanded region of the EID spectra of the sodiated 

adduct of actinomycin, both with and without multiple ion isolation. 

 

 

Figure 3.9: Expanded region m/z 720-900 of EID spectra of actinomycin D, without 

the use of multiple ion isolation (A); and with multiple ion isolation (B).  The peaks 

due to arginine clusters, used as internal calibrants, are marked with * 

Low product ion peak intensity is a feature of tandem mass spectrometry techniques 

involving electron interactions, the most reported of which is observed in electron 

capture dissociation (ECD).  A number of factors have been proposed to account for 

the low fragment intensities including charge neutralisation, an increased number of 
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fragmentation pathways,149 misalignment of the electron beam and ion cloud, and 

magnetron motion of the ions.127  While charge neutralisation could account for 

some decrease in product ion intensity, it cannot explain the continual observation of 

the precursor signal.149 A possible explanation for this occurrence is the generation 

of an electric field produced by space charge effects of the electron beam, that can 

trap a population of ions in a potential well and therefore prevent them from 

interacting with the electron beam.150 Misalignment of the electron beam and ion 

cloud has been investigated,127, 150 and manipulation of the ion cloud within the ICR 

cell has been shown to improve fragment efficiencies.103, 127  SORI-CAD60 causes 

radial oscillations of the ion cloud as they are activated for dissociation; combining 

this technique with ECD has been shown to increase fragment intensities as the ions 

are pushed into the electron beam.127   

As can be seen in Figure 3.8B, an additional advantage of using multiple ion 

isolation with EID is that the intensities of the product ion peaks are increased by a 

factor of ~25 compared to those in Figure 3.8A.  Instead of fragments that are on the 

order of a few hundred times less intense, with in-cell isolation, the peaks can be 

observed with small, or even no scaling of the spectrum.  An increase in ECD 

efficiency has been demonstrated by using a single frequency shot103, 127 at m/z 100 

to improve the overlap between the ion and electron beams.  In this case, multiple 

ion ejection occurs through using multi-CHEF to isolate the precursor ion.  It is 

possible that this method of in-cell isolation simply improves the overlap between 

the ion cloud and the electron beam to such an extent that much more efficient 

fragmentation of the precursor can be achieved.  This method therefore has potential 

for providing detailed structural information with a high degree of accuracy for 

characterising unknown compounds.   
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3.4 Conclusion 

The tandem mass spectrometry techniques of CAD and EID have proved to be 

powerful tools for elucidating structural information on the non-ribosomal peptide, 

actinomycin D.  Combining EID with the multiple ion isolation in the ICR cell 

improves this method two-fold; firstly, by providing an accurate internal calibration 

for confident assignment of the fragments, and secondly, by increasing the intensities 

of the fragment peaks, resulting in a greater degree of fragmentation of the precursor.  

The use of tandem mass spectrometry techniques for the analysis of natural products 

is becoming more prominent and, with such detailed structural information able to be 

obtained relatively easily, will be extremely valuable for aiding in the discovery of 

novel compounds. 
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Chapter 4:  Insights into the 
Binding Sites of Organometallic 
Ruthenium(II) Complexes on 
Peptides  
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4.1 Introduction 

Organometallic ruthenium(II) compounds, such as those in Figure 4.1, containing η6-

arene ligands have shown promising anticancer activity in vitro against a range of 

types of cancer cells, including cisplatin-resistant cells, as well as activity in vivo.151-

153  The arene stabilises the ruthenium(II) in its 2+ oxidation state,154 and research 

has shown that increasing the size of the arene increases the cytotoxicity of the 

ruthenium(II) arene complex.95, 151 The N,N-chelating ligand provides additional 

stabilisation for the compound, and the chloride ligand is substituted by an aqua 

ligand under physiological conditions, so as to facilitate the binding of the 

ruthenium(II) to the different biomolecules.  In contrast to cisplatin, which is square 

planar with two chloride ligands, these ruthenium(II) compounds are pseudo-

octahedral and, potentially, have only one free reactive coordination site available 

for binding.  In order to assess the mode of binding of the compounds to peptides, 

these compounds were chosen as they carry variation in the chelating ligand.  In this 

way, the role of steric and electronic properties in controlling a particular binding 

mode can be investigated.  

The binding of ruthenium(II) compounds to proteins has started to be 

investigated110, 155-163 but, as yet, these studies are not as extensive as for cisplatin.  

Such binding studies are important in order to fully understand their mechanism of 

action and to allow reversal of any side effects due to protein binding of ruthenium.  

The mode of action of ruthenium(II)-based drugs is thought to differ significantly 

from that of platinum-based drugs like cisplatin.  While cisplatin binds to the DNA 

of cancer cells, research into the mechanism of ruthenium(II)-based drugs has started 

to suggest alternative targets, including proteins involved in cellular signalling 

pathways,162, 164 and the histone proteins of nucleosome core particles.165 Williams et 
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al.155 have shown that ruthenium(II) arene complexes can bind to the methionine 

residue of the peptide substance P.  Wang et al.110 and McNae et al.156 have also 

reported on binding to the imidazole nitrogen atom of histidine, whilst Casini et 

al.160 report the binding to cysteine residues through the displacement of zinc from 

metallothionein-2. 

Insulin is a small (~5.7 kDa) protein with two peptide chains connected 

through two disulfide bonds, with a third intramolecular disulfide bond in the A-

chain.  It is produced in the pancreas and is vital for the regulation of blood glucose 

levels.  The interaction of cisplatin with insulin has been studied previously99 and 

has shown that platinum binds preferentially to the two histidine residues, as well as 

the N-terminus of the B chain.  Ruthenium(II) has been observed to bind to free 

cysteine in HSA;161 insulin was therefore chosen in order to determine the binding 

sites in the presence of disulfide bonds.  The sulfhydryl group of cysteine is easily 

oxidised to sulfenic acid (Cys-SOH), a species that is not uncommon in proteins, but 

is unstable and so readily reacts, either with a thiol to form a disulfide bond, or 

through further oxidation to form sulfinic acid (Cys-SO2H) or sulfonic acid (Cys-

SO3H).166-167 The conversion of cysteine to the sulfenic/sulfinic/sulfonic acids is an 

important post-translational modification that is involved in regulating protein 

function, specifically signal transduction pathways, in cells.168-169 In order to 

investigate binding to cysteine in its oxidised form, the ruthenium(II) compounds 

were also reacted with oxidised insulin B-chain, where the two cysteine residues are 

in the form of cysteine sulfonic acid. 
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4.2 Experimental 

4.2.1 Chemicals and Reagents 

Angiotensin(II), bombesin, substance P, oxidised insulin B-chain, glutathione 

(oxidised and reduced), and insulin were purchased from Sigma Aldrich 

(Gillingham, UK) and dissolved in Milli-Q water (Millipore Inc., Durham, UK) to 

concentrations of 1 mM.  The ruthenium(II) compounds (AH076 and AH078, Figure 

4.1) were provided after synthesis as described in the literature.154  Methanol, 

acetonitrile and formic acid were purchased from Fisher Scientific (Loughborough, 

UK).  Hydrogen peroxide (30%) was purchased from Sigma Aldrich (Gillingham, 

UK). 

4.2.2 Reaction of Ruthenium(II) Complexes with Peptides 

Aqueous solutions of angiotensin(II), bombesin, oxidised insulin B-chain, 

glutathione, and insulin (1mM), and the ruthenium(II) compounds (1 mM) were 

prepared.  Reaction mixtures were prepared using a starting volume of 100 µL of the 

peptide/protein solution and mixing with the ruthenium(II) compounds in molar 

ratios of 1:1, 1:2 and 1:10.  The mixtures were then incubated at 37°C for 48 hours.  

Oxidation of glutathione was performed using hydrogen peroxide (30%) in a molar 

ratio of 1:1 and reacted at 37°C for 2 hours.  Prior to analysis by mass spectrometry, 

the peptide/protein mixtures were diluted to a concentration of 0.5 µM in a solution 

of 50% methanol and 0.1% formic acid. 

4.2.3 Analysis by ESI-MS 

The samples were analysed on a Bruker solariX FTICR mass spectrometer (Bruker 

Daltonics, Coventry, UK).  The samples were injected into the electrospray 

ionisation source using a syringe pump with a flow rate of 200 µL/hour.  A drying 
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gas flow rate of 4 L min-1 and temperature of 220 ºC were used, with a nebuliser gas 

pressure of 1.2 bar.  A voltage of -4500 V was applied to the capillary for analysis in 

positive mode, with an offset of 500 V applied to the spray shield.  For CAD 

experiments, the precursor ion was isolated with a window of 4 m/z using the 

quadrupole, and fragmented in the collision cell using argon with collision energies 

between 11 and 13 V for peptides, and 20-22 V for proteins.  The peptide ions were 

accumulated for 1 second, and protein ions accumulated for slightly longer at 1.5 

seconds, with 4 MW datasets and 100 scans recorded per experiment.  Trapping 

potentials of 0.5 V and 0.6 V were applied to the front and back trapping plates 

respectively.  For ECD experiments, the precursor ion was isolated using the 

quadrupole and externally accumulated in the collision cell for 2-5 seconds before 

being transferred to the ICR Infinity cell.35  The ions were then irradiated with 

electrons from a 1.7 A heated hollow cathode dispenser, biased with an offset 

potential of 1.4 V, for 80-100 ms.  Datasets of 4 MW and 50 scans were recorded per 

experiment.  All spectra were post-processed using one zero-fill and a sine-bell 

apodisation function.  Internal calibration was performed on the spectra using the 

peptide precursor peaks with different numbers of charges; CAD spectra were 

calibrated using known b- and y-ion m/z values of the peptides, likewise ECD 

spectra were calibrated using known c- and z•-ion m/z values.  Peak lists are included 

in Appendix B with calibrant values marked. 
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4.3 Results and Discussion 

4.3.1 Compounds AH076 and AH078 

The binding of two different ruthenium(II) [(η6-arene)Ru(N,N)Cl]+ compounds 

where arene/N,N = biphenyl (bip)/bipyridine (bipy) for compound AH076, and 

biphenyl (bip)/o-phenylenediamine (o-pda) for compound AH078, shown in Figure 

4.1, was initially investigated using three standard peptides, namely angiotensin(II), 

bombesin, and substance P.   

 

 

 

Figure 4.1 The ruthenium(II) complexes AH076 and AH078  

Both ruthenium(II) complexes have a “piano-stool” geometry formed through the 

coordination of an arene (occupying three coordination sites), a chelating ligand, and 

a chloride ligand.170 The FTICR mass spectra obtained for the products from 

reactions of the two complexes, AH076 and AH078, with the peptides showed a 

number of different peaks containing ruthenium, which were easily identified by the 

unique nature of the isotopic pattern of ruthenium.  The adducts observed were 

dependent on the ratio of ruthenium(II) compound to peptide used.  At low ratios 
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(1:1 and 1:2), the ruthenium(II) compounds lost both the arene and the chloride 

ligands, thus retaining only the chelating ligand and therefore providing the 

ruthenium with four vacant coordination sites to attach to the peptide (three from 

loss of the arene and one from loss of the chloride).  At higher ratios of peptide to 

ruthenium(II) complex (1:10), multiple ruthenium(II) bound species were detected, 

most notable of which was the ruthenium(II) complex coordinated through loss of 

the chloride ligand only, therefore providing insight into the primary binding site on 

the peptide, which will be discussed in section 4.3.5. 

4.3.2 Reaction of Angiotensin(II) with AH076 and AH078 (1:1) 

Upon reaction between either AH076 or AH078 and angiotensin(II) (sequence 

DRVYIHPF) at a ratio of 1:1, the ruthenium retains its bidentate chelating ligand 

only; for AH076 this is denoted by Ru(bipy), and for AH078, the o-

phenylenediamine chelating ligand is retained and is denoted by Ru(o-pda).  In order 

to elucidate the binding sites on angiotensin(II), these adducts were fragmented using 

CAD.  Figure 4.2 illustrates the CAD mass spectra obtained for the adducts formed 

between angiotensin(II) and AH076 (A) and AH078 (B).   
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Figure 4.2: (a) CAD spectrum of angiotensin(II) after reaction with AH076, 

fragmented peak [M+Ru(bipy)]2+ at m/z 651.8, with inset illustrating the sequence 

ions detected (# indicates a fragment containing ruthenium, either Ru(bipy) or Ru(o-

pda)); (b) CAD spectrum of angiotensin(II) after reaction with AH078, fragmented 

peak [M+Ru(o-pda)-2H●]2+ at m/z 626.7, with insets illustrating the sequence ions 

detected (# indicates a fragment containing ruthenium).  A full list of peak 

assignments is provided in Tables B-1 and B-2 of Appendix B 
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 Both CAD spectra suggest that ruthenium(II) is coordinated to histidine, as 

indicated by the b6 fragment, as well as either arginine or aspartic acid, or even the 

N-terminus, as indicated by the presence of the b2 fragments with Ru(o-pda) or 

Ru(bipy) bound.  Also present are the b3 ions together with the y-ion series from y4 

to y7, all containing Ru(o-pda) or Ru(bipy).  One peak in particular, at m/z 419.15, 

suggests the involvement of arginine in the coordination of AH078; this was 

assigned as the amino acids D, R, H, P and F with ruthenium(II) plus o-pda bound, 

implying that the metal is bound by both arginine and histidine subsequently 

bridging the two sides of the peptide, with the intervening amino acids V, Y, and I 

being cleaved by CAD.  

  Although the data indicate that Ru(bipy) and Ru(o-pda) are bound by 

arginine and histidine, through loss of the arene ligand, there are potentially two 

further vacant coordination sites for the ruthenium.  The data do not suggest the 

involvement of any other amino acid side chains but one notable observation is the 

loss of hydrogen from the peptide during fragmentation by CAD.  In Figure 4.2(a), 

there is either a loss of one or two protons from the b- and y- fragments.  Since the 

precursor ion is simply the neutral peptide with Ru(bipy) coordinated, the charge is 

provided by the metal ion which therefore plays a role in directing fragmentation, 

primarily at the location at which it is bound.171-172   Deprotonation of the peptide is 

consequently promoted by collisional activation and therefore should lead to a stable 

structure for the product ion with the metal bound.  Ions such as Zn2+ and Ni2+ have 

been reported to interact weakly with amide oxygen atoms; an interaction that is 

strengthened by additional coordination to amino acid side chains and the amino 

group of the N-terminus.  Zinc binding to angiotensin(II) has been reported to occur 

via coordination to histidine and two neighbouring amide oxygen atoms; 
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deprotonation subsequently occurs at the amide nitrogen of histidine resulting in a 

net negative charge on the amide oxygen creating a 2+ fragment ion.171  Further 

deprotonation of another amide nitrogen can occur leading to the formation of a 1+ 

fragment ion, which was also observed here.   

In Figure 4.2(b), for AH078 only, the ruthenium-containing fragments were 

assigned with an additional two-hydrogen-atom (denoted by 2H•) loss, which was 

not observed for the fragments of AH076.  Since this loss was also observed in the 

precursor ion, removal of the two hydrogen atoms does not occur as a result of 

collisional activation and therefore must have an alternative explanation.  Loss of the 

arene ligand from ruthenium has been observed in solution 151, and is thought to 

occur through oxidation of the chelating ligand, whereby an hydrogen atom is lost 

from each of the NH2 groups subsequently forming a diimine.  The observed 

hydrogen loss in the CAD spectrum is consistent with the formation of the diimine 

for AH078.  Additionally, as the bipyridine chelating ligand of AH076 cannot 

undergo the same oxidation and subsequent hydrogen loss, and as the two 

compounds appear to be binding to the peptide in the same manner, it is unlikely that 

the hydrogen loss originates from the peptide itself through coordination of the 

ruthenium. 

Although loss of the arene from AH078 may be coupled to oxidation of the 

o-pda chelating ligand, the same biphenyl ligand is lost in the reactions with AH076.  

Loss of the ligands other than the chloride from ruthenium complexes has been 

observed before.  Meier et al.162 have reported on the binding of ruthenium(II) 

compounds with bidentate pyrone chelating ligands which, on binding to methionine 

and ubiquitin, were lost in addition to the chloride ligand, providing the ruthenium 

with three potential coordination sites.  They also report on the removal of ubiquitin 
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bound to these ruthenium(II) compounds by sulfur-containing species such as 

glutathione and cysteine.   

4.3.3 Reaction of Bombesin with AH076 and AH078 (1:1) 

Compound AH076 was reacted with bombesin (sequence p-

EQRLGNQWAVGHLM-NH2, where “p” signifies pyro-glutamic acid formed 

through cyclisation) and the resulting adduct, formed through loss of both the 

chloride and arene ligands, was fragmented with CAD, as shown in Figure 4.3(a).   
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Figure 4.3: (a) CAD spectrum of bombesin after reaction with AH076, fragmented 

peak [M+Ru(bipy)+H]3+ at m/z 625.9, with inset illustrating the fragments obtained 

(# indicates a fragment containing ruthenium); (b) CAD spectrum of bombesin after 

reaction with AH078, fragmented peak [M+Ru(o-pda)-2H●]3+ at m/z 636.6; (c) ECD 

spectrum of bombesin after reaction with AH076, fragmented peak 

[M+Ru(bipy)+H]3+ at m/z 653.3; (d)  ECD spectrum of bombesin after reaction with 

AH078, fragmented peak [M+Ru(o-pda)-2H●]3+ at m/z 636.6, with inset illustrating 

the sequence ions detected.  A full list of peak assignments can be found in Tables 

B3 – B6 in Appendix B 
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The product ions detected using both techniques suggest ruthenium(II) is bound to 

histidine in the bombesin sequence.  Histidine was expected to be involved in 

coordinating ruthenium(II) as the imidazole nitrogen (Nε) is known to be a strong 

binding site for ruthenium(II) arene complexes.110  Since ruthenium(II) also has a 

high affinity for sulfur, methionine is likely to provide an additional binding site; a 

peak at m/z 594.92 Da was observed in Figure 4.3 (a), and was assigned as 

[M+Ru(bipy)-CONH2-SCH4 +H]3+ indicating losses of SCH4 and CONH2 from the 

peptide.  This is consistent with binding at methionine and the amidated C-terminus, 

as has been reported previously,162 providing two additional binding sites.  CAD was 

also used to fragment the adduct formed after the reaction of bombesin with AH078.  

The spectrum, shown in Figure 4.3 (b), indicates similar binding as for AH076 with 

coordination at histidine, but no additional information on the binding sites was 

obtained.    

4.3.4 Additional Information Obtained through ECD 

ECD was also carried out on the adducts formed after reaction between the peptides 

and the ruthenium(II) complexes in order to determine if any further information on 

the binding sites could be elucidated using this complementary fragmentation 

technique.  The ECD spectrum of angiotensin(II) and AH078, shown in Figure 4.4, 

simply showed the loss of the chelating ligand, o-pda, and the main species detected 

was simply the whole peptide with the addition of ruthenium(II), which could be 

bound anywhere in the peptide.   
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Figure 4.4: ECD spectrum of angiotensin(II) after reaction with AH078, fragmented 

peak [M+Ru(o-pda)-2H●]2+ at m/z 647.3 

Upon electron capture, the electron initially occupies an excited Rydberg orbital on a 

positively-charged site (typically n=6-7),65 and drops to a low-lying electronic state 

through a cascade of either radiationless or radiative relaxation events on a timescale 

of 10-6 s.  Since the addition of {(arene)Ru(N,N)}2+ automatically provides the 

peptide with a 2+ charge, capture of an electron to a low-lying electronic state 

centred at the metal is a likely occurrence.173-174 Thus, capture of the electron has 

simply resulted in a reduction of the charge on the ruthenium from 2+ to 1+, with no 

further backbone cleavage of the peptide. 

The ECD spectra of bombesin and the two ruthenium(II) complexes were 

more useful, as shown in Figures 4.3(c) and (d).  In this case, because the adduct had 

a 3+ charge, there was a bound proton in addition to the ruthenium; this protonated 

site could also provide a low-lying electronic state to capture the electron, enabling 

cleavage of the peptide backbone to be observed.67, 175 Although the two spectra 
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were similar in that they suggested binding at histidine, the ECD spectrum of 

bombesin and AH078 (Figure 4.3 d) also revealed a peak at m/z 1593.62, which was 

identified as bombesin plus ruthenium(II) but minus a leucine residue.  This may 

imply that ruthenium(II) is coordinated to both the histidine and the methionine so 

that, on fragmentation, the intervening Leu13 is removed whilst preserving the bound 

ruthenium and keeping the rest of the peptide together.  This is consistent with the 

radical cascade mechanism for ECD proposed by Leymarie et al.63 whereby the 

radical is propagated along the peptide backbone by odd-electron rearrangements, 

causing cleavage at multiple sites.   

One other notable fragment in Figure 4.3(d) is the c11 ion, which was detected 

with the addition of the ruthenium(II) metal.   The c11 ion does not contain either the 

histidine or the methionine residues so this suggests that the metal can be 

coordinated by other amino acids.  Unfortunately this fragment constitutes the rest of 

the peptide, so it is unclear exactly where it is coordinated.  However, this data does 

indicate that amino acids other than histidine and methionine are potentially involved 

in binding ruthenium(II).  Since no other significant differences were observed 

between the mode of binding of AH076 and AH078, it appears that the chelating 

ligand does not have a significant effect on the compound coordination geometry. 

For this reason, the remaining experiments were conducted using AH076 only. 

4.3.5 Reactions of Angiotensin(II) and Bombesin with AH076 (1:10) 

The adducts observed in the reactions between angiotensin(II) and bombesin with 

AH076, where only loss of the chloride ligand was observed, were also fragmented 

using CAD in order to determine the primary binding site of the ruthenium(II) on the 

peptides.  Figure 4.5 illustrates the CAD spectra obtained through fragmenting the 

adducts observed between (a) angiotensin(II) and AH076, and (b) bombesin and 



123 
 

AH076; the form of the ruthenium(II) compound attached is denoted 

{(bip)Ru(bipy)} in both cases. 
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Figure 4.5: (a) CAD spectrum of angiotensin(II) and AH076, fragmented peak 

[M+{(bip)Ru(bipy)}+H] 3+ at m/z 586.6 (# indicates a fragment containing 

ruthenium); (b) CAD spectrum of bombesin and AH076, fragmented peak 

[M+{(bip)Ru(bipy)}+2H] 4+ at m/z 508.2; inset illustrates the observed and simulated 

isotopic distributions of the species at m/z 459.04 corresponding to the ruthenium 
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compound plus SCH4 from the methionine side chain.  A full list of peak 

assignments can be found in Tables B-7 and B-8 of Appendix B 

The CAD spectrum of angiotensin(II) and AH076 showed similar fragments to that 

in Figure 4.2(a), where the arene had been lost in addition to the chloride ligand, 

showing that cleavage of the arene can still occur during the CAD process.  Several 

fragments were detected that enabled the binding site of the ruthenium compound to 

be elucidated, namely the peak detected at m/z 576.12, which was assigned as the 

amino acid phenylalanine (F) plus {(bip)Ru(bipy)}.  The observed isotope 

distribution and that of the simulated pattern are shown in Figures 4.6 (a) and (b). 
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Figure 4.6: (a) Expanded region of the CAD spectrum of angiotensin(II) and AH076 

showing the peak assigned as phenylalanine (F) plus {(bip)Ru(bipy)}; (b) the 

theoretical pattern expected from simulation of this species 

Binding to phenylalanine is an observation that has been made for the first time here, 

and which is not observed when there are four coordination sites available, as 

discussed above.  Since there is only one coordination site available, direct 

coordination between ruthenium and the aromatic ring of the phenylalanine side 

chain would be unlikely due to steric hindrance from the bulky biphenyl and 

bipyridine ligands, which are still attached.  It is possible, therefore, that the aromatic 

ring of phenylalanine provides stabilisation through an interaction with one of the 

aromatic ligands (either biphenyl or bipyridine) in the form of π-stacking.  This type 

of interaction has been observed previously176 between the phenylalanine of 

substance P and a coumarin tag.  Potentially, either aromatic ring of the arene and 
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chelating ligand could interact in this manner with the phenylalanine side chain; 

since this is not observed when the ruthenium retains only the chelating ligand, it is 

likely that it is the arene that is involved in this coordination.    

The CAD spectrum for bombesin and AH076 also elucidated information 

about the ruthenium(II) binding site.  Instead of peptides fragments, it is the side 

chain losses detected that show the primary binding site for ruthenium(II), in this 

case, to be the methionine side chain.  The peak at m/z 459.05 was assigned as 

[{(bip)Ru(bipy)} + SCH4]
+, which could only have originated from the methionine 

side chain.  Detection also of the complementary fragment, [M+3H-SCH4]
3+, at m/z 

524.61, further supports this conclusion.  

4.3.6 Summary of Peptide Binding with Ruthenium(II) Complexes 

The initial work carried out on the reaction between peptides and two ruthenium(II) 

complexes provided a significant amount of information on their binding sites.  To 

summarise these findings, the amino acids proposed to coordinate ruthenium(II), as 

well as the data supporting these conclusions is shown in Table 4.1. 
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Table 4.1: Key fragments detected from the reactions between the ruthenium(II) 

complexes and peptides indicating proposed binding sites  

Proposed Binding Site Supporting Data – Detected Fragments 

Histidine (His) Angiotensin(II) b6 + Ru(bipy) 

[DRVYIHPF] 

Methionine (Met) SCH4 + [(bip)Ru(bipy)]+ 

SCH4 loss from bombesin 

Amidated C-terminus CONH2 loss from bombesin 

Phenylalanine (Phe) Phe + [(bip)Ru(bipy)]+ 

Arginine (Arg) Angiotensin(II) b2 + Ru(bipy) 

[DRVYIHPF] 

His and Arg DR···[Ru(bipy)]···HPF 

His and Met p-EQRLGNQWAVGH···[Ru(bipy)]···M 

 

The binding to histidine and methionine was expected as it has been observed in 

previous work;110, 155, 162 of notable interest is the involvement of phenylalanine, 

which has been observed here for the first time. 

4.3.7 Reaction of Insulin with AH076 

The initial experiments involved two peptides, neither of which contain any cysteine 

residues (or disulfide bonds).  Previous work161 has indeed shown that ruthenium(II) 

can bind to a free cysteine, but not when it is oxidised and is present in a disulfide 

bond.  Insulin has three disulfide bonds as well as histidine, arginine, and 

phenylalanine residues, so was chosen and was chosen so that the binding sites for 

ruthenium could be compared to those observed previously for cisplatin.99  Figure 
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4.7 shows the CAD spectrum of insulin after reaction with AH076, together with an 

illustration of the fragments assigned, with both the non-ruthenium(II) bound (a) and 

ruthenium(II) bound fragments (b) shown in separate diagrams for clarity.   

 

 

Figure 4.7: CAD spectrum of insulin after reaction with AH076, fragmented peak 

[M+Ru(bipy)+4H]6+ at m/z 1007.6; inset illustrates a zoomed region of the spectrum 

to show the isotope pattern of the ruthenium fragments.  Illustrations of the 

fragments obtained from the CAD spectrum of insulin after reaction with AH076, 

showing (a) the non-ruthenium bound fragments, and (b) fragments of insulin with 
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ruthenium bound.  A full list of peak assignments can be found in Table B-9 of 

Appendix B   

The ruthenium-containing product ions include several with an intact disulfide bond 

between A-chain Cys7 and B-chain Cys7, and there is no evidence in the CAD 

spectrum to suggest that this bond is broken on reaction of insulin with ruthenium.  

The non-ruthenium(II) bound product ions reflect the intact nature of the disulfide 

bonds between Cys6 and Cys11 of the A-chain, and between Cys20 of the A chain and 

Cys19 of the B-chain, with mainly y-ions of the two chains detected, therefore 

indicating that the ruthenium is not bound in this region of the protein, specifically 

between amino acids Tyr14 and Asn21 of the A-chain, and between Tyr16 and Ala30 of 

the B-chain.  A number of ruthenium(II)-containing fragments are observed, with 

2+, 3+, 4+, 5+ and 6+ charges.  The 2+ product ions consist of b-ions of the B-chain 

only, indicating it is unlikely that ruthenium(II) is bound by the A-chain.  These 

fragments, the b14, b16, b17, and b18 ions, are all observed with a 2H• loss which, 

unlike that observed with AH078, cannot originate from the chelating ligand and, as 

such, must originate from the peptide itself.  The most likely binding site would be 

histidine at either His5 or His10; given that b14 is the first fragment observed, His10 is 

proposed as the main binding site, with additional coordination perhaps provided by 

glutamic acid at position 13.  This conclusion is supported by the 5+ and 6+ 

fragments detected which have been assigned as the entire protein plus the 

ruthenium(II) compound, but with certain amino acids missing from the sequence.  

These losses, which include alanine, leucine, valine and phenylalanine, indicate that 

ruthenium(II) is bound to His10, Glu13 and, possibly, Tyr15 of the B-chain, which 

would keep the protein intact whilst CAD cleaves these intervening amino acids 
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from the chain.  The H• loss observed for the 2+ fragments could correspond to 

losses from the amide nitrogen atoms of the backbone, providing the remaining two 

binding sites.  This coordination has been observed previously, where ruthenium(II) 

bound to the amide nitrogen of the backbone, in addition to the histidine side chain, 

causing loss of the hydrogen.177 

4.3.8 Reaction of Oxidised Insulin B-chain with AH076 

In order to determine if any more detailed information about ruthenium(II) binding 

to the insulin B chain could be elucidated, AH076 was reacted with the oxidised 

insulin B-chain, where the two cysteine residues are in the form of sulfonic acid 

(Cys-SO3H).  Figure 4.8 shows the CAD spectrum and fragments of the oxidised 

insulin B-chain after reaction with the ruthenium(II) complex AH076. 

 

   

 



132 
 

 

Figure 4.8: CAD spectrum of oxidised insulin B-chain after reaction with AH076, 

fragmented peak [M+Ru(bipy)+2H]4+ at m/z 938.6; inset illustrates the fragments 

detected with # indicating a fragment containing ruthenium.  A full list of peak 

assignments can be found in Table B-10 of Appendix B.  

It can be seen that b-ions, starting at b10, contain ruthenium(II) and y-ions, up until 

y22, do not, indicating that ruthenium(II) is bound within the part of the chain 

including Cys7, Gly8, Ser9 and His10.  Since the b6 ion was detected without 

ruthenium(II) bound, it minimises the possibility that His5 is involved in binding.  As 

the y22 does not include cysteine, it is proposed that His10 is the primary binding site, 

which is in agreement with Hong et al.177 The importance of high mass accuracy in 

the assignment of the ruthenium(II)-containing fragments can be demonstrated by a 

peak at m/z 999.75.  On first analysis, this was assigned as [y24 + Ru(bipy) – OH]3+, 

which led to the unlikely implication that the ruthenium(II) could bind to cysteine 
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sulfonate, through displacement of the –OH group.  This peak was assigned with a 

mass accuracy of 1.28 ppm which, although not unreasonable, is above average 

when examining all the other assignments.  An alternative molecular formula was 

proposed in the form of [a24 + Ru(bipy)]3+, which has an improved mass accuracy of 

-0.28 ppm and therefore can be assigned with a greater degree of confidence.  The 

data does not indicate any other amino acids involved in binding, but an H• loss 

observed from the b-ions starting with b14 could indicate the involvement of 

glutamic acid, as was proposed for insulin.  Glutamic acid binding was therefore 

investigated on a smaller scale using glutathione.   

4.3.9 Reaction of Glutathione with AH076 

Glutathione (GSH) is a tripeptide with sequence ECG, where glutamic acid and 

cysteine are connected through a gamma peptide linkage.  GSH can be oxidised to 

form glutathione disulfide (GSSG), where two glutathione molecules are connected 

through a disulfide bond.  The structures of both of these compounds are shown in 

Figure 4.8 and denoted (1) and (2) respectively.  Compound AH076 was initially 

reacted with both GSH and GSSG in order to compare observations made for the 

binding sites in insulin.  Figures 4.9(a) and (b) show the mass spectra obtained for 

the reactions of AH076 with GSH and GSSG respectively. 
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Figure 4.9:  (a) reaction of glutathione (GSH) and AH076, with detected adducts 

containing ruthenium labelled i) – v), peaks labelled vi) - viii) are variations of 

complex AH076; * indicates an internal calibrant ion and ▲ indicates the isotope 

distributions of two of the adducts; (b) mass spectrum of the reaction between 

oxidised glutathione (GSSG) and AH076 

 

As can be seen in Figure 4.9(a), on reaction of GSH with AH076, a number of 

ruthenium-containing adducts were detected, and these are summarised in Table 4.2. 
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Table 4.2:  Ruthenium(II) adducts detected after reaction with glutathione (GSH) 

Observed GSH–Ru adduct m/z Assignment 

(i) 718.12675 [GSH + {(bip)Ru(bipy)} – H]+ 

(ii) 562.05797 [GSH + (bip)Ru} – H]+ 

(iii) 540.08508 [Glu + {(bip)Ru(bipy)} – H• - H]+ 

(iv) 489.01624 [Glu + Cys + Ru(bipy) – H• – H]+ 

(v) 457.04823 [CH2O2 + {(bip)Ru(bipy)} – H]+ 

 

The adducts detected indicate, as was observed with angiotensin(II) and bombesin, 

that AH076 loses its ligands in different combinations.  The major product detected 

was that at m/z 457.05 where the {(bip)Ru(bipy)} is bound to CH2O2 through loss of 

the chloride ligand.  This is more likely to originate from the glutamic acid side 

chain than the C-terminus of the peptide, as a second adduct at m/z 540.08 was 

assigned as {(bip)Ru(bipy)} plus glutamic acid as a whole.  This supports the 

observations of binding to glutamic acid, and potentially tyrosine, in insulin showing 

that in addition to nitrogen, ruthenium(II) has an affinity for –OH groups, with 

binding occurring through loss of H•.  AH076 was also detected as Ru(bipy) bound 

to both glutamic acid and cysteine, indicating that with loss of the arene, 

ruthenium(II) is able to be coordinated by both amino acids. 

Figure 4.8(B) shows the mass spectrum obtained after reaction between 

AH076 and oxidised glutathione (GSSG).  This time, the sulfur atom of cysteine is 

in a disulfide bond, and so ruthenium(II) is unable to bind to the cysteine.  The peak 

at m/z 613.16 corresponds to the unreacted oxidised glutathione, showing that the 
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majority is unable to react with the ruthenium(II).  The major adduct observed is the 

same as for GSH, {(bip)Ru(bipy)} plus CH2O2; a peak at m/z 484.12 was also 

observed which corresponds to GSSG minus glutamic acid, supporting the 

conclusion that the CH2O2 originates from glutamic acid and not the C-terminus of 

the peptide. 

In order to determine if AH076 could bind to cysteine when it is oxidised 

further to sulfonic acid, as was first thought with the oxidised insulin B-chain, 

glutathione was reacted with hydrogen peroxide in order to oxidise the cysteine side 

chain to sulfonic acid (Cys-SO3H).  The structure of this compound, (3), is shown in 

Figure 4.10 with the corresponding peaks detected in the mass spectra, showing the 

conversion of cysteine to the fully oxidised form.   

 

Figure 4.10: Oxidation of cysteine in GSH (1) to cysteine sulfonic acid (3); peaks at 

m/z 308.09 and 356.08 show the increase in 48 Da through addition of three oxygen 

atoms to the sulfur of cysteine 
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CAD was performed on glutathione both before and after reaction with H2O2 and 

determined that both the y2 and b2 fragments increase by 48 Da, showing the 

addition of three oxygen atoms to the sulfur of cysteine, forming cysteine sulfonic 

acid.  Figure 4.11 shows the mass spectrum obtained after reaction between GSH (3) 

and AH076.   

 

Figure 4.11: Mass spectrum of oxidised GSH (3) reacted with AH076; inset shows 

adduct at m/z 611.02 with ▲ indicating its isotope distribution as compared to the 

simulation.  * indicates an internal calibrant ion 

 

As before, the major adduct detected is the addition of CH2O2 to {(bip)Ru(bipy)}; 

however, a minor product was also observed at m/z 611.03, and was assigned as 

GSH (3) plus {Ru(bipy)} with a 2H• loss.  Potentially, as a minor pathway, binding 

could occur through loss of the H• from the –OH group of the sulfonic acid, as well 
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as from the –OH group of glutamic acid.  This also indicates that ruthenium(II) is not 

binding to the oxidised cysteine through displacement of –OH, as was initially 

thought in the reaction with the oxidised insulin B-chain.   

 

4.4 Conclusion 

The products from reactions of two organometallic ruthenium(II) arene anticancer 

complexes has been investigated using FTICR mass spectrometry with the peptides 

angiotensin(II), bombesin, and glutathione, as well as insulin and the oxidised 

insulin B-chain.  In particular, insights into ruthenium(II) binding sites have been 

gained using collision activated dissociation (CAD) and electron capture dissociation 

(ECD) to fragment the products.  The amino acids primarily involved in coordination 

to ruthenium(II) have been identified as histidine, and methionine, with additional 

binding to arginine, phenylalanine, glutamic acid and, potentially, the nitrogen atoms 

of the backbone amides.  Two different binding modes were assessed; at low ratios 

of ruthenium(II) to peptide, the ruthenium(II) compounds were observed to lose both 

the arene and the chloride ligands, providing the ruthenium with four possible 

binding sites.  At higher ruthenium(II) to peptide ratios, an additional species was 

observed in which ruthenium(II) lost only its chloride ligand.  Interestingly, 

ruthenium(II) appeared to preferentially coordinate to the phenylalanine residue of 

angiotensin(II) and not histidine as for the lower ratios; an observation that has been 

made for the first time.  There was no evidence for the disruption of the disulfide 

bonds of insulin after reaction with ruthenium(II).  Instead, the possible Ru(bipy) 

binding sites include histidine, glutamic acid, and tyrosine, which is in contrast to 

data obtained for cisplatin.  Binding to His10 was further supported by reaction with 

the oxidised insulin B-chain, and binding to glutamic acid was investigated using 
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glutathione and its oxidised form, GSSG.  The major product observed for both GSH 

and GSSG involved the addition of CH2O2 to {(bip)Ru(bipy)} indicating binding of 

ruthenium(II) to glutamic acid can occur.  The use of high mass accuracy has been 

demonstrated in order to make peak assignments, and subsequently identify the 

binding sites of ruthenium(II) complexes, with a high degree of confidence. 
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Chapter 5: Further Applications of 
FTICR MS (ongoing project) - 
Analysis of Genuine and 
Counterfeit Vodka by FTICR-MS 
and GC-MS 
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5.1 Introduction 

The incidence of counterfeit alcohol production is an increasing problem.  An article 

in the Guardian newspaper published in February 2012, based on research conducted 

by the Institute of Engineering and Technology (IET), reported a 5-fold increase 

over a two year period.  Vodka is one of the most commonly counterfeited spirits.  It 

is produced through the fermentation and distillation of grain, followed by various 

filtering processes, such as through charcoal and carbon filters, to give it its 

characteristic neutral taste.179  Illicit spirits can be produced by blending high quality 

distillates with ethanol from a cheaper raw material, adding synthetic volatile 

components to neutral alcohol, or through misleading labelling about the origin of 

the raw material; a common occurrence is for high quality alcohol to be replaced 

with a cheaper product.  In some cases, industrial-strength alcohol has been detected, 

which has a high methanol content and can lead to severe health problems, and, in 

some cases, fatalities.180  

The traditional approach to spirit authentication is to analyse the volatile 

components, particularly the products of the fermentation process known as 

congeners, which include fusel alcohols, fatty acids and their esters.  Ethyl esters in 

particular contribute to the aroma and taste of alcohol, and are used to characterise 

whiskies, rums, and gins.180  Analysis by gas chromatography is  well reported for 

detecting differences in congener compositions between spirits;181-189 however, in 

vodka, these compounds are only present in trace quantities,190 making them difficult 

to detect. Therefore, efficient extraction techniques are first necessary to concentrate 

these compounds.  Liquid-liquid extraction requires large volumes of sample and 

multiple extractions so is a laborious and time-consuming process.  Solid phase 
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extraction (SPE) and solid phase micro extraction (SPME) are the preferred 

techniques;191 SPME in particular is advantageous in terms of minimal sample 

preparation as a polymer coated silica fibre is used to sample the headspace and is 

therefore solvent-free. 

 Alternative techniques used to analyse vodka have also been investigated, 

including the use of conductivity measurements,180 and ion chromatography.192-193  

Spirits are reduced to bottling strength with water.  By detecting inorganic ions, such 

as chloride, nitrate, and phosphate, the ionic composition can be determined and 

matched to the quality of the product.  Spectroscopic techniques are also developing 

considerably for the authentication of wine194-196 and brandy,194 through analysis of 

the sugar and ethanol contents and relating this specifically to origin.  These analysis 

techniques are coupled with data analysis methods such as principal component 

analysis (PCA) so as to group the alcohols by differences in their chemical 

compositions.196-197  

As yet, the use of high resolution mass spectrometry has not been explored as 

extensively for determining if a sample is counterfeit.188, 198-199  Moller et al.198 used 

ESI-MS to study the proof of origin of various whiskies and to identify specific 

chemical patterns, or fingerprinting mass spectra, that would indicate counterfeiting.  

This method is quicker to perform than GC-MS as there is no need for samples 

extraction and concentration;200 however, GC is still suitable for analysis of low 

molecular weight, volatile compounds. A combination of these two techniques could 

potentially provide a powerful, accurate method for distinguishing counterfeit spirits 

from the genuine products.  In this work, high resolution ESI-MS has been applied to 

distinguish counterfeit vodkas, in combination with method development for GC-MS 

to provide diagnostic ions and characteristic chemical patterns.   
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5.2 Experimental 

5.2.1 Chemicals and Reagents 

Genuine vodka samples were purchased from a local supermarket.  Counterfeit 

vodka samples were provided by Worcestershire Scientific Services and West 

Yorkshire Scientific Services.  Methanol, ethanol, hexane, and ammonium hydroxide 

were purchased from Fisher Scientific (Loughborough, UK).   

5.2.2 Analysis by ESI-FTICR-MS 

All vodka samples were diluted 1000-fold in 50% methanol, 50% Milli-Q water 

(Millipore Inc., Durham, UK) and 0.1% ammonium hydroxide and analysed directly 

in negative mode.  The samples were analysed on a 12 T Bruker solariX FTICR 

mass spectrometer (Bruker  Daltonics, Coventry, UK), using a nanospray ionization 

source.  A positive voltage of 1000 V was applied to the capillary, a drying gas flow 

rate of 2.5 L min-1 and temperature of 180 ºC were used.  Ions were accumulated for 

0.01 s and 200 scans were recorded for each sample between m/z 95 and 2000.  

Trapping plate voltages of -0.5 V and -0.6 V were applied to the front and back 

plates respectively. Internal calibration was performed using the fatty acid/ester 

series, as highlighted in Table C-1, Appendix C.  PCA analysis was performed using 

the using the software “Aabel”, version 3.0.6, where the intensities of a selection of 

m/z values were used to create two principal components for each vodka sample 

(Table C-2, Appendix C).   

5.2.3 Solid Phase Extraction (SPE) 

The samples were prepared for analysis by GC-MS with solid phase extraction, 

using LiChrolut® EN (200 mg, 3 mL) SPE tubes (Merck Chemicals, Darmstadt, 

Germany).   The tubes were washed with 2 mL of methanol followed by 2 mL of 
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ethanol/water (60:40).  2 mL of the vodka sample was applied to the tube and the 

compounds eluted with 1 mL of hexane which was analysed directly by GC-MS. 

5.2.4 Analysis by GC-MS 

The analysis was carried out in a Bruker Scion gas chromatograph (Bruker 

Daltonics, Coventry, UK) with a quadrupole mass spectrometer.  2 µL of the sample 

was injected with a split ratio of 1:5.  The temperature of the injector was 250 ºC 

with helium as a carrier gas flowing at 1 mL min-1, and the separation was performed 

using a Bruker BR-5ms fused silica column (15 m x 0.25 mm x 0.25 µm) with an 

oven temperature program of 50 ºC (2 minutes), ramping up to 290 ºC at a rate of 15 

ºC/minute.  The mass detector was operated in electron ionisation mode at 70 eV and 

scanned between m/z 50 and 300.  

 

5.3 Results and Discussion 

5.3.1 ESI-FTICR MS Analysis of Vodka 

The vodka samples were analysed using negative mode FTICR mass spectrometry in 

order to examine the chemical pattern of the alcohols, and determine if differences 

could be observed between the genuine and counterfeit products.  Since the major 

components of vodka used for authenticity analysis are fatty acids and their isomer 

ethyl esters, these were identified first and used as internal calibrants for each 

sample.  Two different chemical patterns were observed for the vodka samples; most 

fell into the category represented by Figure 5.1(a), with a few resembling that shown 

in Figure 5.1(b). 
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Figure 5.1: (a) (-)ESI mass spectrum of genuine Smirnoff Ice vodka, letters a-l 

represent fatty acid/ethyl ester compounds as listed in Table 5.1; (b) (-)ESI mass 

spectrum of genuine Noble Russian Beluga vodka 

The mass spectra of the vodka samples represented by Figure 5.1(a) are dominated 

by a peak at m/z 135.08 which is assigned as 4-anisaldehyde (C8H8O2).  There are a 

large number of structures with this molecular formula, but this is proposed to be the 

most likely compound since it is a derivative of anethole, a flavouring compound 

that will be discussed later in the chapter.  The other main peaks are assigned as fatty 

acids and/or esters, and are labelled in red.  Since these compounds are isomers of 

each other, it is not possible to distinguish the fatty acid from the ester without 
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further analysis, but it is likely there is a mixture present.  The assignments of these 

molecular formulae are shown in Table 5.1. 

Table 5.1: Assignments of fatty acids/esters in vodka 

Label Observed m/z 
Proposed 
Formula 

a 101.06080 C5H10O2 
b 115.07645 C6H12O2

 

c 143.10775 C8H16O2
 

d 157.12340 C9H18O2
 

e 171.13905 C10H20O2 
f 185.15470 C11H22O2 
g 199.17035 C12H24O2 
h 227.20165 C14H28O2

 

i 241.21730 C15H30O2
 

j 255.23295 C16H32O2
 

k 269.24860 C17H34O2 
l 283.26425 C18H36O2 

 

The vodka samples represented by Figure 5.1(b) are dominated by a single peak at 

m/z 341, which is assigned as the sugar molecule sucrose.  Assignments for as many 

peaks as possible between m/z 100 and 400 were made, in order to create a profile 

for each vodka sample in this region.  The list of compounds assigned in this region 

can be found in Appendix C.   Above this mass range, the compounds became harder 

to identify, since there were significantly more possibilities for each molecular 

formula even with a good internal calibration.   

The MS profiles of the counterfeit samples do not appear to differ from the 

genuine products; however, subtle differences between the chemical profiles have 

been observed in the form of differing relative intensities of the key fatty acids/esters 

identified above, and a small number of flavouring compounds.  Citric acid in 

particular was identified in most of the counterfeit samples, but not in any of the 
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genuine products.  Figure 5.2 shows the ESI mass spectrum of a counterfeit vodka 

sample in which the intensity of the peak assigned as citric acid is significantly high.  

 

Figure 5.2: (-)ESI mass spectrum of a counterfeit vodka sample, highlighting citric 

acid and gingerol; letters in red indicate fatty acid/ester compounds 

Citric acid is used as a flavouring and a food additive.  It does not appear to be used 

in genuine vodka products, and, as such, could potentially be used as a marker for 

counterfeit samples.  Another flavouring identified is that of gingerol.  This 

compound is fairly intense in the sample shown in Figure 5.2, but it was also 

detected in all the vodka samples with a different relative intensity each time, so 

does not exclusively provide a marker for counterfeit products.  The same was found 

for a third flavouring, vanillin, which was present in trace amounts in all of the 

vodka samples.  This compound has been detected by GC-MS;201 however, the low 

volatility of this compound makes the application of gas chromatography difficult 

and ESI-MS provides a better method of detection in this case.   
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 Since the differences between genuine and counterfeit vodka samples are 

subtle, the full chemical profile analysed between m/z 100 and 400 were analysed 

using principal component analysis (PCA).  PCA is a mathematical method used to 

identify groupings within data so should provide a simple way of determining 

differences between genuine and counterfeit vodka products.202  The purpose of this 

method is to identify new variables, known as “principal components” (PCs), which 

account for most of the variability in the data.  The first PC is computed as the 

direction through the data that describes the most variability; the second and 

subsequent PCs must be orthogonal to the previous PC and describe the remaining 

variability.  Each sample is then given a score for each PC; scores are calculated 

from the original data multiplied by a coefficient that describes the PC.  The scores 

for each PC are then plotted revealing any groupings between samples that were not 

obvious from the original data.  In this work, the PCs were calculated from the 

identified m/z values for each vodka in the range 100-400, and the intensity of each 

identified peak.  A full list of values for m/z and intensity for each sample can be 

found in appendix C, table C-1.  The PCA plot for all 26 samples is shown in Figure 

5.3.  
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Figure 5.3: PCA plot of the ESI-MS data for each of the vodka samples, genuine 

samples are represented by a red diamond, counterfeit (CF) samples are represented 

by a blue triangle 

The PCA plot does reveal groupings of the samples, with some significant 

distinction between genuine and counterfeit vodka products observed.  There are two 

main groups of the genuine samples, reflecting the two chemical profiles observed in 

Figure 5.1.  A couple of the samples, namely Smirnoff Ice and Troika, remain 

isolated from the others, reflecting further differences even within the genuine 

products.  For the most part, the counterfeit samples are observed to lie separately 

from the genuine ones, showing that even with a small section of the chemical 
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profile of each vodka, differences are still detected.  A few counterfeit samples are 

grouped with some of the genuine samples at the bottom of the plot.  All of these 

vodkas had a chemical profile like that shown in Figure 5.1 (b), with a sucrose peak 

dominating the spectrum.  This therefore makes it more difficult to identify 

counterfeit products since all other peaks are reduced significantly in intensity 

compared to this compound.  In this case, liquid chromatography would be a useful 

technique to use in order to separate the signals for the different components that are 

suppressed by that of sucrose.  This technique forms part of the further method 

development required in order to analyse the differences in genuine and counterfeit 

products, as discussed in the conclusion below.  

A further interesting observation is that the PCA reflects, to some extent, the 

fact that the counterfeit samples were obtained from two different analytical 

companies located in different regions of the UK (Worcestershire and West 

Yorkshire).  Five of the six samples with the codes starting “BB” and T1” lie to the 

left hand side of the plot away from the others, and these all originate from West 

Yorkshire.  This observation has potential for locating the sources of counterfeit 

alcohol production since similarities should be observed between samples from the 

same batch as they will have been produced using the same method and with the 

same starting materials.  The PCA plot, however, could change significantly by 

including more data so it is still necessary to identify compounds over the entire 

mass range, and use the entire chemical profile for detecting counterfeit products.  

5.3.1 Analysis by GC-MS 

A selection of the vodka samples were also analysed by GC-MS; however, due to the 

aqueous nature of the samples, as well as the need to pre-concentrate the volatile 
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components, a method involving solid phase extraction was first developed.  The 

samples were extracted into hexane using SPE tubes and then analysed by GC-MS.  

In MS mode, fragmentation was performed using electron ionisation (EI) and the 

assignments made by matching to the NIST (National Institute of Standards and 

Technology) database.  Figure 5.3 shows the chromatogram for a genuine sample of 

Smirnoff Ice vodka.  

 

 

Figure 5.4: Gas chromatogram of genuine Smirnoff Ice vodka; * indicates long 

chain alkane compounds 

The Figure shows the separation of a number of compounds; unfortunately the 

majority of these peaks were assigned as long chain alkanes such as decane and 

pentadecane.  These compounds are unlikely to originate from the vodka; instead, it 

is likely they are from the SPE columns themselves and the hexane has stripped 
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these compounds from the packaging enabling them to be detected by GC-MS.  A 

few useful compounds were identified in the chromatogram; terpinene is often used 

as a flavouring and constituted the most intense peaks in the spectrum.  In order to 

determine if GC-MS could be used to identify compounds in the counterfeit samples, 

a counterfeit Smirnoff Ice sample was also analysed and the resulting spectrum is 

shown in Figure 5.5.     

 

 

Figure 5.5: Gas chromatogram of counterfeit Smirnoff Ice vodka with structure of 

anethole shown; * indicates long chain alkane compounds  

The chromatogram appears to be very similar to that of the genuine product, with the 

same long chain alkanes observed.  One compound was assigned as anethole, which 

is also used as a flavouring, and was not observed in the genuine product.  GC-MS 

has potential for identifying differences in the volatile, low molecular weight 
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components of vodka.  However, an alternative sample preparation is first needed.  

SPME offers advantages over SPE,179, 188 since it is used to sample the headspace, it 

is solvent-free and problems like that observed here, will be avoided.  This will be a 

useful, complementary method to ESI-MS and should reveal more specific 

differences between genuine and counterfeit alcohol samples.  

 

5.4 Conclusion and Future Work 

Genuine and counterfeit vodka samples have been analysed by negative mode ESI 

mass spectrometry and GC-MS.  The differences observed in the counterfeit samples 

arise through the addition of flavouring agents such as citric acid, a compound which 

is not present in any of the genuine vodka products.  The low mass range (m/z 100-

400) chemical profiles of 26 vodka samples were analysed and plotted using PCA in 

order to look for groupings in the data.  The counterfeit samples were grouped 

separately for the most part; however, a selection of vodka samples contain mostly 

sucrose making all other compounds significantly less intense, and therefore 

distinguishing the counterfeit samples is more difficult.  Further method 

development is required for these samples; in particular the use of reversed phase 

LC-MS should be explored in order to overcome the signal suppression observed in 

ESI-MS, and analyse the non-polar components of the vodka.   

GC-MS was also used to analyse the samples; however, issues with sample 

preparation still need to be resolved.  The use of a technique like SPME coupled with 

GC-MS would be ideal, as it would sample the headspace directly thereby detecting 

the volatile components without the need for any extraction techniques that could 

result in the loss of some compounds.  This would therefore provide a further level 



154 
 

of analysis complementary to the chemical profiles obtained through ESI-MS.  

Additionally, the coupling of a GC to an FTICR mass spectrometer would take the 

existing analysis one step further since this coupling is achieved through the use of 

an atmospheric pressure chemical ionisation (APCI) source.  In APCI ionisation, 

both protonated and radical species are formed enabling the detection of compounds 

that do not ionise easily by ESI and therefore providing another complementary 

technique for detailed analysis of these samples. 

This initial work carried out shows that a combination of techniques 

involving GC and ESI-FTICR-MS show potential for providing a detailed analysis 

of alcohol samples with the aim of identifying counterfeit products.  There are still 

significant method development steps that need to be explored since the current 

analyses on their own do not provide a definitive test for counterfeit vodka.  
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Chapter 6: Further Applications of 
FTICR MS (Ongoing Project) – 
Carbon Nanotubes as a Matrix 
Substitute in MALDI 
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6.1 Introduction  

Since its development in the 1980s,203 matrix-assisted laser desorption/ionisation 

(MALDI) mass spectrometry has proved to be an effective technique for the analysis 

of large molecules such as proteins204 and polymers.205  The analyte is mixed with a 

matrix, typically an organic acid such as as 2,5-dihydroxybenzoic acid (2,5-DHB), 

and irradiated with a laser.  This method, however, is not ideal for the analysis of 

small (<1500 Da) molecules due to matrix interference effects, with the signal 

produced by the matrix and its clusters tending to dominate in this region of the mass 

spectrum.  Furthermore, the matrix is co-crystallised with the analyte on the target 

plate, and can form an inhomogeneous layer resulting in the detection of “hot 

spots”.206  Consequently, matrix-free approaches are being investigated in order to 

expand the mass range of molecules for which MALDI is applicable. 

 Liquid matrices such as 3-nitrobenzyl alcohol (3-NBA) are an alternative207 

but issues with high chemical background noise have been encountered.  The use of 

particles suspended in a liquid has turned out to be a more promising avenue of 

research.  Tanaka et al.12 developed an “ultra-fine metal plus liquid matrix” whereby 

cobalt particles were suspended in glycerol, and found to improve the detection of 

proteins with molecular weights up to 25 kDa.  Alternative surfaces have been 

investigated, such as porous silicon, to trap the analytes before irradiation.  This 

method is known as desorption ionisation on silicon (DIOS)208 and was reported to 

effectively minimise matrix effects in MALDI spectra of peptides.  Graphite 

particles suspended in glycerol have been successful for the analysis of proteins and 

peptides,209-210 a method which is known as graphite surface-assisted laser desorption 

ionisation, or graphite SALDI.209  Other SALDI materials investigated include 

silicon,211 titanium,212 carbon,213 and electrospun nanofibres.214  
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 Carbon nanotubes were first discovered in 1991215 and have gained 

considerable interest in a number of applications including MALDI mass 

spectrometry.216-218  Xu et al.216 prepared carbon nanotubes as a particle suspension 

in a liquid matrix, as was reported with graphite,209-210 and, after solvent evaporation, 

deposited peptide samples on top.  Shin et al.217 used vertically aligned carbon 

nanotube arrays grown on a stainless steel plate and applied the peptide samples 

directly.  Both methods were reported to be efficient in the analysis of peptides, with 

good signal-to-noise ratios achieved, and low background noise observed.  Chen et 

al.218 used a citrate buffer to modify the surfaces of carbon nanotubes in order to 

provide a proton source for peptides, thereby reducing the intensity of alkali cation 

adducts which tend to dominate these spectra. 

 Carbon nanotubes can be arranged in a number of different geometries, 

including 3D forests,219-220 which are investigated in this work.  The potential 

advantages of using carbon nanotubes are that sample preparation is reduced, there is 

minimal interference from a matrix and, unlike DIOS, the samples have not been 

observed to degrade over time.  Therefore, these materials show potential for the 

detection of small molecules where signal suppression due to the matrix is a 

significant problem. 

 

6.2 Experimental  

6.2.1 Chemicals and Reagents 

PEG-1000 (polydispersity index 1.101), substance P (MW 1347.63 Da), 2,5-

dihydroxybenzoic acid, and sodium hydroxide were purchased from Sigma Aldrich 
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(Gillingham, UK).  Carbon nanotube forests were grown by chemical vapour 

deposition219 and provided by the electrochemistry group, University of Warwick. 

6.2.2 Analysis by MALDI-TOF Mass Spectrometry 

2,5-dihydroxybenzoic acid, PEG-1000 and substance P were dissolved in Milli-Q 

water (Millipore, Durham, UK) at a concentration of 20 µM.  Sodium hydroxide (10 

mM) was added to produce sodium adducts of the analytes.  The sample and matrix 

were mixed in a 1:1 ratio and 1 µL was deposited onto a MTP 384 ground steel 

MALDI plate (Bruker Daltonics, Coventry, UK) and dried in air.  For analysis on 

nanotubes, 1 µL of the analyte was deposited directly onto the carbon nanotube 

forests and dried in air.  The samples were analysed on a Bruker Ultraflex MALDI-

TOF/TOF instrument (Bruker Daltonics, Coventry, UK) with a nitrogen laser (λ = 

337 nm) at 50 Hz and 200 laser shots per spot.  Source voltages of 25 kV and 21.5 

kV were applied to the target plate and second voltage respectively, with 9 kV 

applied to the focusing lens.  Delayed ion extraction of 10 ns was used with detection 

in reflectron mode between m/z 120-2000.    

6.2.3 Analysis by FTICR Mass Spectrometry 

The samples were prepared as described in section 6.2.2 and analysed using a Bruker 

solariX (Bruker Daltonics, Coventry, UK) with a Nd:YAG laser (λ = 355 nm).  An 

offset of 100 V was applied to the target plate for analysis in positive mode.  A 

dataset of 4 MW was recorded over m/z 300-5000, with an ion accumulation time of 

5 seconds and 32 scans.  A 2000 µm laser spot was used with 200 shots fired per 

scan.  Trapping plate potentials of 0.4 and 0.3 V were applied to the front and back 

trapping plates respectively. 
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6.3 Results and Discussion 

Samples of PEG-1000 and substance P were dissolved in water and mixed with the 

matrix 2,5-dihydroxybenzoic acid (DHB) and analysed by MALDI-TOF, as shown 

in Figure 6.1. 

   

 

Figure 6.1: MALDI-TOF spectra of (a) PEG-1000 (Na+ adduct) and (b) substance P 

(H+ and Na+ adducts) mixed with the matrix 2,5-DHB; * represents an unidentified 

peak.  A full list of peak assignments can be found in Tables D-1 and D-2 of 

Appendix D 

As shown in Figure 6.1, both samples can be observed by MALDI but there are a 

significant number of additional peaks observed particularly in the low molecular 

weight region below m/z 800.  This is the region of the spectrum that suffers 

interference from the matrix and which is likely to be improved through the use of a 

matrix-free method.  The same samples were deposited directly onto the carbon 

nanotubes and analysed by MALDI-TOF in order to determine if a signal could be 

detected.  Figure 6.2 illustrates the spectra obtained for PEG-1000 (a), and substance 

P (b). 
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Figure 6.2: MALDI-TOF spectra of (a) PEG-1000 (Na+ adducts), and (b) substance 

P (Na+ adduct) deposited on carbon nanotube forests; * represents an unidentified 

peak 

 As shown in Figure 6.2, both compounds were detected using MALDI without a 

matrix, and through simple deposition of the samples onto the nanotubes.  The signal 

for substance P was less intense than that of PEG, and showed some chemical noise 

in the lower m/z region which could not be identified.  Both samples could only be 

observed when sodium was added to the samples; the protonated species were not 

detected.  This is in agreement with Shin et al.217 who reported the detection of 

sodium and potassium adducts but not the protonated form.  The sensitivity 

specification of the Ultraflex instrument states a signal-to-noise ratio of 50:1 for 250 

attomoles of a mass of 1570 Da in reflectron mode.  Since the amount of substance P 

deposited on the plate is in the picomole region, the signal-to-noise observed should 

be significantly higher than this.  A signal-to-noise ratio of 478.5 was observed with 

the matrix (i.e. in Figure 6.1b) but only a ratio of 78.9 was observed when detected 

off the nanotubes.  On the other hand, the signal-to-noise ratios for PEG-1000 were 
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approximately equal.  The efficiency of detection from the nanotubes therefore 

seems to be sample-dependent and will need to be investigated further. 

The distribution of the PEG-1000 sample shown in Figure 6.2a is 

significantly distorted compared to that in Figure 6.1a.  The m/z values are also 

different by 4 Da.  A similar effect was also observed for substance P in that the 

expected m/z differed by about 6 Da.  This is expected due to the fact that a different 

target plate had to be used for experiments involving the nanotubes.  The nanotubes 

themselves are grown on a plate a few mm thick and this has to be attached to the 

plate for MALDI analysis.  Since there is not room in the source of the MALDI-TOF 

instrument to accommodate the nanotubes on a standard MTP 384 MALDI plate, the 

samples were fastened to a plate that had grooves cut into it in which the nanotube 

samples could fit.  This meant that the distance between the plate and the detector 

was different to that of the samples on the MTP 384 and, as a result, the time-of-

flight, and consequently the m/z observed, changed significantly.  Re-calibration of 

the instrument is therefore necessary for use of the nanotube samples, and should 

improve the distribution of the polymer spectra.     

Signal detection appears to be affected by the density of the carbon nanotube 

forests.  Shin et al.217 showed that with vertically aligned nanotubes, a signal could 

not be obtained when the density of the packing was increased.  The results in Figure 

6.2 are from a low density nanotube forest, so, in order to compare results, a 

relatively higher density nanotube forest was also used and Figure 6.3 shows the 

spectrum obtained for PEG. 



162 
 

 

Figure 6.3: MALDI-TOF spectrum of PEG deposited on a high density carbon 

nanotube forest;  * represents unidentified peaks 

As shown in Figure 6.3, the signal for PEG is a lot lower with a signal-to-noise ratio 

of 43.5, and several unidentified peaks are present in the low m/z region of the 

spectrum.  This is consistent with previous results from Shin, and is proposed to be 

due to enhanced cooling of the nanotube tips through more dense packing, thus 

decreasing desorption of the sample from the surface.217 

 Since a signal was detected for both samples on a TOF instrument, the same 

samples were analysed using MALDI-FTICR mass spectrometry.  Figure 6.4 shows 

the spectrum obtained for PEG on a low density carbon nanotube forest. 
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Figure 6.4: MALDI-FTICR mass spectrum of PEG-1000 deposited on a carbon 

nanotube forest; * represents an unidentified peak 

When analysed by FTICR mass spectrometry, a carbon nanotube distribution was 

observed over a large mass region.  PEG could be detected but the signal of both 

distributions was weak as a low laser power was used.  As the laser power was 

increased, the PEG distribution disappeared entirely and the signal from the carbon 

nanotubes became more intense, as shown in Figure 6.5. 
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Figure 6.5: MALDI-FTICR mass spectrum showing carbon nanotube distribution; 

inset (right) proposes molecular formulae for a selection of peaks, showing 

difference of C2 between adjacent peaks and addition of sodium adducts; inset (left) 

shows a comparison between the experimental and theoretical isotope distributions 

of the assigned peak at m/z 1751.99  

On analysis of the spectrum, differences of 24.00 Da were observed between 

adjacent isotope distributions showing the addition of C2 each time.  The molecular 

formulae for the peaks show a carbon series, increasing by two carbon atoms each 

time, with one hydrogen and one sodium atom attached.  It is therefore likely that the 

addition of sodium to the samples promotes the formation of adducts with the 
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nanotubes as well, thereby enabling their detection in the instrument instead of the 

samples.  This nanotube distribution was observed in every spectrum; PEG could 

only just be observed at low laser powers, as shown in Figure 6.4, but substance P 

was not detected at all.  The two instruments use different lasers for MALDI – the 

TOF has a nitrogen laser, and the FTICR has a Nd:YAG laser.  The difference in the 

wavelength of these lasers may be the reason why the nanotubes are only observed in 

FTICR spectra.    

The detection of carbon nanotubes has been observed before,214 and the use 

of glycerol has been suggested to prevent detachment of the nanotubes from a target 

plate.  However, glycerol and its associated adducts have also been detected in the 

low mass region of the spectrum,209-210 so it is not ideal for producing matrix-free 

spectra.  An alternative approach that has been investigated is the modification of the 

surface of carbon nanotubes in suspension, through oxidation and chemical 

functionalization so as to introduce carboxyl groups onto the nanotube surface.218, 221-

222 The presence of these functional groups improves the solubility of the nanotubes 

in water, and therefore enables a more homogeneous layer to be deposited onto the 

target plate.  Surface modifications also enable the carbon nanotubes to act as a 

proton source, thereby reducing cation adducts and increasing the range of samples 

for which they may be suitable.  Therefore, in order to minimise the detection of 

carbon nanotube distributions in MALDI spectra, additional sample preparation is 

first required. 
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6.4 Conclusion 

Carbon nanotubes have shown potential as a substitute for a matrix in MALDI.  A 

good signal was observed for both PEG and substance P, deposited onto a low 

density carbon nanotube forest, when analysed on a TOF instrument. A higher 

density nanotube forest reduced the signal intensity, potentially due to enhanced 

cooling through closer packing, resulting in decreased desorption of the analyte.  

Analysis using FTICR mass spectrometry resulted in the detection of a sodium 

adduct distribution of the nanotubes themselves.  PEG could be detected at low laser 

powers but the large mass range covered by the nanotube distribution suppresses the 

signal of peptides like substance P.   Modification of the carbon nanotube surfaces is 

one possible approach to preventing the nanotubes from being detected in the 

MALDI mass spectra, as well as providing a proton source for compounds.  This 

would need to be investigated before analysis of other samples can be completed due 

to the interference of the nanotube distribution in the spectra. 
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Chapter 7: Conclusions and Future 
Work 
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7.1 Conclusions 

This thesis contains a number of different analytical applications of Fourier 

transform ion cyclotron resonance mass spectrometry.  The main applications 

chapters demonstrate the role FTICR mass spectrometry can play in biological 

applications, namely natural product structure characterisation and identifying the 

binding sites of anticancer drugs on proteins, due to the high mass accuracies 

possible.   

Natural products, particularly polyketides and non-ribosomal peptides, are 

becoming increasingly important as sources of clinical drugs, and efficient methods 

for their structural characterisation are essential.  This work has demonstrated the 

combined use of two tandem mass spectrometry techniques, one of which is unique 

to FTICR, to provide detailed, complementary structural information on examples of 

these classes of compounds.  In particular, the use of CAD and EID in multistage 

mass spectrometry has been shown to be effective in distinguishing between two 

polyketide isomers, lasalocid A and iso-lasalocid A, which is necessary to elucidate 

the biosynthetic pathways of these compounds.  This method has started to be 

applied to identifying intermediate structures in the biosynthesis process, but 

developments in sample preparation are necessary to improve signal intensities for 

tandem mass spectrometry experiments, before they can be implemented.  The use of 

CAD and EID has also been applied to non-ribosomal peptides; EID in particular 

was found to be useful in providing detailed structural information on the compound 

actinomycin D.  Multiple ion isolation was investigated in order to provide an 

accurate internal calibration for the fragment ions produced by EID; in doing so, the 

use of in-cell isolation proved to increase the intensities of the product ions, enabling 

many more fragments to be detected than with external isolation.  The combination 
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of CAD, EID, and multiple ion isolation has therefore been developed as a method 

for providing detailed, complementary, accurately calibrated structural information 

for natural products. 

The identification of anticancer drug binding sites on proteins is essential for 

understanding the mode of action of these drugs, as well as investigating potential 

side effects these compounds may cause.  The use of high mass accuracy tandem 

mass spectrometry has shown to provide insights into the binding of potential 

ruthenium(II) arene anticancer complexes, by studying their interaction with peptides 

and proteins.  In this case, CAD alone was used to determine the binding sites, as 

ECD, in most cases, resulted in capture of an electron at the ruthenium metal and 

caused cleavage of the complex from the peptide.  Peptide binding of two 

ruthenium(II) complexes revealed binding at histidine and methionine; an 

observation that was expected based on previous work.  However, binding at 

phenylalanine and glutamic acid was also observed here for the first time.  Binding 

to insulin and the oxidised insulin B-chain supported evidence of histidine binding, 

with glutamic acid binding being investigated further by reaction with glutathione.  

This project in particular demonstrated the need for sub-ppm mass accuracy when 

identifying molecular formulae.  An assignment made with a mass accuracy above 1 

ppm indicated potential binding to cysteine sulfonic acid, which is an unlikely 

occurrence.  Re-assignment of this peak revealed an a-ion with a mass accuracy 

below 1 ppm, indicating this is the more likely of the two.  Instruments which can 

only achieve 1 ppm mass accuracy would not have made this distinction, therefore 

demonstrating how FTICR is a powerful analytical tool in biological applications. 

Two further applications of FTICR mass spectrometry have also been 

investigated and are ongoing projects.  First, the use of FTICR mass spectrometry 
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and GC-MS have been used for identifying differences in genuine and counterfeit 

vodkas.  The negative mode ESI mass spectra were obtained and the chemical 

profiles analysed between m/z 100 and 400.  PCA was used to look for groupings of 

the samples; for the most part, the counterfeit samples were grouped separately to the 

genuine products.  The main differences between the samples arise from the addition 

of flavouring agents; citric acid was detected in most of the counterfeit samples, but 

not in any of the genuine products showing its potential as a marker for identifying 

counterfeit vodka.  GC-MS was also used to investigate differences in the volatile 

components of the vodkas; however, improved sample preparation techniques are 

first needed, such as the use of solid phase microextraction.  The flavouring 

compound anethole was observed in the gas chromatogram of a counterfeit sample 

and not in the genuine product, which again may be a potential marker for detecting 

illicit vodka. 

The second ongoing project investigated carbon nanotubes as a substitute for 

a matrix in MALDI, in order to minimise matrix interference effects commonly 

observed in the low mass region.  PEG and substance P were successfully detected 

on a MALDI-TOF instrument; analysis by FTICR resulted in the observation of a 

strong signal belonging to the carbon nanotubes themselves.  There are various 

approaches reported for preventing detection of the nanotubes, most successful of 

which appears to be modification of the carbon surface through oxidation.  

Investigation into this is outside the scope of this project; however, carbon nanotubes 

do show potential in MALDI analysis. 

   Overall, the importance of high mass accuracy has been demonstrated in 

this work in the design and implementation of tandem mass spectrometry methods 

for structure characterisation and binding site identification.  Improvements in 
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FTICR instrumentation will ensure high mass accuracies are routinely achieved, 

which should see this technique continue to play an important role in analytical 

applications in the future. 

 

7.2 Future Work 

7.2.1 Natural Product Analysis 

A method involving the use of high mass accuracy tandem mass spectrometry, 

specifically the techniques of CAD and EID, has been developed to characterise the 

structures of natural products.  The ultimate goal is to apply this method to 

characterise the structures of intermediates formed throughout the biosynthetic 

pathway of polyketides, such as lasalocid A, and non-ribosomal peptides, such as 

actinomycin D.  As yet, the intermediates captured are not present in sufficient 

abundances for this method to work successfully, so further sample preparation steps 

are first required.  This will involve purification and separation of the crude cell 

extract mixtures which contain the intermediate structures, so may involve the use of 

liquid chromatography coupled with FTICR mass spectrometry in order to increase 

the abundance of the compounds.  Once this has been achieved, this method can be 

applied to characterising these structures and elucidating the biosynthetic processes 

involved.   

7.2.2 Drug Binding Site Analysis 

The use of high mass accuracy tandem mass spectrometry has been applied to 

successfully identify the binding sites of ruthenium anticancer drugs on peptides and 

proteins.  These preliminary experiments can be scaled up so that ultimately, the 

mechanisms and modes of action of these compounds in vivo can be understood.  
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The two ruthenium complexes studied here are two of several complexes that have 

been synthesised and exhibit anticancer activity, and consist of different arene and 

chelating ligands attached to the ruthenium.  The observed loss of the arene in this 

work can be investigated further so that the effect different ligands have on the 

observed peptide and protein binding can be studied.  Since these experiments have 

involved peptides and small proteins, the use of liquid chromatography coupled to 

FTICR mass spectrometry should be investigated for the elucidation of binding sites 

on much larger proteins, where a bottom-up proteomics approach may be necessary.   

7.2.3 Counterfeit Vodka Analysis 

The use of ESI-FTICR-MS and gas chromatography to identify counterfeit samples 

showed potential but there are a number of alternative analysis techniques and 

sample preparation steps that need to be explored first, in order to optimise the 

developing method.  Solid phase extraction resulted in detection of long chain 

alkanes from the tubes themselves.  A more efficient method to use would be that of 

solid phase micro extraction (SPME) whereby the headspace is sampled to analyse 

the volatile components directly.  Additional analysis with LC-MS would overcome 

the signal suppression observed in the ESI-FTICR-MS analysis of some vodka 

samples which contained high levels of sucrose.  Combining gas chromatography 

with FTICR mass spectrometry has also started to be investigated.  The GC can be 

coupled to an atmospheric pressure chemical ionisation (APCI) source and used to 

analyse the vodka samples by GC-APCI-FTICR mass spectrometry.  This technique 

is not widely used and may be a more efficient method for combining the separation 

of GC with the high resolving power and mass accuracy of FTICR mass 

spectrometry to identify counterfeit spirits.    
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7.2.4 Carbon Nanotubes in MALDI 

Mass spectra of small molecules using carbon nanotubes as a matrix substitute were 

observed; however, serious contamination from the nanotubes themselves was 

encountered.  Methods to improve the spectra have already been reported in the 

literature but these mainly involve the modification of the nanotubes through 

oxidation and chemical functionalization.  This route could be explored in order to 

achieve MALDI-FTICR spectra without the use of a matrix. 
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Appendix A 

 

Appendix A contains the supplementary data tables for chapters 2 and 3, detailing 

tandem mass spectrometry data for the structural characterisation of polyketides and 

non-ribosomal peptides. 

 

Table A-1: Fragment ions produced by CAD of Erythromycin A (precursor ion m/z 

734.48); peaks used for internal calibration are marked by ▲ 

Observed 
m/z  (ext 

cal) 

Observed 
m/z (int cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
Error 

(ext cal) 
/ ppm 

Mass 
error 

(int cal) 
/ ppm 

Fragment 
Cleavage 

734.47682 ▲ 734.46863 734.46895 C37H68NO13
+ 10.72 - [M+H]+ 

716.46591 ▲ 716.45798 716.45795 C37H66NO12
+ 11.11 - [M+H-H2O]+ 

698.45518 ▲ 698.44749 698.44739 C37H64NO11
+

 11.15 - [M+H-H4O2]
+ 

684.43880 684.43130 684.43174 C36H62NO11
+ 10.32 -0.64 [M+H-CH4O]+ 

680.44376 680.43631 680.43682 C37H62NO10
+ 10.20 -0.75 [M+H-H6O3]

+ 

666.42843 666.42117 666.42117 C36H60NO10
+ 10.89 0.00 [M+H-CH8O3]

+ 

658.42272 658.41557 658.41609 C34H60NO11
+ 10.07 -0.79 a 

640.37547 640.36855 - unassigned - - - 

602.39591 602.38949 602.38987 C31H56NO10
+ 10.03 -0.63 b 

592.37507 592.36878 592.36914 C29H54NO11
+ 10.01 -0.61 c 

590.35958 590.35331 590.35349 C29H52NO11
+ 10.32 -0.30 c – H2 

576.38016 ▲ 576.37407 576.37422 C29H54NO10
+ 10.31 - d 

558.36898 558.36312 558.36366 C29H52NO9
+ 9.53 -0.97 d – H2O 

540.35761 540.35197 540.35309 C29H50NO8
+ 8.36 -2.07 d – H4O2 

522.34760 522.34218 522.34253 C29H48NO7
+ 9.71 -0.67 d – H6O3 

500.32668 500.32154 500.32179 C26H46NO8
+ 9.77 -0.50 ef 

482.31604 482.31111 482.31123 C26H44NO7
+ 9.97 -0.25 ef – H2O 

480.30044 480.29553 480.29558 C26H42NO7
+ 10.12 -0.10 ef – H4O 

464.30531 464.30060 464.30066 C26H42NO6
+ 10.02 -0.13 ef – H4O2 

444.29981 444.29534 444.29558 C23H42NO7
+ 9.52 -0.54 gh 

438.32569 438.32128 438.32140 C23H42NO7
+ 9.79 -0.27 fi 

426.28924 426.28497 426.28501 C23H40NO6
+ 9.92 -0.09 gh – H2O 

420.31497 420.31077 420.31084 C25H42NO4
+ 9.83 -0.17 fi – H2O 
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408.27851 408.27445 408.27445 C23H38NO5
+ 9.94 0.00 gh – H4O2 

401.25732 401.25334 - unassigned - - - 

393.23101 393.22713 - unassigned - - - 

383.24660 383.24282 - unassigned - - - 

365.23584 ▲ 365.23227 365.23225 C21H33O5
+ 9.83 - jk 

360.24156 360.23804 360.23806 C18H34NO6
+ 9.72 -0.06 hl 

347.22514 347.22177 347.22169 C21H31NO4
+ 9.94 0.23 jk – H2O 

342.23084 342.22752 342.22750 C18H32NO5
+ 9.76 0.06 hl – H2O 

325.20408 325.20095 325.20095 C18H29O5
+ 9.62 0.00 hl-H2O, -NH3 

316.21496 316.21192 316.21185 C16H30NO5
+ 9.84 0.22 fm 

307.19342 307.19048 307.19039 C18H27O4
+ 9.86 0.29 jnp 

284.18837 284.18567 284.18563 C15H26NO4
+ 9.64 0.14 fm – CH4O 

279.18513 279.18249 - C13H27O6
2+ - - ω2 

270.17740 270.17458 - C29H50NO8
2+ - - ω2 

261.67619 261.17179 - C29H48NO7
2+ - - ω2 

250.16384 250.16151 - unassigned - - - 

244.82811 244.82582 - C37H68NO13
3+ - - ω3 

238.82440 238.82208 - C37H66NO12
3+ - - ω3 

232.82062 232.81846 - C37H64NO11
3+ - - ω3 

192.12827 192.12651 - C29H54NO10
3+ - - ω3 

186.12446 186.11227 - C29H52NO9
3+ - - ω3 

180.12056 180.11892 - C29H50NO8
3+ - - ω3 

174.11711 174.11553 - C29H48NO7
3+ - - ω3 

158.11907 158.11765 158.11756 C8H16NO2
+ 9.55 0.57 q 

  

Mean Absolute Average 
Standard Deviation 

 
 

 9.98 
0.49 

-0.33 
0.50 

 

 

Table A-2: Fragment ions produced by EID of Erythromycin A (precursor ion m/z 

734.48); peaks used for internal calibration are marked by ▲ 

Observed 
m/z  (ext 

cal) 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
Error 

(ext cal) 
/ ppm 

Mass 
error 

(int cal) 
/ ppm 

Fragment 
Cleavage 

734.46862 ▲ 734.46833 734.46852 C37H68NO13
+ 0.14 - [M+H]+ 

716.45845 ▲ 716.45806 716.45795 C37H66NO12
+ 0.70 - [M+H-H2O]+ 

703.45105 703.45060 703.45013 C36H65NO12
+• 1.31 0.67 [M+H-CH3O]+• 

685.44003 685.43949 685.43956 C36H63NO11
+• 0.69 -0.10 [M+H-CH5O2]

+• 

674.4118 674.41121 674.411 C34H60NO12
+ 1.19 0.31 [M+H-C3H8O]+ 

660.43248 660.43183 660.43174 C34H62NO11
+ 1.12 0.14 [M+H-C3H6O2]

+ 
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648.39613 648.39542 648.39535 C32H58NO12
+ 1.2 0.11 [M+H-C5H10O]+ 

644.40121 644.40049 644.40044 C33H58NO11
+ 1.19 0.08 [M+H-C4H10O2]

+ 

630.38569 630.38491 630.38479 C32H56NO11
+ 1.43 0.19 [M+H-C5H12O2]

+ 

604.37000 604.36912 604.36914 C30H54NO11
+ 1.42 -0.03 ac 

602.39082 602.38994 602.38987 C31H56NO10
+ 1.58 0.12 bd 

584.38007 584.37913 584.37931 C31H54NO9
+ 1.30 -0.31 bd – H2O 

576.37525 ▲ 576.37429 576.37422 C29H54NO10
+ 1.79 - e 

575.36735 575.36638 575.3664 C29H53NO10
+• 1.65 -0.03 e – H 

574.35967 574.35870 574.35837 C29H52NO10
+ 2.26 0.57 e – H2 

560.34395 560.34294 560.34292 C28H50NO10
+ 1.84 0.04 e – CH2 

558.36474 558.36372 558.36366 C29H52NO9
+ 1.93 0.11 e – H2O 

557.3569 557.35588 557.35583 C29H51NO9
+• 1.92 0.09 e – H3O 

556.3491 556.34808 556.34801 C29H50NO9
+ 1.96 0.13 e – H4O 

542.36984 542.36878 542.36874 C29H50NO8
+ 2.03 0.07 e – H2O2 

540.35421 540.35315 540.35309 C29H50NO8
+ 2.07 0.11 e – H4O2 

539.34616 539.34510 539.34527 C29H49NO8
+• 1.65 -0.32 e – H5O2 

522.34359 522.34248 522.34253 C29H48NO7
+ 2.03 -0.10 e – H6O3 

514.33863 514.33751 514.33744 C27H48NO8
+ 2.31 0.14 f – C2H5O 

512.29923 512.29810 512.29798 C27H44O9
+• 2.44 0.23 g – C2H8O 

494.28857 494.28742 494.28742 C27H42O8
+• 2.33 0 g – H2O 

490.30221 490.30105 490.30106 C24H44NO9
+ 2.35 -0.02 hi 

489.33095 489.32979 489.32962 C25H47NO8
+• 2.72 0.35 jk 

488.28665 488.28548 488.28541 C24H42NO9
+ 2.54 0.14 hi – H2 

486.34349 486.34232 486.34252 C26H48NO7
+ 1.99 -0.41 flm 

484.32813 484.32696 484.32688 C26H46NO7
+ 2.58 0.17 flm – H2 

477.28586 477.28468 477.28468 C27H41O7
+ 2.47 0 g – C2H10O3 

472.29168 472.29050 472.28915 C24H42NO8
+ 5.36 2.86 jk – CH5 

468.33313 468.33193 468.33196 C26H46NO6
+ 2.5 -0.06 hi – H2O 

464.30187 464.30067 464.30066 C26H42NO6
+ 2.61 0.02 hk – H6O3 

444.29678 444.29557 444.29558 C23H42NO7
+ 2.70 -0.02 il 

429.24958 429.24835 429.24829 C22H37O8
+ 3.01 0.14 np 

411.23896 411.23773 411.23639 C22H35O7
+ 6.25 3.26 np – H2O 

408.27598 408.27474 408.27445 C23H38NO5
+ 3.75 0.71 ij 

404.26539 404.26415 404.26427 C20H38NO7
+ 2.77 -0.3 is 

401.2546 401.25336 401.25337 C21H37O7
+ 3.07 -0.02 np – CO 

393.22836 393.22713 393.22717 C22H33O6
+ 3.03 -0.1 np – H4O2 

388.27065 388.26942 388.26936 C20H38NO6
+ 3.32 0.15 is – O 

383.24402 383.24279 383.24282 C21H35O6
+ 3.13 -0.08 np – CH2O2 

381.22833 381.22710 381.22717 C21H33O6
+ 3.04 -0.18 np – CH4O2 

375.2628 375.26156 375.26154 C19H37NO6
+• 3.36 0.05 is – CHO 
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367.23599 367.23480 - C37H68NO13
2+• - - ω2 

365.23347 ▲ 365.23224 365.23225 C21H33O5
+ 3.34 - fg 

360.23919 360.23796 360.23806 C18H34NO6
+ 3.14 -0.28 it 

349.23862 349.23740 349.23734 C21H33O4
+ 3.67 0.17 fg – O 

347.22286 347.22165 347.22169 C21H31O4
+ 3.37 -0.12 fg – H2O 

342.22873 342.22752 342.2275 C18H32NO5
+ 3.59 0.06 is – H2O 

335.18642 335.18521 335.1853 C19H27O5
+ 3.34 -0.27 fguv 

334.22363 334.22243 334.22241 C16H32NO6
+ 3.65 0.06 is – C2H2 

332.24437 332.24316 332.24315 C17H34NO5
+ 3.67 0.03 is – CO 

325.20214 325.20094 325.20095 C18H29O5
+ 3.66 -0.03 fg – C3H4 

316.21303 316.21184 316.21185 C16H30NO5
+ 3.73 -0.03 is – C2H4O 

315.18137 315.18018 - unassigned - - - 

307.19155 307.19038 307.19039 C18H27O4
+ 3.78 -0.03 fg – C3H6O 

302.19732 302.19616 302.1962 C15H28NO5
+ 3.71 -0.13 is – C3H6O 

293.68408 293.68293 - C30H53NO10
2+ - - ω2 

289.1809 289.17976 289.17982 C18H25O3
+ 3.73 -0.21 fg – C3H6O 

284.67875 284.67761 - C30H51NO9
2+ - - ω2 

279.16027 279.15915 - unassigned - - - 

275.67349 275.67237 - C30H49NO8
2+ - - ω2 

270.68132 270.68022 - C29H51NO8
2+ - - ω2  

261.67596 261.67487 - C29H49NO7
2+ - - ω2 

260.18676 260.18568 260.18563 C13H26NO4
+ 4.34 0.19 is – C5H8O2 

258.20753 258.20645 258.20637 C14H28NO3
+ 4.49 0.31 is – C4H6O3 

251.16533 251.16427 - unassigned - - - 

232.65499 232.65395 - C26H43NO6
2+ - - ω2 

221.15452 221.1536 - unassigned - - - 

195.13888 195.13797 - unassigned - - - 

193.12311 193.12221 - unassigned - - - 

183.61868 183.86856 - unassigned - - - 

181.12314 181.12228 - unassigned - -   

176.12895 176.1281 176.12812 C8H18NO3
+ 4.71 -0.11 w + H2 

174.11330 ▲ 174.1125 174.11247 C8H16NO3
+ 4.77 - w 

158.11836 158.1176 158.11756 C8H16NO2
+ 5.06 0.19 x 

Mean Absolute Average 
Standard Deviation 

   2.78 
1.18 

0.14 
0.57  
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Table A-3: Fragment ions produced by CAD of Lasalocid A, Na+ adduct (m/z 

613.37); peaks used for internal calibration are marked by ▲ 

Observed m/z  
(locked mass 

613.3) 

Observed 
m/z (int 

cal) 

Theoretica
l m/z 

Proposed 
formula  

Mass 
Error 

(ext cal) / 
ppm 

Mass 
error 

(int cal) 
/ ppm 

Fragment 
Cleavage 

613.37109 613.37041 613.37109 C34H54O8Na+ - -1.11 [M+Na]+ 

595.36121 ▲595.36052 595.36053 C34H52O7Na+ 1.14 - [M+Na-H2O]+ 

577.35119 577.35048 577.34996 C34H50O6Na+
 2.13 -0.02 [M+Na-H4O2]

+ 

569.38251 569.38180 569.38126 C33H54O6Na+ 2.20 0.90 [M+Na-CO2]
+ 

559.34060 559.33988 559.33940 C34H48O5Na+ 2.15 0.95 [M+Na-H6O3]
+ 

551.37184 551.37112 551.37070 C33H52O5Na+ 2.07 0.86 [M+Na-CO2, H2O]+ 

497.28838 497.28765 497.28736 C28H42O6Na+ 2.05 0.76 a 

481.25706 481.25632 481.25606 C27H38O6Na+ 2.08 0.58 b 

479.27758 479.27701 479.27680 C28H40O5Na+ 1.62 0.54 a – H2O 

463.24657 463.24583 463.24550 C27H36O5Na+ 2.30 0.44 a – H2O, CH4 

461.26716 461.26643 461.26623 C28H38O4Na+ 2.02 0.71 a – H4O2 

405.26190 ▲405.26118 405.26115 C22H38O5Na+ 1.85 - c 

395.26499 395.26428 - unassigned - - - 

377.26691 ▲377.26621 377.26623 C21H38O4Na+ 1.80 - d 

359.25632 359.25562 359.25567 C21H36O3Na+ 1.80 -0.14 d – H2O 

204.46073 204.46024 - C34H54O8Na3+ - - ω3 

198.45649 198.456801 - C34H52O7Na3+ - - ω3 

192.45376 192.45329 - C34H50O6Na3+ - - ω3 

125.75704 125.75672 - C21H38O4Na3+ - - ω3 
  

Mean Absolute Average 
Standard Deviation 

 
 

 1.94 
0.30 

0.45 
0.60 

 

 

 

Table A-4: Fragment ions produced by EID of Lasalocid A, Na+ adduct (m/z 

613.37); peaks used for internal calibration are marked by ▲ 

Observed m/z  
(locked mass 

613.3) 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
Error 

(locked) 
/ ppm 

Mass 
error 
(int 

cal) / 
ppm 

Fragment 
Cleavage 

613.37109 ▲613.37119 613.37109 C34H54O8Na+ 0.00 0.16 [M+Na]+ 

595.36020 ▲595.36043 595.36053 C34H52O7Na+ -0.55 -0.17 [M+Na-H2O]+ 
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593.39632 593.39631 - unassigned - - - 

585.37662 585.37640 585.37618 C33H54O7Na+ 0.75 0.38 [M+Na-CO]+ 

583.32440 583.32415 583.32414 C32H48O8Na+ 0.45 0.02 [M+Na-C2H6]
+ 

577.35005 577.35005 577.34996 C34H50O6Na+ 0.16 0.16 [M+Na-H4O2]
+ 

575.33425 575.33431 575.33431 C34H48O6Na+ -0.10 0.00 [M+Na-H6O2]
+ 

569.38145 569.38121 569.38126 C33H54O6Na+ 0.33 -0.09 [M+Na-CO2]
+ 

567.36624 567.36645 567.36561 C33H53O6Na+ 1.11 1.48 [M+Na-CH2O2]
+ 

559.33939 559.33934 559.33940 C34H48O5Na+ -0.02 -0.11 [M+Na-H6O3]
+ 

554.36024 554.36028 - unassigned - - - 

551.37087 551.37080 551.37070 C33H52O5Na+ 0.31 0.18 [M+Na-CH2O3]
+ 

543.33168 543.33160 - unassigned - - - 

525.28232 525.28219 525.28227 C29H42O7Na+ 0.10 -0.15 ac 

515.35007 515.35003 515.34957 C33H48O3Na+ 0.97 0.89 [M+Na-CH6O5]
+ 

509.28739 509.28723 509.28736 C29H42O6Na+ 0.06 -0.26 ad 

497.28749 497.28730 497.28736 C28H42O6Na+ 0.26 -0.12 bd 

481.25626 481.25603 481.25606 C27H38O6Na+ 0.42 -0.06 de 

479.27694 479.27672 479.27680 C28H40O5Na+ 0.29 -0.17 bd – H2O 

473.30288 473.30259 - unassigned - - - 

470.26496 470.26388 470.26389 C26H39O6Na+• 2.28 -0.02 f 

469.25646 469.25622 469.25606 C26H38O6Na+ 0.85 0.34 f – H 

468.28694 468.28688 - unassigned - - - 

463.24574 463.24549 463.24550 C27H36O5Na+ 0.52 -0.02 de – H2O 

461.26650 461.26630 461.26623 C28H38O4Na+ 0.59 0.15 bd – H4O2 

451.24567 451.24542 451.24550 C26H36O5Na+ 0.38 -0.18 f – H3O 

447.30818 447.30814 447.30810 C25H44O5Na+ 0.18 0.09 g 

429.26393 429.26363 - unassigned - - - 

414.20163 414.20131 414.20128 C22H31O6Na+• 0.84 0.07 hi 

405.26148 ▲405.26115 405.26115 C22H38O5Na+ 0.81 0.00 j 

399.21455 399.21422 399.21420 C22H32O5Na+ 0.88 0.05 hk 

389.26663 389.26621 - unassigned - - - 

387.17816 387.17781 387.17781 C20H28O6Na+ 0.90 0.00 il 

381.20389 381.20361 381.20363 C22H30O4Na+ 0.68 -0.05 hk – H2O 

377.26659 ▲377.26623 377.26623 C21H38O4Na+ 0.95 0.00 m 

376.25881 376.25839 376.25841 C21H37O4Na+ 1.06 -0.05 m – H 

375.25085 375.25050 375.25058 C21H36O4Na+ 0.72 -0.21 m – H2 

374.20881 374.20877 - unassigned - - - 

372.19098 372.19070 - unassigned - - - 

371.18328 371.18296 371.18290 C20H28O5Na+ 1.02 0.16 kl 

369.16772 369.16735 369.16725 C20H26O5Na+ 1.27 0.27 kl – H2 

361.23520 361.23479 - unassigned - - - 
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358.17538 358.17510 358.17507 C19H27O5Na+• 0.87 0.08 n 

357.16796 357.16731 357.16725 C19H26O5Na+ 1.99 0.17 n – H 

347.21969 347.21931 347.21928 C19H32O4Na+ 1.18 0.09 - 

341.17278 341.17240 341.17233 C19H26O4Na+ 1.32 0.21 n – OH 

319.22477 319.22438 319.22437 C18H32O3Na+ 1.25 0.03 p 

306.68557 306.68547 - C34H54O8Na2+ - - ω2 

305.20911 305.20869 - unassigned - - - 

303.22985 303.22952 303.22945 C18H32O2Na+ 1.32 0.23 p – O 

297.68011 297.68001 - unassigned - - - 

291.19347 291.19308 291.19307 C16H28O3Na+ 1.37 0.03 p – C2H4 

288.13363 288.13323 288.13321 C15H21O4Na+• 1.46 0.07 q 

287.12573 287.12537 287.12538 C15H20O4Na+ 1.22 -0.03 q – H 

283.16056 283.16046 - unassigned - - - 

277.17785 277.17746 277.17742 C15H26O3Na+ 1.55 0.14 r 

263.16224 263.16179 263.16177 C14H24O3Na+ 1.79 0.08 r – CH2 

261.18293 261.18256 261.18250 C15H26O2Na+ 1.65 0.23 r – O 

259.09452 259.09413 259.09408 C13H16O4Na+ 1.70 0.19 s 

248.17510 248.17471 248.17468 C14H25O2Na+• 1.69 0.12 tu 

241.08397 241.08357 241.08352 C13H14O3Na+ 1.87 0.21 s – H2O 

233.15164 233.15125 233.15120 C13H22O2Na+ 1.89 0.21 s – H4O 

230.09180 230.09139 230.09134 C12H15O3Na+• 2.00 0.22 v 

221.15163 221.15126 221.15120 C12H22O2Na+ 1.94 0.27 wx 

219.10201 219.10161 - unassigned - - - 

211.16968 211.16932 - unassigned - - - 

204.46055 204.46044 - C34H54O8Na3+ - - ω3 

166.09683 166.09651 166.09643 C8H15O2Na+• 2.41 0.48 y 
 

Mean Absolute Average 

Standard Deviation 
   

1.16 

1.07 

0.28 

0.98  

 

 

Table A-5: Fragment ions produced by CAD of iso-Lasalocid A, Na+ adduct 

(precursor ion m/z 613.37); peaks used for internal calibration are marked by ▲ 

Observed m/z  
(locked mass 

613.3) 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
Error 

(ext cal) / 
ppm 

Mass 
error 

(int cal) 
/ ppm 

Fragment 
Cleavage 

613.37109 613.37069 613.37109 C34H54O8Na+ - -0.65 [M+Na]+ 

595.36092 ▲ 595.36052 595.36053 C34H52O7Na+ 0.66 - [M+Na-H2O]+ 

577.35041 577.35002 577.34996 C34H50O6Na+
 0.78 0.10 [M+Na-H4O2]

+ 

569.38172 569.38133 569.38126 C33H54O6Na+ 0.81 0.12 [M+Na-CO2]
+ 
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559.33977 559.33938 559.33940 C34H48O5Na+ 0.66 -0.04 [M+Na-H6O3]
+ 

551.37113 551.37074 551.37070 C33H52O5Na+ 0.78 0.07 

[M+Na-CO2, 

H2O]+ 

497.28783 497.28745 497.28736 C28H42O6Na+ 0.95 0.18 a 

481.25651 481.25613 481.25606 C27H38O6Na+ 0.94 0.15 b 

479.27688 479.27686 479.27680 C28H40O5Na+ 0.17 0.13 a – H2O 

463.24586 463.24548 463.24550 C27H36O5Na+ 0.78 -0.04 a – H2O, CH4 

461.26686 461.26616 461.26623 C28H38O4Na+ 1.37 -0.15 a – H4O2 

447.08503 447.08466 - unassigned - - - 

405.26152  ▲405.26117 405.26115 C22H38O5Na+ 0.91 - c 

377.26655 ▲377.26622 377.26623 C21H38O4Na+ 0.85 - d 

359.25599 359.25566 359.25567 C21H36O3Na+ 0.89 -0.03 d – H2O 

353.26662 353.26629 - unassigned - - - 

337.27412 337.27375 337.27372 C21H37O3
+ 1.19 0.09 d – OH, Na 

319.26354 319.26321 319.26316 C21H35O2
+ 1.19 0.16 d – OH,Na, H2O 

237.18519 237.18494 - unassigned - - - 

219.17463 219.17440 - unassigned - - - 

204.46054 204.46032 - C34H54O8Na3+ - - ω3 

198.45689 198.45597 - C34H52O7Na3+ - - ω3 

192.45323 192.45302 - C34H50O6Na3+ - - ω3 

125.75686 125.75646 - C21H38O4Na3+ - - ω3 
  

Mean Absolute Average 

Standard Deviation 

 

 

 0.86 

0.28 

0.01 

0.21 

 

 

Table A-6:  Fragment Ions produced by EID of iso-Lasalocid A, Na+ adduct 

(precursor ion m/z 613.37); peaks used for internal calibration are marked by ▲ 

Observed 
m/z  (locked 
mass 613.3) 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
Error 

(locked) 
/ ppm 

Mass 
error 
(int 

cal) / 
ppm 

Fragment 
Cleavage 

613.37109 ▲613.37105 613.37109 C34H54O8Na+ - - [M+Na]+ 

595.36080 ▲595.36058 595.36053 C34H52O7Na+ 0.45 - [M+Na-H2O]+ 

593.39581 593.39572 - unassigned - - - 

577.35075 577.35056 577.34996 C34H50O6Na+ 1.37 1.04 [M+Na-H4O2]
+ 

559.33949 559.33931 559.33940 C34H48O5Na+ 0.16 -0.16 [M+Na-H6O3]
+ 

479.20260 479.20229 - unassigned - - - 

473.30288 473.30284 - unassigned - - - 

447.27454 447.27419 447.27412 C26H39O6
+ 0.94 0.16 a 
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431.14284 431.14247 - unassigned - - - 

415.20932 415.20893 415.20911 C22H32O6Na+ 0.51 -0.43 b 

414.20143 414.20104 414.20128 C22H31O6Na+• 0.36 -0.58 b - H 

405.26154 ▲405.26115 405.26115 C22H38O5Na+ 0.96 - c 

403.13174 403.13135 - unassigned - - - 

399.21478 399.21438 399.21420 C22H32O5Na+ 1.45 0.45 d 

377.26665 ▲377.26623 377.26623 C21H38O4Na+ 1.11 - e 

359.25598 359.25556 - unassigned - - - 

319.22480 319.22436 319.22437 C18H32O3Na+ 1.35 -0.03 f 

281.05156 281.05113 - unassigned - - - 

277.17784 277.17741 277.17742 C15H26O3Na+ 1.52 -0.03 g 

259.09456 259.09414 259.09408 C13H16O4Na+ 1.85 0.23 h 

248.17504 248.17462 248.17468 C14H25O2Na+• 1.45 -0.24 i 

221.15160 221.15120 221.15120 C12H22O2Na+ 1.81 0 j 

204.46074 204.46036 - C34H54O8Na3+ - - ω3 

166.09677 166.09644 166.09643 C8H15O2Na+• 2.05 0.06 k 
 

Mean Absolute Average 

Standard Deviation 
   

1.16 

0.58 

0.04 

0.42 
 

 

 

Table A-7:  Fragment ions produced by CAD of Lasalocid A, NH4+ adduct 

(precursor ion m/z 608.42); peaks used for internal calibration are marked by ▲ 

Observed 
m/z (int cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / ppm 

Fragment 
Cleavage 

591.38910 
591.38915 C34H55O8

+ -0.08 
[M-NH 3]

+ 

▲573.37863 
573.37858 C34H53O7

+
 - 

[M-NH 3,H2O]+ 

▲555.36804 
555.36802 C34H51O6

+ - 
[M-NH 3,-H4O2]

+ 

▲537.35749 
537.35745 C34H49O5

+ - 
[M-NH 3,-H6O3]

+ 

519.34691 
519.34689 C34H47O4

+ 0.04 
[M-NH 3,-H8O4]

+ 

501.33636 
501.33632 C34H45O3

+ 0.08 
[M-NH 3,-H10O5]

+ 

483.32565 
483.32576 C34H43O2

+ -0.23 
[M-NH 3,-H12O6]

+ 

469.29488 
469.29485 C29H41O5

+ 0.06 
ab – H2O 

459.27402 
- unassigned - 

- 

455.27908 
455.27920 C28H39O5

+ -0.26 
ac – H2O 

451.28436 
451.28429 C29H39O4

+ 0.16 
ab – H4O2 

 446.14937 
- unassigned - 

- 

443.27966 
443.27920 C27H39O5

+ 1.04 
ad – H2O 

441.26356 
441.26355 C27H37O5

+ 0.02 
ad – H2O, H2 

433.27388 
433.27385 C29H37O3

+ 0.07 
ab – H6O3  
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429.26362 
429.26355 C26H37O5

+ 0.16 
e 

427.28456 
427.28429 C27H39O4

+ 0.63 
ad –H2O, O 

425.26852 
425.26864 C27H37O4

+ -0.28 
ad – H4O2 

411.25306 
411.25299 C26H35O4

+ 0.17 
e – H4O2 

409.27378 
409.27372 C27H37O3

+ 0.15 
ad – H4O2, O 

398.14592 
- unassigned - 

- 

380.13529 
- unassigned - 

- 

375.28942 
- unassigned - 

- 

371.22159 
371.22169 C23H31O4

+ -0.27 
fg – H2O 

365.26885 
365.26864 C22H37O4

+ 0.57 
h – H2O 

355.28418 
355.28429 C21H39O4

+ -0.31 
i 

▲337.27364 
337.27372 C21H37O3

+ -0.24 
i – H2O 

335.25791 
335.25807 C21H35O3

+ -0.48 
i – H2O, H2 

335.20043 
335.20056 C23H27O2

+ -0.39 
fg – H4O2 

331.19026 
331.19039 C20H27O4

+ -0.39 
fj – H2O 

325.23725 
325.23734 C19H33O4

+ -0.28 
k 

319.26306 
319.26316 C21H35O2

+ -0.31 
i – H4O2 

317.24750 
317.24751 C21H33O2

+ -0.03 
i – H4O2, H2 

313.17970 
313.17982 C20H25O3

+ -0.38 
fj – H4O2 

307.22675 
307.22677 C19H31O3

+ -0.07 
k – H2O 

305.17496 
- unassigned - 

- 

301.25254 
301.25259 C21H33O

+ -0.17 
i – H6O3 

301.17979 
301.17982 C19H25O3

+ -0.10 
l – H2O, O 

299.16420 
299.16417 C19H23O3

+ 0.10 
l – H4O2 

297.09820 
- unassigned - 

- 

293.13829 
293.13835 C16H21O5

+ -0.20 
m 

289.21615 
289.21615 C19H29O2

+ 0 
k – H4O2 

281.24749 
281.24751 C18H33O2

+ -0.07 
n – O 

279.23187 
279.23186 C18H31O2

+ 0.04 
n – H2O 

275.12781 
275.12779 C16H19O4

+ 0.07 
m – H2O 

263.23697 
263.23694 C18H31O

+ 0.11 
n – H2O, O 

261.22133 
261.22129 C18H29O

+ 0.15 
n – H4O2 

259.24208 
- unassigned - 

- 

255.19548 
255.19547 C15H27O3

+ 0.04 
p 

251.20059 
251.20056 C16H27O2

+ 0.12 
m – H6O3 

245.22641 
- unassigned - 

- 

▲237.18494 
237.18491 C15H25O2

+ 0.13 
p – H2O 

233.19005 
- unassigned - 

- 

219.17440 
- unassigned - 

- 

219.10164 
219.10157 C13H15O3

+ 0.32 
q – H2O 
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211.16932 
-  unassigned - 

- 

209.19005 
- unassigned - 

- 

207.17442 
- unassigned - 

- 

201.16384 
- unassigned - 

- 

199.13292 
199.13287 C11H19O3

+ 0.25 
rs 

197.15368 
197.15361 C12H21O2

+ 0.36 
tu 

195.17442 
- unassigned - 

- 

191.17951 
- unassigned - 

- 

185.12563 
- unassigned - 

- 

183.13804 
183.13796 C11H19O2

+ 0.44 
rs – O 

179.12190 
- unassigned - 

- 

177.16386 
- unassigned - 

- 

169.12240 
- unassigned - 

- 

163.14824 
- unassigned - 

- 

161.13260 
- unassigned - 

- 

155.14318 
- unassigned - 

- 

153.12754 
- unassigned - 

- 

151.11187 
- unassigned - 

- 

141.09113 
141.09101 C8H13O2

+ 0.85 
v – H2 

137.13261 
- unassigned - 

- 
  

Mean Absolute Average 

Standard Deviation 

 

 

0.04 

0.33  

 

Table A-8:  Fragment ions produced by CAD of iso-Lasalocid A, NH4+ adduct 

(precursor ion m/z 608.42); peaks used for internal calibration are marked by ▲. 

Observed m/z 
(int cal) 

Theoretica
l m/z 

Proposed 
formula  

Mass 
error (int 

cal) / 
ppm 

Fragment 
Cleavage 

591.38958 591.38915 C34H55O8
+ 0.73 [M-NH 3]

+ 

▲573.37875 573.37858 C34H53O7
+

 - [M-NH3,H2O]+ 

▲555.36801 555.36802 C34H51O6
+ - [M-NH 3,-H4O2]

+ 

▲537.35742 537.35745 C34H49O5
+ - [M-NH3,-H6O3]

+ 

519.34685 519.34689 C34H47O4
+ -0.08 [M-NH 3,-H8O4]

+ 

404.18715 - unassigned - - 

337.27364 337.27372 C21H37O3
+ -0.24 a – H2O 

319.26308 319.26316 C21H35O2
+ -0.25 a – H4O2 

315.20680 - unassigned - - 
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301.25262 301.25259 C21H33O
+ 0.10 a – H6O3 

289.21653 289.21615 C19H29O2
+ 1.31 b – H4O2 

281.24756 281.24751 C18H33O2
+ 0.18 c – O 

279.23184 279.23186 C18H31O2
+ -0.07 c – H2O 

275.12766 275.12779 C16H19O4
+ -0.47 d – H2O 

263.23696 263.23694 C18H31O
+ 0.08 c – H2O, O 

255.19550 255.19547 C15H27O3
+ 0.12 e 

251.20062 251.20056 C16H27O2
+ 0.24  

245.22644 - unassigned - - 

237.18494 237.18491 C15H25O2
+ 0.13 e – H2O 

219.17439 - unassigned - - 

209.19003 - unassigned - - 

177.11219 - unassigned - - 
  

Mean Absolute Average 

Standard Deviation 

 

 

0.14 

0.46 
 

 

Table A-9:  Fragment ions produced by CAD of Lasalocid A, Li+ adduct (precursor 

ion m/z 597.39); peaks used for internal calibration are marked by ▲. 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / 

ppm 

Fragment 
Cleavage 

▲579.38665 
579.38683 C34H52O7Li + - 

[M+Li-H 2O]+ 

561.37601 
561.37627 C34H50O6Li +

 -0.46 
[M+Li-H 4O2]

+ 

553.40753 
553.40757 C33H54O6Li + -0.07 

[M+Li-CO2]
+ 

543.36561 
543.36570 C34H48O5Li + -0.17 

[M+Li-H 6O3]
+ 

535.39675 
535.39700 C33H52O5Li + -0.47 

[M+Li-CO2,H2O]+ 

▲525.35508 
525.35514 C34H46O4Li + - 

[M+Li-H 8O4]
+ 

517.38678 
517.38644 C33H50O4Li + 0.66 

[M+Li-CO2,H4O2]
+ 

499.37597 
499.37587 C33H48O3Li + 0.20 

[M+Li-CO2,H6O3]
+

 

497.36042 
497.36022 C33H4O3Li + 0.40 

[M+Li-CO2,H6O3, H2]
+ 

486.68660 
- unassigned - 

- 

483.29302 
483.29292 C33H46O3Li + 0.21 

ab 

481.31356 
481.31365 C28H42O6Li + -0.19 

cd 

465.28253 
465.28235 C27H38O6Li + 0.39 

bd – H2 

463.30310 
463.30309 C28H40O45Li+ 0.02 

cd – H2O 

457.32899 
- unassigned - 

- 

447.27186 
447.27179 C27H36O5Li + 0.16 

bd – H2O, H2  
 

      



213 
 

445.29257 
445.29253 C28H38O4Li + 0.09 

cd – H4O2  

▲437.32411 
437.32382 C27H42O4Li + - 

bd – O2 

429.26141 
429.26122 C27H34O4Li + 0.44 

bd – H4O2, H2 

427.28224 
427.28196 C28H36O3Li + 0.66 

cd – H4O2  

421.29263 
421.29252 C26H38O4Li + 0.26 

e – HO2 

419.31354 
- unassigned - 

- 

415.33960 
- unassigned - 

- 

406.15216 
- unassigned - 

- 

403.28240 
- unassigned - 

- 

401.30287 
- unassigned - 

- 

397.32923 
- unassigned - 

- 

389.28775 
389.28743 C27H42O4Li + 0.82 

f – H2 

384.28043 
- unassigned - 

- 

375.30841 
375.30816 C22H40O4Li + 0.67 

f - O 

▲361.29241 
361.29251 C21H38O4Li + -0.28 

g 

343.28202 
343.28202 C21H36O3Li + 0.00 

g – H2O 

337.29271 
- unassigned - 

- 

331.24580 
331.24556 C19H32O4Li + 0.72 

h 

313.23525 
313.23499 C19H30O3Li + 0.83 

h – H2O 

307.18827 
307.18804 C19H24O3Li + 0.75 

i 

298.19947 
- C34H54O8Li 2+ - 

ω2 

289.69454 
- C34H52O7Li 2+ - 

ω2 

280.68916 
- C34H50O6Li 2+ - 

ω2 

271.68387 
- C34H48O5Li 2+ - 

ω2 

267.69942 
- C33H52O5Li 2+ - 

ω2 

247.18836 
- unassigned - 

- 

245.20906 
- unassigned - 

- 

232.64205 
- C27H38O6Li 2+ - 

ω2 

223.63666 
- C27H36O5Li 2+ - 

ω2 

222.64701 
- C28H38O4Li 2+ - 

ω2 

199.13626 
- C34H54O8Li 3+ - 

ω3 

193.13255 
- C34H52O7Li 3+ - 

ω3 

187.12880 
- C34H50O6Li 3+ - 

ω3 

180.64668 
- C21H38O4Li 2+ - 

ω2 

154.43674 
- C19H24O3Li 2+ - 

ω2 

149.35180 
- C34H54O8Li 4+ - 

ω4  

144.84905 
- unassigned - 

- 

140.34625 
- C34H52O7Li 4+ - 

ω4 

135.84350 
- C34H48O5Li 4+ - 

ω4 

133.85122 
- C33H52O5Li 4+ - 

ω4 
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120.32230 
- C21H38O4Li 3+ - 

ω3 
  

Mean Absolute Average 

Standard Deviation 

 

 

0.27 

0.40 
 

 

 

Table A-10:  Fragment ions produced by EID of Lasalocid A, Li+ adduct (precursor 

ion m/z 597.39); peaks used for internal calibration are marked by ▲ 

Observed 
m/z (int cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / ppm 

Fragment 
Cleavage 

595.38132 
595.38175 C34H52O8Li + -0.72 

[M+Li–H 2]
+ 

▲579.38683 
579.38683 C34H52O7Li + - 

[M+Li-H 2O]+ 

561.37640 
561.37627 C34H50O6Li +

 0.23 
[M+Li-H 4O2]

+ 

543.36484 
543.36570 C34H48O5Li + -1.58 

[M+Li-H 6O3]
+ 

530.24634 
- unassigned - 

- 

509.30793 
509.30851 C29H42O7Li + -1.14 

ae – H2 

481.31334 
481.31365 C28H42O6Li + -0.64 

cd 

463.30303 
463.30309 C28H40O45Li+ -0.13 

cd – H2O 

457.32861 
- unassigned - 

- 

447.27169 
447.27179 C27H36O5Li + -0.22 

bd – H2O, H2 

445.29225 
445.29253 C28H38O4Li + -0.63 

cd – H4O2 

398.22748 
398.22752 C22H31O6Li +• -0.10 

gh 

389.28737 
389.28743 C22H38O5Li + -0.15 

f  

383.24035 
383.24043 C22H32O5Li + -0.21 

hi 

371.20388 
371.20404 C20H28O6Li + -0.43 

gj 

▲361.29246 
361.29251 C21H38O4Li + - 

k 

343.28183 
343.28202 C21H36O3Li + -0.55 

k – H2O 

337.29244 
- unassigned - 

- 

332.25347 
332.25334 C19H33O4Li +• 0.39 

l 

325.19853 
325.19856 C19H26O4Li + -0.09 

m – H2 

307.18793 
307.18800 C19H24O3Li + -0.23 

m – H2, H2O 

303.25061 
303.25060 C18H32O3Li + 0.03 

n - H 

289.69309 
- unassigned - 

- 

287.25567 
287.25569 C18H32O2Li + -0.07 

n - OH 

275.21894 
- unassigned - 

- 

261.20344 
261.20368 C15H26O3Li + -0.92 

p - H 

▲247.18801 
247.18803 C14H24O3Li + - 

qr 
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245.20884 
245.20886 C15H26O2Li + -0.08 

p - OH 

243.12040 
243.12031 C13H16O4Li + 0.37 

s 

237.65130 
- unassigned - 

- 

232.20096 
232.20091 C14H25O2Li +• 0.22 

qt - H 

225.10971 
- unassigned - 

- 

205.17747 
205.17744 C12H22O2Li + 0.15 

tv 

199.13526 
- C34H54O8Li 3+ - 

ω3 

189.14610 
189.14614 C11H18O2Li + -0.21 

tu – H2 

172.07061 
172.07062 C9H9O3Li +• -0.06 

w 

149.35101 
- C34H54O8Li 4+ - 

ω4  

119.48152 
- C34H54O8Li 5+ - 

ω5 
  

Mean Absolute Average 

Standard Deviation 

 

 

-0.27 

0.47 
 

 

Table A-11:  Fragment ions produced by CAD of iso-Lasalocid A, Li+ adduct 

(precursor ion m/z 597.39); peaks used for internal calibration are marked by ▲. 

Observed 
m/z (int cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / 

ppm 

Fragment 
Cleavage 

▲579.38673 
579.38683 C34H52O7Li + - 

[M+Li-H 2O]+ 

561.37621 
561.37627 C34H50O6Li +

 -0.11 
[M+Li-H 4O2]

+ 

553.40736 
553.40757 C33H54O6Li + -0.38 

[M+Li-CO2]
+ 

543.36566 
543.36570 C34H48O5Li + -0.07 

[M+Li-H 6O3]
+ 

535.39674 
535.39700 C33H52O5Li + -0.49 

[M+Li-CO2,H2O]+ 

517.38638 
517.38644 C33H50O4Li + -0.12 

[M+Li-CO2,H4O2]
+ 

499.37587 
499.37587 C33H48O3Li + 0 

[M+Li-CO2,H6O3]
+

 

483.29302 
483.29292 C33H46O3Li + 0.21 

ab 

481.31367 
481.31365 C28H42O6Li + 0.04 

cd 

465.28243 
465.28235 C27H38O6Li + 0.17 

bd – H2 

463.30312 
463.30309 C28H40O45Li+ 0.06 

cd – H2O 

457.32894 
- unassigned - 

- 

447.27184 
447.27179 C27H36O5Li + 0.11 

bd – H2O, H2 

445.29255 
445.29253 C28H38O4Li + 0.04 

cd – H4O2 

▲437.32394 
437.32382 C27H42O4Li + - 

bd – O2 

421.21977 
- unassigned - 

- 

415.16882 
- unassigned - 

- 

401.15319 
- unassigned - 

- 

397.32907 
- unassigned - 

- 
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389.28741 
389.28743 C22H38O5Li + -0.05 

e – H2 

383.27694 
- unassigned - 

- 

375.30818 
375.30818 C22H40O4Li + 0 

e - O 

▲361.29246 
361.29251 C21H38O4Li + - 

f 

343.28201 
343.28202 C21H36O3Li + -0.03 

f – H2O 

337.29258 
- unassigned - 

- 

331.24561 
331.24556 C19H32O4Li + 0.15 

g 

313.23503 
313.23499 C19H30O3Li + 0.13 

g – H2O 

309.26112 
- unassigned - 

- 

298.69887 
- C34H54O8Li 2+ - 

ω2 

289.69359 
- unassigned - 

- 

283.10656 
- unassigned - 

- 

271.09022 
- unassigned - 

- 

261.20377 
261.20368 C15H26O3Li + 0.34 

h 

252.14190 
- unassigned - 

- 

247.18813 
247.18803 C14H24O3Li + 0.40 

ij 

245.20906 
245.20886 C15H26O2Li + 0.82 

h - O 

243.09533 
- unassigned - 

- 

239.14665 
239.14655 C11H20O5Li + 0.42 

jk 

236.12825 
- unassigned - 

- 

233.10558 
- unassigned - 

- 

227.10039 
- unassigned - 

- 

199.13560 
- C34H54O8Li 3+ - 

ω3 

193.13188 
- C34H52O7Li 3+ - 

ω3 

187.12823 
- C34H50O6Li 3+ - 

ω3 

180.64642 
- C21H38O4Li 2+ - 

ω2  

170.04255 
- unassigned - 

- 

120.43199 
- C21H38O4Li 3+ - 

ω3 

96.21726 
- noise - 

- 
  

Mean Absolute Average 

Standard Deviation 

 

 

0.08 

0.28 
 

 

Table A-12:  Fragment ions produced by EID of iso-Lasalocid A, Li+ adduct 

(precursor ion m/z 597.39); peaks used for internal calibration are marked by ▲. 

Observed m/z 
(int cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / 

ppm 

Fragment 
Cleavage 

▲579.38653 579.38683 C34H52O7Li + - [M+Li-H 2O]+ 
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557.22609 - unassigned - - 

541.27305 - unassigned - - 

513.24205 - unassigned - - 

499.22644 - unassigned - - 

485.21081 - unassigned - - 

415.16887 - unassigned - - 

▲399.23549 399.23539 C22H32O6Li + 0.25 ab 

389.28745 389.28743 C22H38O5Li + 0.05 c + H2 

385.21982 385.21974 C21H30O6Li + 0.21 ab – CH2 

383.24032 383.24043 C22H32O5Li + -0.29 ad 

371.20430 371.20404 C20H28O6Li + 0.70 be 

▲361.29258 361.29251 C21H38O4Li + - f 

343.28206 343.28202 C21H36O3Li + 0.12 f – H2O 

337.29263 - unassigned - - 

303.25060 303.25060 C18H32O3Li + 0 g 

298.69900 - C34H54O8Li 2+ - ω2 

275.21947 275.21930 C16H28O3Li + 0.62 h – H4O2, H2 

▲261.20365 261.20368 C15H26O3Li + -0.11 i 

236.12821 - unassigned - - 

199.13526 - C34H54O8Li 3+ - ω3 

166.41079 - unassigned - -  

119.48049 - C34H54O8Li 5+ - ω5 
  

Mean Absolute Average 

Standard Deviation 

 

 

0.20 

0.35  

 

Table A-13:  Fragment ions produced by CAD/EID of Lasalocid A, Li+ adduct 

(precursor ion m/z 597.39 fragmented by CAD, followed by m/z 361.29 fragmented 

by EID); peaks used for internal calibration are marked by ▲. 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass 
error (int 

cal) / 
ppm 

Fragment 
Cleavage 

361.29203 361.29251 C21H38O4Li + -1.33 [M+Li]+ 

▲ 343.28202 343.28195 C21H26O3Li + - [M+Li-H 2O]+ 

331.24499 331.24551 C19H32O4Li +
 -1.57 f 

 ▲261.20358 261.20365 C15H26O3Li + - a 
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247.18805 247.18803 C14H24O3Li + 0.08 b 

▲ 205.17748 205.17746 C12H22O2Li + - cd 

189.14614 189.14614 C11H18O2Li + 0.00 de – H2 

180.64633 - C21H38O4Li 2+ - ω2 

120.43177 - C21H38O4Li 3+ - ω3 

90.32330 - C21H38O4Li 4+ - ω4 
  

Mean Absolute Average 

Standard Deviation 

 

 

-0.94 

0.73  

 

Table A-14:  Fragment ions produced by CAD/EID of iso-Lasalocid A, Li+ adduct 

(precursor ion m/z 597.39 fragmented by CAD, followed by m/z 361.29 fragmented 

by EID); peaks used for internal calibration are marked by ▲. 

Observed 
m/z (int 

cal) 

Theoretical 
m/z 

Proposed 
formula  

Mass error 
(int cal) / 

ppm 

Fragment 
Cleavage 

361.29265 361.29251 C21H38O4Li + 0.39 [M+Li]+ 

▲ 303.25057 303.25064 C18H32O3Li + - a 

273.20347 273.20365 C16H26O3Li +
 -0.66 bc – H2 

▲261.20373 261.20365 C15H26O3Li + - d 

245.20875 245.20874 C15H26O2Li + 0.04 def 

217.17747 217.17746 C13H22O2Li + 0.05 g 

▲ 205.17748 205.17746 C12H22O2Li + - fh 

180.14598 - C21H38O4Li 2+ - ω2 

120.43090 - C21H38O4Li 3+ - ω3 

96.21726 - noise - - 

90.32318 - C21H38O4Li 4+ - ω4 
 

 
 

 

      

Mean Absolute Average 

Standard Deviation 

 

 

-0.05 

0.38 
 

 

Table A-15: CAD fragments of Actinomycin D (H+); [M+H] + m/z 1255.63575  

Expt. m/z Theo. m/z 
Proposed 
Formula 

Mass Error 
(ppm) 

Fragment 
Cleavage 

▲1227.64075 1227.64084 C61H87N12O15
+ - [M+H - CO]+ 

974.46184 974.46181 C48H64N9O13
+ 0.03 ab 

▲956.45129 956.45124 C48H62N9O12
+ - ab – H2O 
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928.45644 928.45633 C47H62N9O11
+ 0.12 cd 

875.39345 875.9340 C43H55N8O12
+ 0.06 ae 

▲857.38288 857.38283 C43H53N8O11
+ - ae – H2O 

829.38784 829.38792 C42H53N8O10
+ -0.10 cf 

657.26635 657.26674 C34H37N6O8
+ -0.60 bcgh 

558.19828 558.19832 C29H28N5O7
+ -0.07 bcgi 

▲459.12992 459.12991 C24H19N4O6
+ - cegi 

428.69598 - ω2 - - 

418.55413 - ω3 - - 

399.26020 399.26020 C19H35N4O5
+ 0.00 jk 

251.13211 - ω5 - - 

 
Mean Absolute Average 

Standard Deviation 

0.12 

0.18 
 

 

Table A-16: EID fragments of Actinomycin D (H+); [M+H]+ m/z 1255.63575 

Expt. m/z Theo. m/z 
Proposed 

Formula 

Mass Error 

(ppm) 
Fragment Cleavage 

1227.64165 1227.64084 C61H87N12O15
+ 0.66 [M+H - CO]+ 

1211.64618 1211.64592 C61H85N12O14
+ 0.21 [M+H – CO2]

+ 

1209.63127 1209.63027 C61H83N12O14
+ 0.83 [M+H –CO2 –H2O]+ 

1183.61508 1183.61462 C59H83N12O14
+ 0.39 lm 

1156.56816 1156.56734 C57H78N11O15
+ 0.71 en 

1142.55421 1142.55437 C59H74N12O12
+ -0.14 [M+H-H8O4-C3H5]

+ 

1127.54180 1127.54079 C56H75N10O15
+ 0.90 eqr 

1124.54153 1124.54112 C56H74N11O14
+ 0.36 cp 

1098.56477 - unassigned - - 

1084.54778 - unassigned - - 

1057.49868 1057.49892 C52H69N10O14
+ -0.23 ft 

1025.51443 - unassigned - - 

1012.51443 - unassigned - - 

974.46146 974.46181 C48H64N9O13
+ -0.36 ab 

972.44299 - unassigned - - 

▲956.45126 956.45124 C48H62N9O12
+ - ab – H2O 
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938.44101 - unassigned - - 

928.45676 928.45633 C47H62N9O11
+ 0.46 cd 

875.39296 875.39340 C43H55N8O12
+ -0.45 ae 

▲857.38274 857.38283 C43H53N8O11
+ - ae - H2O 

839.37237 839.37227 C43H51N8O10
+ 0.12 ae – H4O2 

829.38744 829.38792 C42H53N8O10
+ -0.58 cf 

825.35741 825.35662 C42H49N8O10
+ 0.96 ae – H4O2 –CH2 

813.39406 813.39300 C42H53N8O9
+ 1.30 ae – H2O –CO2 

803.37273 803.37227 C40H51N8O10
+ 0.57 fm 

776.36116 776.36137 C39H50N7O10
+ -0.27 u 

774.34555 774.34572 C39H48N7O10
+ -0.22 u – H2 

760.33055 760.33007 C38H46N7O10
+ 0.63 u – H2 –CH2 

758.31444 758.31442 C38H44N7O10
+ 0.03 u – CH2 -2H2 

744.29930 744.29877 C37H42N7O10
+ 0.71 u – 2CH2 -2H2 

726.28858 726.28820 C37H40N7O9
+ 0.52 u – 2CH2 -2H2 –H2O 

686.29370 686.29329 C35H40N7O8
+ 0.60 u – 3CH2 -H2 –H2O -CO 

675.27686 675.27730 C34H39N6O9
+ -0.65 bcgh + H2O 

657.26677 657.26674 C34H37N6O8
+ 0.05 bcgh  

655.25031 655.25109 C34H35N6O8
+ -1.19 bcgh – H2 

645.26695 645.26674 C33H37N6O8
+ 0.33 bcgh - C 

627.81997 - ω2 - - 

576.19840 576.20889 C29H30N5O8
+ -0.38 bcgi + H2O 

▲558.19840 558.19832 C29H28N5O7
+ - bcgi 

556.18206 556.18267 C29H26N5O7
+ -1.10 bcgi – H2 

546.19773 - unassigned - - 

542.20350 542.20341 C29H28N5O6
+ 0.17 bcgi - O 

530.20344 530.20341 C28H28N5O6
+ 0.06 bcgi - CO 

514.20801 514.20850 C28H28N5O5
+ -0.95 bcgi – CO2 

508.27650 508.27658 C24H38N5O7
+ -0.16 v 

498.32874 - unassigned - - 

477.14075 477.14048 C24H21N4O7
+ 0.57 cegi + H2O 

▲459.12998 459.12991 C24H19N4O6
+ - cegi 

433.15064 433.15065 C23H21N4O5
+ -0.02 cegi + H2 -CO 

431.13515 431.13500 C23H19N4O5
+ 0.35 cfgi 

428.70063 - ω2 - - 

418.56138 - ω3 - - 
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399.26009 399.26020 C19H35N4O5
+ -0.28 jk 

381.24968 381.24963 C19H33N4O4
+ 0.13 kx 

354.23861 354.23873 C18H32N3O4
+ -0.34 lw 

318.82712 - ω2 - - 

313.91508 - ω3 - - 

300.19169 300.19178 C14H26N3O4
+ -0.30 nx + H2O 

285.80253 - ω3 - - 

282.18121 282.18122 C14H24N3O3
+ -0.04 nx 

268.16553 268.16557 C13H22N3O3
+ -0.15 nx – CH2 

169.09707 169.09715 C8H13N2O2
+ -0.47 np 

  
Mean Absolute Average 

Standard Deviation 

0.45 

0.32 
 

 

Table A-17: EID fragments of Actinomycin D (Na+); [M+Na]+ m/z 1277.61770   

Expt. m/z Theo. m/z 
Proposed 
Formula 

Mass 
Error 
(ppm) 

Fragment Cleavage 

1249.62374 1249.62278 C61H86N12O15Na+ 0.77 [M+H - CO]+ 

1233.62829 1233.62787 C61H86N12O14Na+ 0.34 ab 

1220.59748 1220.59623 C60H83N11O15Na+ 1.02 cd 

1205.59618 1205.59657 C59H82N12O14Na+ -0.32 ae 

1180.56572 1180.56493 C57H79N11O15Na+ 0.67 fg 

▲1164.53373 1164.53363 C56H75N11O15Na+ - hi 

▲1146.52297 1146.52307 C56H73N11O14Na+ - hi – H2O 

1136.53958 1136.53872 C55H75N11O14Na+ 0.76 dh 

1120.54436 1120.54380 C55H75N11O13Na+ 0.50 dj 

1051.45018 1051.44957 C50H64N10O14Na+ 0.58 kn 

1049.50844 1049.50669 C52H70N10O12Na+ 1.67 jm 

1033.43653 1033.43900 C50H62N10O13Na+ -2.39 kn – H2O 

▲978.43318 978.43319 C48H61N9O12Na+ - jr 

950.43770 950.43827 C47H61N9O11Na+ -0.60 jl – H2 

934.44378 934.44336 C47H61N9O10Na+ 0.45 jl – H2O 

896.39034 896.39132 C43H55N9O11Na+ -1.09 gj + NH3 

879.36479 879.36478 C43H52N8O11Na+ 0.01 gj – H2 
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865.34907 865.34913 C42H50N8O11Na+ -0.07 gj – CH4 

853.38494 853.38551 C42H54N8O10Na+ -0.67 js 

837.35420 837.35421 C41H50N8O10Na+ -0.01 js – CH4 

825.35420 825.35421 C40H50N8O10Na+ -0.01 as 

821.35941 821.35930 C41H50N8O9Na+ 0.13 js – CH2 –H2O 

796.32756 796.32766 C39H47N7O10Na+ -0.13 t 

770.34857 770.34840 C38H49N7O9Na+ 0.22 u 

766.27997 766.28071 C37H41N7O10Na+ -0.97 t – CH3 –H2 –NH3 

740.30069 740.30145 C36H43N7O9Na+ -1.03 u – C2H6 

683.24275 683.24360 C33H36N6O9Na+ -1.24 jrvw – CH2 

657.26443 657.26433 C32H38N6O8Na+ 0.15 uxy – CH2 

530.25822 530.25852 C24H37N5O7Na+ -0.57 λ 

504.27896 504.27926 C23H39N5O6Na+ -0.59 σ 

447.22044 - unassigned - - 

 
 

Mean Absolute Average 

Standard Deviation 

0.63 

0.55 
 

 

 

Table A-18: EID fragments of Actinomycin D (Li+); [M+Li] + m/z 1261.64393     

Expt. m/z Theo. m/z 
Proposed 
Formula 

Mass 
Error 
(ppm) 

Fragment 
Cleavage 

1247.62815 1247.62839 C61H85N12O16Li  
+ -0.19 [M+H – CH2]

+ 

▲1233.64950 1233.64913 C61H86N12O15Li  
+ - [M+H – CO]+ 

1217.65446 1217.65421 C61H86N12O14Li  
+ 0.21 [M+H – CO2]

+ 

1204.62130 1204.62247 C60H83N11O15Li  
+ -0.97 ab 

1189.62270 - unassigned - - 

1174.59207 - unassigned - - 

1164.59303 - unassigned - - 

▲1148.55956 1148.55998 C56H75N11O15Li  
+ - cd 

▲1130.54941 1130.54942 C56H73N11O14Li  
+ - cd – H2O 

1120.56370 1120.56507 C55H75N11O14Li  
+ -1.22 bc 

1104.57073 1104.57015 C55H75N11O13Li  
+ 0.53 be 

1086.55903 1086.55959 C55H83N11O12Li  
+ -0.52 be – H2O 
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1059.47571 - unassigned - - 

1035.47576 1035.47591 C50H64N10O14Li  
+ -0.14 fg 

1017.46607 1017.46524 C50H62N10O13Li  
+ 0.82 fg – H2O 

▲962.45961 962.45953 C48H61N9O12Li  
+ - ej 

934.46489 934.46461 C47H61N9O11Li  
+ 0.30 ek – H2 

918.47035 918.46959 C47H61N9O10Li  
+ 0.83 ek – CH2 

880.41758 880.41756 C43H55N9O11Li  
+ 0.02 eg 

863.39104 863.39110 C43H52N8O11Li  
+ -0.07 el – H2 

849.37557 849.37545 C42H50N8O11Li  
+ 0.14 el – CH4 

837.41172 837.41183 C42H54N8O10Li  
+ -0.13 em 

821.38081 821.38053 C41H50N8O10Li  
+ 0.34 em – CH4 

809.38036 809.38045 C40H54N8O10Li  
+ -0.11 mn 

797.38062 797.38045 C39H50N8O10Li  
+ 0.21 p + NH3 

780.35410 780.35390 C39H47N7O10Li  
+ 0.26 p 

754.37446 754.37463 C38H49N7O9Li  
+ -0.23 p – CH2O 

750.30707 750.30702 C37H41N7O10Li  
+ 0.07 p – NH3 –CH3 

724.32763 724.32776 C36H43N7O9Li  
+ -0.18 q – C2H4 

653.29010 - unassigned - - 

630.83735 - ω2 - - 

514.28480 - unassigned - - 

431.24756 - unassigned - - 

420.56211 - ω3 - -  

298.17595 - unassigned - - 

252.33934 - ω - - 

  
Mean Absolute Average 

Standard Deviation 

0.36 

0.33 
 

 

Table A-19: Multiple ion isolation and EID fragments of Actinomycin D (Na+); 

[M+Na]+ m/z 1277.61770     

Expt. m/z Theo. m/z 
Proposed 
Formula 

Mass 
Error 
(ppm) 

Fragment Cleavage 

1249.62249 1249.62278 C61H86N12O15Na+ -0.23 [M+H - CO]+ 

1233.62787 1233.62787 C61H86N12O14Na+ 0.00 ab 
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1220.59637 1220.59623 C60H83N11O15Na+ 0.11 cd 

1205.59668 1205.59657 C59H82N12O14Na+ 0.09 ae 

1189.56510 1189.56527 C58H78N12O14Na+ -0.14 ae – CH4 

1180.56506 1180.56493 C57H79N11O15Na+ 0.11 fg 

1164.53330 1164.53363 C56H75N11O15Na+ -0.28 hi 

1146.52274 1146.52307 C56H73N11O14Na+ -0.29 hi – H2O 

1136.53848 1136.53872 C55H75N11O14Na+ -0.21 dh 

1120.54370 1120.54380 C55H75N11O13Na+ -0.09 dj 

1118.52751 1118.52815 C55H73N11O13Na+ -0.57 dj – H2 

1109.52732 1109.52782 C54H74N10O14Na+ -0.45 kl 

1107.51161 1107.51217 C54H74N10O14Na+ -0.51 kl – H2 

1102.53281 1102.53324 C55H73N11O12Na+ -0.39 dj – H2O 

1092.51214 1092.51250 C53H71N11O13Na+ -0.33 ad 

1075.48514 1075.48595 C53H68N10O13Na+ -0.75 ad – NH3 

1065.50165 1065.50160 C52H70N10O13Na+ 0.05 hm 

1051.44924 1051.44957 C50H64N10O14Na+ -0.31 kn 

1049.50658 1049.50669 C52H70N10O12Na+ -0.10 jm 

1047.49069 1047.49104 C52H68N10O12Na+ -0.33 jm – H2 

1033.43861 1033.43900 C50H62N10O13Na+ -0.38 kn – H2O 

1017.44441 1017.44409 C50H62N10O12Na+ 0.31 kn – H2O2 

1007.45962 1007.45974 C49H64N10O12Na+ -0.12 np - O 

1005.44423 1005.44409 C49H62N10O12Na+ 0.14 np – H2O 

996.44324 996.44375 C48H63N9O13Na+ -0.51 jr + H2O 

993.44384 993.44409 C48H62N10O13Na+ -0.25 np – CH2O 

978.43278 978.43319 C48H61N9O12Na+ -0.42 jr 

968.44919 968.44884 C47H63N9O12Na+ 0.36 jr – H2O -CO 

961.40666 961.40664 C48H58N8O12Na+ 0.02 ar – H2O –NH3 

956.45163 - unassigned - - 

952.45365 952.45393 C47H63N9O11Na+ -0.29 jl 

950.43785 950.43827 C47H61N9O11Na+ -0.44 jl – H2 

936.42234 936.42262 C46H59N9O11Na+ -0.30 jl – CH2 

934.44301 934.44336 C47H61N9O10Na+ -0.37 jl – H2O 

921.41148 - unassigned - - 

918.41221 918.41206 C46H57N9O10Na+ 0.16 jl – H2O –CH4 

917.41571 917.41681 C47H58N8O10Na+ -1.20 jl – H2O –NH3 

906.44836 906.44845 C46H61N9O9Na+ -0.10 jl – H2O -CO 
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896.39099 896.39132 C43H55N9O11Na+ -0.37 gj + NH3 

893.41666 - unassigned - - 

879.36439 879.36478 C43H52N8O11Na+ -0.44 gj – H2 

▲871.56574 871.56565 (D-Arg)5 - - 

868.34293 - unassigned - - 

865.34888 865.34913 C42H50N8O11Na+ -0.29 gj – CH4 

853.38521 853.38551 C42H54N8O10Na+ -0.35 js 

851.36958 851.36986 C42H52N8O10Na+ -0.33 js – H2 

848.32234 848.32258 C42H47N7O11Na+ -0.28 gj – NH3 

837.35392 837.35421 C41H50N8O10Na+ -0.35 js – CH4 

835.37434 835.37495 C42H52N8O9Na+ -0.73 js – H2O 

825.35380 825.35421 C40H50N8O10Na+ -0.50 as 

821.35925 821.35930 C41H50N8O9Na+ -0.06 js – CH2 –H2O 

820.32749 820.32766 C41H47N7O10Na+ -0.21 js – NH3 –CH4 

814.33782 - unassigned - - 

809.37095 -  unassigned - - 

804.33238 804.33275 C41H47N7O9Na+ -0.46 js – H2O –NH3 –CH2 

796.32737 796.32766 C39H47N7O10Na+ -0.36 t 

794.31177 794.31201 C39H45N7O10Na+ -0.30 t – H2 

783.30693 - unassigned - - 

770.34808 770.34840 C38H49N7O9Na+ -0.42 u 

766.28045 766.28071 C37H41N7O10Na+ -0.34 t – CH3 –H2 –NH3 

752.33749 752.33783 C38H47N7O8Na+ -0.45 u – H2O 

740.30118 740.30145 C36H43N7O9Na+ -0.36 u – C2H6 

738.28553 738.28580 C36H41N7O9Na+ -0.37 u – C2H6 –H2 

733.29528 733.29563 C38H42N6O8Na+ -0.48 u – H2O –NH3 –H2 

722.29055 722.29088 C36H41N7O8Na+ -0.46 u – C2H6 –H2O 

712.26990 712.27015 C34H39N7O9Na+ -0.35 jrvw + NH3 

708.34767 708.34800 C37H47N7O6Na+ -0.47 u – H2O -CO 

701.25391 - unassigned - - 

▲697.45397 697.45398 (D-Arg)4 - - 

695.24337 695.24360 C34H36N6O9Na+ -0.33 jrvw – H2 

683.24336 683.24360 C33H36N6O9Na+ -0.35 jrvw – CH2 

669.26411 669.26433 C33H38N6O8Na+ -0.33 uxy 

667.24853 667.24868 C33H36N6O8Na+ -0.22 uxy – H2 

657.26407 657.26433 C32H38N6O8Na+ -0.40 uxy – CH2 
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653.26939 - unassigned - - 

651.25354 651.25377 C33H36N6O7Na+ -0.35 uxy – H2O 

639.25358 639.25377 C32H36N6O7Na+ -0.30 uzα 

635.25871 635.25885 C33H36N6O6Na+ -0.22 uxy – H2O2 

625.27427 625.27450 C32H38N6O6Na+ -0.37 uxy – CO2 

623.25868 623.25885 C32H36N6O6Na+ -0.27 uzα – H2O 

621.24308 621.24320 C32H34N6O6Na+ -0.19 uzα – H2O –H2 

612.20634 612.20648 C30H31N5O8Na+ -0.23 gjβγ 

611.25864 611.25885 C31H36N6O6Na+ -0.34 uzα – CH2O 

598.19071 598.19083 C29H29N5O8Na+ -0.20 gjβγ – CH2 

595.22741 595.22755 C30H32N6O6Na+ -0.24 uvα – C2H6 

586.22704 586.22722 C29H33N5O7Na+ -0.31 uxδε 

580.18016 580.18027 C29H27N5O7Na+ -0.19 jrvβ 

572.21139 572.21157 C28H31N5O7Na+ -0.31 uxθ 

570.19579 570.19592 C28H29N5O7Na+ -0.23 uxθ – CH2 

568.21667 568.21665 C29H31N5O6Na+ 0.04 uxδε – H2O 

566.20092 566.20100 C29H29N5O6Na+ -0.14 uxδε – H2O –H2 

554.20089 554.20100 C28H29N5O6Na+ -0.20 uxσ – H2O 

552.18527 552.18535 C28H27N5O6Na+ -0.14 uxσ – H2O –H2 

540.22160 540.22174 C28H31N5O5Na+ -0.26 uxδε – H2O -CO 

536.19041 536.19044 C28H27N5O5Na+ -0.06 uxσ – H4O2 

530.25838 530.25852 C24H37N5O7Na+ -0.26 λ 

526.20597 526.20609 C27H29N5O5Na+ -0.23 uxπ – H2O 

▲523.34225 523.34230 (D-Arg)3 - - 

512.19042 512.19044 C26H27N5O5Na+ -0.04 uxπ – CH2 

508.19530 508.19553 C27H27N5O4Na+ -0.45 uxπ – H4O2 

504.27896 504.27926 C23H39N5O6Na+ -0.59 σ 

502.22723 - unassigned - - 

498.17478 - unassigned - - 

489.17431 - unassigned - - 

486.26855 486.26869 C23H37N5O5Na+ -0.29 σ – H2O 

481.11178 481.11186 C24H18N4O6Na+ -0.17 gjvβ 

471.12753 471.12751 C23H20N4O6Na+ 0.04 jsvβ 

455.13255 455.13259 C23H20N4O5Na+ -0.09 jszβ 

453.11687 453.11695 C23H18N4O5Na+ -0.18 jszβ – H2 

447.22132 - unassigned - - 
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443.16892 -  unassigned - - 

437.12195 437.12203 C23H18N4O4Na+ -0.18 jszβ – H2O 

425.99279 - ω3 - - 

421.24211 421.24214 C19H34N4O5Na+ -0.07 bφ 

413.12193 - unassigned - - 

409.12710 - unassigned - - 

403.23152 403.23158 C19H32N4O4Na+ -0.15 bφ – H2O 

399.26020 399.26020 C19H35N4O5
+ 0.00 bφ - Na 

391.19517 391.19519 C17H28N4O5Na+ -0.05 bφ – C2H6 

377.25231 377.25231 C18H34N4O3Na+ 0.00 bφ – CO2 

375.23666 375.23666 C18H32N4O3Na+ 0.00 bφ – CO2 –H2 

373.18461 373.18463 C17H26N4O4Na+ -0.05 bφ – H2O –C2H6 

370.07986 - unassigned - - 

▲349.23064 349.23063 (D-Arg)2 - - 

344.10056 - unassigned - - 

334.13735 334.13734 C14H21N3O5Na+ 0.03 ψζ – CH2 

320.15809 320.15808 C14H23N3O4Na+ 0.03 fζ 

308.15810 - unassigned - - 

300.19183 300.19178 C14H26N3O4
+ 0.17 fζ – Na + H2 

276.16829 276.16825 C13H23N3O2Na+ 0.14 fζ – CO2 

251.10670 - unassigned - - 

  
Mean Absolute Average 

Standard Deviation 

0.27 

0.18 
 

 

Table A-20: Multiple ion isolation and EID fragments of Actinomycin D (Li+); 

[M+Li] + m/z 1261.64393       

Expt. m/z Theo. m/z 
Proposed 
Formula 

Mass 
Error 
(ppm) 

Fragment Cleavage 

1233.64903 1233.64913 C61H86N12O15Li  
+ -0.08 [M+H – CO]+ 

1217.65426 1217.65421 C61H86N12O14Li  
+ 0.04 [M+H – CO2]

+ 

1203.61450 1203.61477 C60H82N11O15Li  
+ -0.22 ab 

1189.62270 - unassigned - - 

1148.55988 1148.55998 C56H75N11O15Li  
+ -0.09 cd 
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1130.54915 1130.54942 C56H73N11O14Li  
+ -0.24 cd – H2O 

1120.56505 1120.56507 C55H75N11O14Li  
+ -0.02 bc 

1104.57017 1104.57015 C55H75N11O13Li  
+ 0.02 be 

1086.55917 1086.55959 C55H73N11O12Li  
+ -0.39 be – H2O 

1035.47571 1035.47591 C50H64N10O14Li  
+ -0.19 fg 

1017.46506 1017.46534 C50H62N10O13Li  
+ -0.28 fg – H2O 

991.48632 991.48608 C49H64N10O12Li  
+ 0.24 gi – O 

989.47026 989.47043 C49H62N10O12Li  
+ -0.17 gi – H2O 

977.47016 977.47042 C48H62N10O12Li  
+ -0.27 gi – CH2O 

962.45939 962.45953 C48H61N9O12Li  
+ -0.15 ej 

934.46445 934.46461 C47H61N9O11Li  
+ -0.17 ek – H2 

920.44857 920.44896 C46H59N9O11Li  
+ -0.42 ek – CH2 

863.39095 863.39110 C43H52N8O11Li  
+ -0.17 el – H2 

▲871.56566 871.56565 (D-Arg)5 - - 

849.37557 849.37545 C42H50N8O11Li  
+ 0.14 el – CH4 

837.41167 837.41183 C42H54N8O10Li  
+ -0.19 em 

821.38036 821.38053 C41H50N8O10Li  
+ -0.21 em – CH4 

809.38043 809.38045 C40H54N8O10Li  
+ -0.02 mn 

805.38546 805.38562 C41H50N8O9Li  
+ -0.20 em – CH2 –H2O 

788.35900 788.35907 C41H47N7O9Li  
+ -0.09 em – CH4 –NH3 

780.35383 780.35390 C39H47N7O10Li  
+ -0.09 p 

778.33790 778.33833 C39H45N7O10Li  
+ -0.55 p – H2 

750.30692 750.30702 C37H41N7O10Li  
+ -0.13 p – NH3 –CH3 

736.36389 736.36415 C38H47N7O8Li  
+ -0.35 q – H2O 

724.32762 724.32776 C36H43N7O9Li  
+ -0.19 q – C2H4 

722.31180 722.31211 C36H41N7O9Li  
+ -0.43 q – C2H6 –H2 

717.32173 717.32195 C38H42N6O8Li  
+ -0.31 q – H2O –NH3 –H2 

706.31717 706.31719 C36H41N7O8Li  
+ -0.03 q – C2H6 –H2O 

▲697.45398 697.45398 (D-Arg)4 - - 

679.26983 679.26990 C34H36N6O9Li  
+ -0.10 ejrs – H2 

667.26977 667.26990 C33H36N6O9Li  
+ -0.19 ejrs – CH2 

653.29010 - unassigned - - 

651.27458 651.27499 C33H36N6O8Li  
+ -0.63 qtu – H2 

635.28002 635.28007 C33H36N6O7Li  
+ -0.08 qtu – H2O 

633.26436 633.26442 C33H34N6O7Li  
+ -0.09 qtu – H2O –H2 

623.28000 623.28007 C32H36N6O7Li  
+

 -0.11 qvw 
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607.28505 607.28515 C32H36N6O6Li  
+ -0.16 qrw 

570.25342 570.25352 C29H33N5O7Li  
+ -0.18 qtxy 

568.23753 568.23787 C29H31N5O7Li  
+

 -0.60 qtxy – H2  

564.20648 564.20657 C29H27N5O7Li  
+ -0.16 ejrz 

556.23782 556.23786 C28H31N5O7Li  
+ -0.07 qtxy – CH2 

554.22225 554.22221 C28H29N5O7Li  
+ 0.07 qtxy – CH4 

538.22719 538.22730 C28H29N5O6Li  
+ -0.20 qtα – H2O 

536.21154 536.21165 C28H27N5O6Li  
+ -0.21 qtα – H2O –H2 

▲523.34230 523.34230 (D-Arg)3 - - 

510.23233 510.23238 C27H29N5O5Li  
+ -0.10 qtβ – H2O 

508.21661 508.21673 C27H27N5O5Li  
+ -0.24 qtβ – H2O –H2 

488.30526 488.30554 C23H39N5O6Li  
+ -0.57 γ 

465.13805 465.13814 C24H18N4O6Li  
+ -0.19 elrz 

457.16956 457.16944 C23H22N4O6Li  
+ 0.26 emrz + H2 

437.14318 437.14322 C23H18N4O5Li  
+ -0.09 emvz 

431.24762 - unassigned - - 

420.55755 - ω3 - - 

411.16390 - unassigned - - 

401.20068 - unassigned - - 

393.15332 - unassigned - - 

391.19925 - unassigned - - 

387.25785 387.25785 C19H32N4O4Li  
+ 0.00 δε 

375.22142 375.22146 C17H28N4O5Li  
+ -0.11 δε – C2H6 

366.29170 - unassigned - - 

356.12171 - unassigned - - 

▲349.23063 349.23063 (D-Arg)2 - - 

328.12681 - unassigned - - 

318.16359 318.16361 C14H21N3O5Li  
+ -0.06 πσ 

312.13562 - unassigned - - 

292.18436 292.18434 C13H23N3O4Li  
+ 0.07 πσ – CO2 

  
Mean Absolute Average 

Standard Deviation 

0.22 

0.17 
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Appendix B 

 

Appendix B contains the supplementary data tables for the analysis of ruthenium 

anticancer drug binding sites on peptides in chapter 4. 

 

Table B-1: CAD Fragments of Angiotensin and AH076, where AH076 is denoted by 

Ru(bipy) through loss of chloride and arene ligands 

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

▲ y2 263.13900 263.13900 - 

▲ b2 272.13530 272.13530 - 

[a6 + Ru(bipy) – 2H+]+ 506.68988 506.68993 -0.10 

▲ y4 513.28196 513.28200 - 

[y6 + Ru(bipy) – H+]2+ 516.18921 516.18923 -0.04 

[b6 + Ru(bipy) – H+]2+ 520.68734 520.68739 -0.10 

b2 528.09273 528.09278 -0.13 

unassigned  551.29358 - - 

[b3 + Ru(bipy) – 2H+]+ 627.16115 627.16119 -0.06 

[M + Ru(bipy) – H2O]2+ 642.74792 642.74798 -0.09 

[M + Ru(bipy)]2+ 651.75324 651.75326 -0.03 

unassigned 664.37777 - - 

y5 676.34527 676.34530 -0.04 

[y4 + Ru(bipy) – 2H+]+ 769.23941 769.23944 -0.04 

▲ y6 775.41371 775.41370 - 

▲ b6 784.41010 784.41000 - 

[y6 + Ru(bipy) – 2H+]+ 1031.37099 1031.37118 -0.18 

Mean Absolute Average 
 

  -0.08 
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Standard Deviation 0.05 
 

Table B-2: CAD Fragments of Angiotensin and AH078, where AH078 is denoted by Ru(o-

pda) through loss of chloride and arene ligands 

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

ω3 of y5 255.44939 - - 

a2 244.14040 244.14040 0.00 

b2 – NH3 255.10875 255.10880 -0.20 

ω3 of y6 258.47249 - - 

▲ y2 263.13900 263.13900 - 

▲ b2 272.13530 272.13530 - 

unassigned  341.30499 - - 

▲ b3 371.20368 371.20370 - 

y3 – H2O 382.18734 382.18737 -0.08 

b6
2+  392.70863 392.70866 -0.08 

▲ y3 400.19790 400.19790 - 

YIH 414.21354 414.21358 -0.10 

[DR-Ru(o-pda)-HPF]2+ 

(-CON) 
419.14632 419.14636 -0.10 

[a2 – 2H• – H2O+ Ru(o-pda) – 2H+]+ 433.07944 433.07947 -0.07 

y7
2+ 466.26103 466.26106 -0.06 

[D-R-Ru(o-pda)-H-P-F]2+ 

(+COO) 
441.64515 441.64519 -0.09 

[a2 – 2H• + Ru(o-pda) – 2H+]+ 450.08217 450.08221 -0.09 

[b2 – 2H• + Ru(o-pda) -2H+]+ 478.07708 478.07749 -0.86 

[y6 – 2H• + Ru(o-pda) – H+]2+ 491.18141 491.18141 0.00 

[b6 – 2H• + Ru(o-pda) – H+]2+ 495.67953 495.67997 -0.91 

a4 506.27206 506.27216 -0.20 



232 
 

▲ y4 513.28195 513.28200 - 

[y7 – 3H• + Ru – H+]2+ 514.69360 514.69368 -0.16 

[M+2H]2+ 523.77449 523.77453 -0.08 

[b7 – 3H• + Ru – H+]2+ 528.69106 528.69113 -0.13 

▲ b4 534.26705 534.26710 - 

unassigned 536.71398 - - 

unassigned  539.09031 - - 

[M – 2H• – COOH + Ru]2+ 550.21218 550.21223 -0.09 

unassigned 557.10089 - - 

[y7 – 2H• + Ru(o-pda) – H+]2+ 569.23191 569.23196 -0.09 

[M – 2H• – C7H8O + Ru(o-pda)]2+ 572.71536 572.71668 -2.30 

[b3 – 2H• + Ru(o-pda) – 2H+]+ 577.14549 577.14601 -0.90 

[M – 2H• – COOH + Ru(o-pda)]2+ 604.24657 604.24661 -0.07 

unassigned 612.16288 - - 

[M – 2H• – H2O + Ru(o-pda)]2+ 617.74000 617.74015 -0.24 

▲ b5 647.35114 647.35110 - 

▲ y5 676.34527 676.34530 - 

[y4 – 2H• + Ru(o-pda) – 2H+]+ 719.22380 719.22448 -0.95 

a6 756.41497 756.41513 -0.21 

▲ y6 775.41373 775.41370 - 

▲ b6 784.41004 784.41000 - 

x6 801.39283 801.39300 -0.21 

[M+H] + 1046.54206 1046.54179 0.26 

[DR-Ru(o-pda)-HPF]+ 

(-CON) 
837.28538 837.28545 -0.08 

[DR-Ru(o-pda)-HPF]+ 

(+COO) 
881.27532 881.27527 0.06 

[y6 – 2H• + Ru(o-pda) – 2H+]+ 981.35545 981.35646 -1.03 

Mean Absolute Average 
 

  0.32 
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Standard Deviation 0.48 
 

Table B-3: CAD Fragments of Bombesin and AH076 where AH076 denoted by Ru(bipy) 

through loss of the arene and chloride ligands  

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

y2 262.15844 262.15837 0.27 

b3 396.19905 396.19910 -0.13 

b7 
2+ 404.70674 404.70665 0.22 

[y6 + Ru(bipy) - H+]2+ 441.65461 441.65451 0.23 

unassigned 474.73602 - - 

b8 
2+ 497.74636 497.74631 0.10 

b4 509.28313 509.28310 0.06 

[b12 + Ru(bipy)]3+ 538.88110 538.88108 0.04 

[a13 + Ru(bipy)]3+ 567.24415 567.24413 0.04 

[b13 + Ru(bipy)]3+ 576.57574 576.57577 -0.05 

b10
 2+ 582.79916 582.79907 0.15 

[M + Ru(bipy) – CONH2 – SCH4]
3+ 594.92310 594.92317 -0.12 

[M + Ru(bipy) – CONH2]
3+ 611.25870 611.25875 -0.08 

[M + Ru(bipy) – NH3]
3+ 620.25583 620.25593 -0.16 

[M + Ru(bipy) + H+]3+ 625.93131 625.93145 -0.22 

a12 
2+ 665.84187 665.84180 0.11 

b6 680.34753 680.34750 0.04 

[y4 + Ru(bipy) – 2H+]+ 712.19625 712.19620 0.07 

b13 
2+ 736.38137 736.38129 0.11 

unassigned 744.89462 - - 

[a12 + Ru(bipy) – H+]2+ 793.82042 793.82053 -0.14 

b7 808.40609 808.40610 -0.01 

[y5 + Ru(bipy) – 2H+]+ 811.26467 811.26461 0.07 
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[b13 + Ru(bipy) – H+]2+ 864.35997 864.36002 -0.06 

[y6 + Ru(bipy) – 2H+]+ 882.30182 882.30173 0.10 

b8 994.48541 994.48540 0.01 

b9 1065.52261 1065.52250 0.10 

b10 1164.59088 1164.59090 -0.02 

b11 1221.61229 1221.61240 -0.09 

Mean Absolute Average 
 
Standard Deviation 

  0.10 
 

0.07 
 

Table B-4: CAD Fragments of Bombesin and AH078 where AH078 is denoted by Ru(o-

pda) through loss of chloride and arene ligands 

Assignment Expt. m/z Theo. m/z Error (ppm) 
▲ y2 262.15844 262.15837 - 

[y4 – 2H• + Ru(o-pda)-H+]2+ 331.59391 331.59392 -0.03 

b6
2+ 340.67740 340.67736 0.12 

y5
3+ 381.12800 381.12811 -0.29 

[y5 – 2H• + Ru(o-pda)-H+]2+ 381.12814 381.12812 0.05 

[b6 + NH3]
2+ 349.19065 349.19064 0.03 

b3 396.19909 396.19910 -0.03 

b7
2+ 404.70667 404.70665 0.05 

[y6 – 2H• + Ru(o-pda)-H+]2+ 416.64670 416.64667 0.07 

[b8 – C8H7N]2+ 439.21739 439.21739 0.00 

[b8 – N2H4CO]2+ 466.72232 466.72230 0.04 

[y2 – 2H• + Ru(o-pda)-2H+]+ 468.10018 468.10018 0.00 

[b9 – C8H7N]2+ 474.73596 474.73594 0.04 

[b8 – N2H4]
2+  480.71978 480.71976 0.04 

a8
2+  483.74887 483.74885 0.04 

[b8 – NH2]
2+  489.23305 489.23303 0.04 
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b8
2+ 497.74633 497.74631 0.04 

▲ b4 509.28322 509.28310 - 

[y7 – 2H• + Ru(o-pda)-H+]2+ 509.68636 509.68634 0.04 

[a12 – 2H• + Ru(o-pda)]3+ 512.87756 512.87756 0.00 

[b12 – 2H• + Ru(o-pda)]3+ 522.20930 522.20959 -0.56 

[b9 – NH3]
2+ 524.75161 524.75159 0.04 

b9
2+ 533.26489 533.26486 0.06 

[a13 – 2H• + Ru(o-pda)]3+ 550.57224 550.57225 -0.02 

[b13 – 2H• + Ru(o-pda)]3+ 559.90389 559.90389 0.00 

▲ b5 566.30453 566.30460 - 

[M + Ru  + H+]3+ 573.90855 573.90854 0.02 

b10
2+ 582.79912 582.79907 0.09 

[M – H• + Ru(o-pda) – NH3]
3+ 603.58404 603.58448 -0.73 

[y3 – 2H• + Ru(o-pda)-2H+]+ 605.15919 605.15960 -0.68 

[M – 2H• + Ru(o-pda)]3+ 609.25932 609.25954 -0.36 

[M  + Ru(C12H9) + H2]
3+ 625.26777 625.26795 -0.29 

[y4 – 2H• + Ru(o-pda) – NH3 -2H+]+ 645.15393 645.15401 -0.12 

[y4 – 2H• + Ru(o-pda) -2H+]+ 662.18060 662.18110 -0.76 

▲ b6 680.34740 680.34750 - 

b6 + NH3 697.37405 697.37400 0.07 

[y6 – H• + Ru – 2H+]+ 725.22520 725.22516 0.06 

b13
2+ 736.38128 736.38129 -0.01 

[y5 – 2H• + Ru(o-pda) – H+ - NH3]
+ 744.22235 744.22241 -0.08 

[y5 – 2H• + Ru(o-pda) – 2H+]+ 761.24890 761.24961 -0.93 

[a12 – 2H• + Ru(o-pda) – H+]2+ 768.81239 768.81328 -1.16 

[b12 – 2H• + Ru(o-pda) – H+]2+ 782.80987 782.81074 -1.11 

b7 – NH3 791.37952 791.37948 0.05 

▲ b7 808.40568 808.40603 - 

[y6 – 2H• + Ru(o-pda) – 2H+ - NH3]
+ 815.25957 815.25953 0.05 
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[y6 – 2H• + Ru(o-pda) – 2H+]+ 832.28599 832.28677 -0.94 

[b13 – 2H• + Ru(o-pda) – H+]2+ 839.35170 839.35281 -1.32 

b8 – C9H7N 865.42757 865.42749 0.09 

b8 – C8H7N 877.42745 877.42804 -0.67 

b8 + H2O – C6H7N 919.43826 919.43805 0.23 

b8 + H2O – C6H4N 936.46466 936.46460 0.06 

a8 966.49059 966.49042 0.18 

b8 – NH3 977.45891 977.45879 0.12 

▲ b8 994.48557 994.48540 - 

[y7 – 2H• + Ru(o-pda) – 2H+]+ 1018.36529 1018.36627 -0.96 

a9 1037.52807 1037.52754 0.51 

b9 – NH3 1048.49631 1048.49590 0.39 

▲ b9 1065.52258 1065.52247 - 

▲ b10 1164.59094 1164.59087 - 

b11 1221.61251 1221.61237 0.15 

Mean Absolute Average 
 
Standard Deviation 

  0.27 
 

0.36 
 

Table B-5: ECD Fragments of Bombesin and AH076 where AH076 is denoted by Ru(bipy) 

through loss of chloride and arene ligands 

Assignment Expt. m/z Theo. m/z Error (ppm) 
▲ c3 413.22555 413.22554 - 

▲ c4 526.30963 526.30961 - 

▲ c5 583.33107 583.33107 - 

[M – H• + Ru(bipy) + H+]3+ 625.93145 625.93145 0.00 

[M – H• + Ru(bipy) + H+ + C2H3N]3+ 639.60684 639.60696 -0.19 

[M – H• + Ru(bipy) + H+ + C4H6N2]
3+ 653.28249 653.28248 0.02 

unassigned 655.51197 - - 
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[x3 + Ru(bipy)]+ 683.16965 683.16965 0.00 

▲ c6 697.37399 697.37410 - 

[a12 + Ru(bipy) – H+]2+ 794.32418 794.32444 -0.33 

[b12 + Ru(bipy) – H+]2+ 808.32163 808.32190 -0.33 

[z12 + Ru(bipy)]2+• 810.83853 810.83888 -0.43 

[z13 + Ru(bipy)]2+• 874.86795 874.86817 -0.25 

[M + Ru(bipy) – NH3]
2+ 930.38383 930.38418 -0.38 

[M – H• + Ru(bipy) + H+]2+• 938.89717 938.89745 0.30 

▲ c8 1011.51218 1011.51189 - 

a11 1193.61768 1193.61742 0.22 

▲ c11 1238.63912 1238.63890 - 

a12 1330.67666 1330.67633 0.25 

a13 1443.76082 1443.76039 0.30 

▲ c13 1488.78182 1488.78190 - 

[c11 + Ru(bipy) – 2H+]+ 1494.59633 1494.59633 0.00 

[a12 + Ru(bipy)]+ 1588.64974 1588.64943 0.20 

[b12 + Ru(bipy) – 2H+]+ 1614.62893 1614.62870 0.14 

[z12 + Ru(bipy)]+• 1621.67852 1621.67830 0.14 

[c13 + Ru(bipy) – 2H+]+ 1744.74078 1744.73931 0.84 

[z13 + Ru(bipy)]+• 1749.73638 1749.73688 -0.29 

[M + Ru(bipy) – H+]+ 1875.78163 1875.77981 0.97 

Mean Absolute Average 
 
Standard Deviation 

  0.28 
 

0.24 
 

Table B-6: ECD Fragments of Bombesin and AH078 where AH078 is denoted by Ru(o-

pda) through loss of chloride and arene ligands 

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

▲ c3 413.22555 413.22554 - 
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▲ c4 526.30960 526.30961 - 

▲ c5 583.33116 583.33107  

[M – 2H• + Ru(o-pda) + H+]3+ 609.25942 609.25938 -0.08 

[M – 2H• + Ru(o-pda) + H+ + C2H3N]3+ 622.93486 622.93491 -0.05 

[M – 2H• + Ru(o-pda) + H+ + C4H6N2]
3+ 636.61039 636.61042 -0.06 

▲ c6 697.37406 697.37410 - 

[z12 – 2H• + Ru(o-pda)]2+• 785.83076 785.83105 -0.37 

▲ c7 825.43258 825.43258 - 

[c13 – 2H• + Ru(o-pda) – NH3]
2+ 839.85571 839.85611 -0.48 

[z13 – 2H• + Ru(o-pda)]2+• 849.86003 849.86034 -0.36 

[M + Ru – H+]2+ 859.85525 859.85526 -0.01 

[M – 2H• + Ru(o-pda) + H+]2+• 913.88976 913.88963 0.14 

[M + Ru(C12H9) + H2]
2+ 937.90184 937.90221 -0.39 

▲ c8 1011.51194 1011.51189 - 

▲ c9 1082.54915 1082.54900 - 

▲ c10 1181.61770 1181.61750 - 

▲ c11 1238.63897 1238.63888 - 

a12 1330.67623 1330.67640 -0.13 

[c11 + Ru – 2H+]+ 1338.52736 1338.52758 -0.16 

c12 1375.69779 1375.69790 -0.08 

[c12 + Ru – 2H+ – NH3]
+ 1458.55971 1458.55955 0.11 

[c13 + Ru – 2H+]+ 1587.66101 1587.66274 -1.09 

[M + Ru – C7H13ON]+ 1593.62114 1593.61917 1.24 

[M + Ru – C7H8O]+ 1610.64742 1610.64572 1.06 

[M + Ru – 2H+ – CONH2]
+ 1674.68968 1674.69069 -0.60 

[M + Ru – 2H+ – NH2]
+ 1702.68529 1702.68561 -0.19 

[M + Ru– H+]+ 1719.71248 1719.71161 0.51 

Mean Absolute Average 
  
Standard Deviation 

  0.37 
 

0.34 
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Table B-7: CAD Fragments of Angiotensin and AH076 where AH076 denoted by 

(bip)Ru(bipy) through loss of chloride ligand only 

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

[y2 + (bip)Ru(bipy) – H+]2+ 337.09092 337.09100 -0.24 

[y2 + Ru – 2H+]+ 363.02763 363.02772 -0.25 

a6 
2+ 378.71112 378.71121 -0.24 

unassigned 370.19785 - - 

b6
 2+ 392.70858 392.70866 -0.20 

[y7 + (bip)Ru(bipy) – H+]2+ 396.49553 396.49562 -0.23 

y3 400.19786 400.19790 -0.10 

[(bip)Ru(bipy) – H+]+ 411.04290 411.04297 -0.17 

[M + (bip)Ru(bipy) + H+]3+ 434.83784 434.83793 -0.21 

[y7 + (bip)Ru(bipy)]3+ 447.85495 447.85503 -0.18 

[b7 + H2O]2+ 450.24029 450.24033 -0.09 

y7
2+ 466.26101 466.26106 -0.11 

[M + 2H+ – COOH]2+ 500.77176 500.77179 -0.06 

[a6 + (bip)Ru(bipy) – H+]2+ 506.68991 506.68993 -0.04 

▲ y4 513.28198 513.28199 - 

[M + 2H+]2+ 523.77446 523.77453 -0.13 

▲b4 534.26712 534.26707 - 

[F + (bip)Ru(bipy) – H+]+ 576.12194 576.12195 -0.02 

a5 619.35618 619.35620 -0.03 

[b3 + (bip)Ru(bipy) – 2H+]+ 627.16126 627.16119 0.11 

▲ b5 647.35099 647.35110 - 

[y3 + (bip)Ru(bipy) – 2H+]+ 656.15544 656.15538 0.09 

▲ y5 676.34538 676.34530 - 

a6 756.41522 756.41510 0.16 

[y4 + (bip)Ru(bipy) – 2H+]+ 769.23960 769.23944 0.21 
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▲ y6 775.41379 775.41379 - 

▲ b6 784.40999 784.41000 - 

[M + H+]+ 1046.54224 1046.54179 0.43 

Mean Absolute Average 
 
Standard Deviation 

  0.16 
 

0.10 
 

Table B-8: CAD Fragments of Bombesin and AH076 where AH076 denoted by 

(bip)Ru(bipy) through loss of chloride ligand only 

Assignment Expt. m/z Theo. m/z Error 
(ppm) 

b6
2+ 340.67740 340.67736 0.12 

[b6 + NH3 ]
2+ 349.19067 349.19064 0.09 

[y4 + Ru(bipy) – H+]2+ 356.60175 356.60174 0.03 

[y8 + Ru(bipy) – H2O, H]3+ 393.48122 393.48120 0.05 

▲b3
  396.19902 396.19910 - 

▲ y3 399.21735 399.21728 - 

b7 
2+ 404.70669 404.70665 0.10 

[(bip)Ru(bipy) – H+]+ 411.04302 411.04297 0.12 

unassigned 425.82002 - - 

[y6 + Ru(bipy) – NH3 - H
+]2+ 433.14131 433.14123 0.18 

[y6 + Ru(bipy) – H+]2+ 441.65457 441.65450 0.16 

[(bip)Ru(bipy) + SCH4 – H+]+ 459.04640 459.04635 0.11 

unassigned 466.72238 - - 

b8 
2+ 497.74637 497.74631 0.12 

▲ b4 509.28308 509.28310 - 

[M + 3H+ - SCH4]
3+ 524.61123 524.61117 0.11 

[y7 + Ru(bipy) – H+]2+ 534.69425 534.69416 0.17 

▲ y5 555.30456 555.30716 - 

▲ b5 566.30456 566.30460 - 
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[y8 + Ru(bipy) – NH3 - H
+]2+

 590.21024 590.221017 0.12 

unassigned 621.15075 - - 

▲ y6 626.34433 626.34427 - 

[y9 + Ru(bipy) – H+]2+ 655.74496 655.74491 0.08 

a12 
2+ 665.84191 665.84180 0.17 

[y10 + Ru(bipy) – NH3 - H
+]2+ 675.74235 675.74237 -0.03 

b12 
2+ 679.83929 679.83926 0.04 

▲ b6 680.34746 680.34750 - 

[y10 + Ru(bipy) – H+]2+ 684.25564 684.25564 0.00 

y12 
2+ 690.86962 690.86951 0.16 

b6 + NH3 697.37410 697.37400 0.14 

[y4 + Ru(bipy) – 2H+]+ 712.19629 712.19620 0.13 

a13 
2+ 722.38391 722.38383 0.11 

b13 
2+ 736.38127 736.38129 -0.03 

[M + 2H+ - NH3]
2+ 801.90156 801.90153 0.04 

▲ b7 
 808.40604 808.40610 - 

[M + 2H+]2+ 810.41468 810.41481 -0.16 

[y6 + Ru(bipy) – 2H+]+ 882.30179 882.30173 0.07 

b8 – NH3 977.45885 977.45879 0.06 

▲ b8 994.48539 994.48534 - 

b9 – NH3 1048.49604 1048.49590 0.13 

b9 1065.52247 1065.52250 -0.03 

b10 – NH3 1147.56452 1147.56432 0.17 

b10 1164.59087 1164.59090 -0.03 

b11 1221.61241 1221.61240 0.01 

Mean Absolute Average 
 
Standard Deviation 

  0.10 
 

0.05 
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Table B-9: CAD Fragments of Insulin and AH076 

Assignment Expt. m/z Theo. m/z Error (ppm) 
▲y3 315.20270 315.20270        - 

b4 399.22384 399.22380 0.10 

▲y4 416.25039 416.25040       - 

B b5 489.24587 489.24560 0.55 

b5
 527.28240 527.28240 0.00 

unassigned 534.25590 - - 

y9
2+ 543.79021 543.79018    0.06 

y5 – H2O 561.30310 561.30312    -0.04 

y5 579.31369 579.31369 0.00 

y10
2+ 608.31157 608.31148 0.15 

B b11
2+ 618.80072 618.80076 -0.06 

B b5 626.30446 626.30450 -0.06 

[y11 – H2O]2+ 627.81698 627.81693 0.08 

unassigned 631.27219 - - 

y11
2+ 636.82221 636.82221 0.00 

unassigned 648.29877 - - 

[A y4 + B y13]
3+ 662.29398 662.29419 -0.32 

B b12
2+ 668.33507 668.33496 0.16 

[y12 – SH]2+ 671.33309 671.33294 0.22 

[y12 – H2O]2+ 679.32184 679.32152 0.47 

y12
2+ 688.32681 688.32681 0.00 

[A y4 + B y14]
3+ 699.98883 699.98888 -0.07 

[B y2-y12 + A Cys20]
2+ 704.31284 704.31284 0.00 

y6 – H2O 708.37138 708.37150 -0.17 

A y12
2+ 716.31266 716.31150 1.62 

▲y6 726.38206 726.38210 -0.06 

B b13
2+ 732.85636 732.85626 0.14 
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y13
2+ 737.86093 737.86101 -0.11 

B b6 739.38881 739.38859 0.30 

[A y6 + B y13]
3+ 743.00302 743.00308 -0.08 

[B y2-y13 + A Cys20]
2+ 753.84712 753.84705 0.09 

B b14
2+ 768.37482 768.37482 0.00 

[A y6 + B y14]
3+ 781.03214 781.03224 -0.13 

y14
2+ 794.40328 794.40304 0.30 

[A y2 + B y12]
2+ 804.85025 804.85032 -0.09 

[B y2-y14 + A Cys20]
2+ 810.38918 810.38908 0.12 

[A y7 + B y14]
3+ 817.38041 817.38044 -0.04 

B b15
2+ 824.91687 824.91685 0.02 

[A y8 + B y13]
3+ 840.04377 840.04372 0.06 

[A y2 + B y13]
2+ 854.38456 854.38452 0.05 

[A y7 + B y15 – H2O, NH3]
3+ 866.05936 866.05937 -0.01 

[A y7 + B y15 – H2O]3+ 871.73467 871.73488 -0.24 

[A y7 + B y15]
3+ 877.73840 877.73840 0.00 

[A y3 + B y12]
2+ 886.38192 886.38198 -0.07 

[B b14 -2H• + Ru(bipy) – H+]2+ 895.34547 895.34573 -0.29 

unassigned 906.44857 - - 

[A y2 + B y14]
2+ 910.92645 910.92656 -0.12 

▲ y8 930.47193 930.47198 -0.05 

[A y8 + B y15]
3+ 932.09276 932.09285 -0.10 

[A y4 + B y12– NH3]
3+ 934.88991 934.89017 -0.28 

[A y4 + B y12]
3+ 943.40331 943.40345 -0.15 

[M + Ru(bipy) + 4H+ -F -L]6+ 952.91048 952.90942 1.11 

[GERGFFYT – H2O]+ 958.44161 958.44174 -0.14 

B b17
2+ 962.99048 962.99055 -0.07 

[M + Ru(bipy) + 4H+ -F –H2O]6+ 971.75740 971.75676 0.66 

[M + Ru(bipy) + 4H+ -N]6+ 976.92629 976.92587 0.43 
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[M + Ru(bipy) + 4H+ -L]6+ 980.25467 980.25461 0.06 

[A y3 + B y14]
2+ 983.45268 983.45294 -0.26 

[A y3 + B y14  + H2O]2+ 992.45807 992.45822 -0.15 

[M + Ru(bipy) + 4H+ –H2O]6+ 996.26600 996.10019 0.34 

[M + Ru(bipy) + 4H+]6+ 999.10180 999.10195 -0.15 

unassigned 1021.41070 - - 

[A b13 + B b15 + Ru(bipy) – H+]3+ 1027.74804 1027.74757 0.46 

[B b16 -2H• + Ru(bipy) – H+]2+ 1033.41930 1033.41942 -0.12 

[A y4 + B y14– NH3]
2+ 1040.96644 1040.96641 0.03 

[A y4 + B y14]
2+ 1049.47965 1049.47968 -0.03 

[A b11 + B b16 + Ru(bipy) – H+]3+ 1053.09243 1053.09134 1.04 

[A y5 + B y13]
2+ 1057.45872 1057.45895 -0.22 

[A y6 + B y12]
2+ 1064.46700 1064.46677 0.22 

[A b12 + B b16 + Ru(bipy) – H+]3+ 1082.10260 1082.10202 0.54 

[B b17 – 2H• + Ru(bipy) – H+]2+ 1089.96239 1089.96146 0.85 

[B b18  -2H• + Ru(bipy) – A – H+]2+ 1105.98968 1105.99051 -0.75 

[A y5 + B y14]
2+ 1114.00128 1114.00098 0.27 

[A b13 + B b16 + Ru(bipy) – H+]3+ 1119.79767 1119.79670 0.87 

[M + Ru(bipy) + 3H+ -F-V-L –H2O]5+ 1123.67784 1123.67772 0.11 

[A y7 + B y12]
2+ 1128.49695 1128.49606 0.79 

unassigned 1129.88079 - - 

[A y4 + B y15]
2+ 1131.01188 1131.01135 0.47 

[M + Ru(bipy) + 3H+ -A-L-L –H2O]5+ 1136.08193 1136.08182 0.10 

[M + Ru(bipy) + 3H+ -F-V-L ]5+ 1139.68657 1139.68393 2.32 

[M + Ru(bipy) + 3H+ -F -L]5+ 1143.49202 1143.49141 0.53 

[M + Ru(bipy) + 3H+ -F -V]5+ 1149.69270 1149.69605 -2.91 

[M + Ru(bipy) + 3H+ -F –V – H2O]5+ 1152.48591 1152.48768 -1.54 

[M + Ru(bipy) + 3H+ -F -V]5+ 1156.08979 1156.08979 0.00 

[M + Ru(bipy) + 3H+ -Y]5+ 1166.10800 1166.10919 -1.02 
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[A y6 + B y14]
2+ 1170.54283 1170.54301 -0.15 

[M + Ru(bipy) + 3H+ -N]5+ 1172.10963 1172.10959 0.03 

[M + Ru(bipy) + 3H+ -L]5+ 1175.70260 1175.70095 1.40 

[M + Ru(bipy) + 3H+ -V]5+ 1178.70504 1178.70660 -1.32 

[A b16 + B b15 + Ru(bipy) – H+]3+ 1200.51093 1200.51353 -2.17 

[A y8 + B y12]
2+ 1201.51344 1201.51445 -0.84 

[A y8 + B y12]
2+ 1210.02719 1210.02773 -0.45 

[A b15 + B b16 + Ru(bipy) – H+]3+ 1216.83749 1216.83734 0.12 

[A y7 + B y14 – NH3]
2+ 1226.05943 1226.05903 0.33 

[A y7 + B y12]
2+ 1234.57256 1234.57230 0.21 

[A b17 + B b15 + Ru(bipy) – H+]3+ 1243.19400 1243.19178 1.79 

[A y6 + B y15]
2+ 1252.07390 1252.07468 -0.62 

[A b15 + B b17 + Ru(bipy) – H+]3+ 1254.53246 1254.53203 0.34 

[A y8 + B y13]
2+ 1259.56057 1259.56193 -1.08 

[A chain + B b23 + Ru(bipy) + H+]4+ 1280.03684 1280.03656 0.22 

[A b16 + B b17 + Ru(bipy) – H+]3+ 1292.22625 1292.22671 -0.36 

[A b17 + B b16 + Ru(bipy) – H+]3+ 1297.88087 1297.88217 -1.00 

[A y8 + B y14 – NH3]
2+ 1307.59052 1307.59069 -0.13 

[A y8 + B y14]
2+ 1316.10365 1316.10397 -0.24 

[A b18 + B b17 + Ru(bipy) – H+]3+ 1335.55997 1335.56053 -0.42 

[A chain + B b25 + Ru(bipy) + H+]4+ 1353.57192 1353.57391 -1.55 

[A b18 + B b17 + Ru(bipy) – H+]3+ 1373.25487 1373.25522 -0.25 

[A b19 + B b16 + Ru(bipy) – H+]3+ 1389.91565 1389.91565 0.00 

▲B b15
+ 1648.82659 1648.82600 0.36 

[A b13 + B b16 + Ru(bipy) – 2H+]2+ 1679.19237 1679.19142 0.57 

Mean Absolute Average 
 
Standard Deviation 

  0.08 
 
0.68 

 

 



246 
 

Table B-10: CAD Fragments of Oxidised Insulin B-chain and AH076 

Assignment Expt. m/z Theo. m/z Error (ppm) 
y2 218.14977 218.14990 -0.60 

noise 226.15481 - - 

noise 265.89283 - - 

▲ y3 315.20271 315.20270 - 

b3 361.18705 361.18700 - 

unassigned 412.18673 - - 

y4 416.25037 416.25036 0.02 

unassigned 494.16640 - - 

y9
2+ 543.79021 543.79018 0.06 

unassigned 561.30316 - - 

▲ y5 579.31370 579.31370 - 

unassigned 601.30368 - - 

y10
2+ 608.31150 608.31148 0.03 

▲ b5 626.30458 626.30450 - 

y11
2+ 636.82221 636.82221 0.00 

unassigned 655.34499 - - 

unassigned 699.22225 - - 

y6 – H2O 708.37132 708.37154 -0.31 

y12
2+ 712.31909 712.31918 -0.13 

[b10 – H• + Ru(bipy) – H+]2+ 713.72573 713.72592 -0.27 

▲ y6 726.38205 726.38210 - 

▲ b6 739.38852 739.38860 - 

y13
2+ 761.85338 761.85338 0.00 

y14
2+ 818.39537 818.39542 -0.06 

[b12 + Ru(bipy) – H+]2+ 820.30626 820.30607 0.23 

▲y7 873.45051 873.45050 - 

[b13 + Ru(bipy) – H+]2+ 884.82757 884.82737 0.23 
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y15
2+ 899.92705 899.92708 -0.03 

unassigned 907.89279 - - 

unassigned 913.13762 - - 

[M + Ru(bipy) + 2H+ - H2O – CH3 – NH3]
4+ 926.14440 926.14321 1.28 

y8 930.47184 930.47198 -0.15 

[b14 + Ru(bipy) – H+]2+ 920.34510 920.34592 -0.89 

[y22 - 3H• + Ru(bipy)]3+ 934.73555 934.73532 0.25 

y16
2+ 956.46880 956.46911 -0.32 

[b15 – H• + Ru(bipy) – H+]2+ 976.88658 976.88571 0.89 

[a24 + Ru(bipy)]3+ 999.74924 999.74952 -0.28 

[b24 + Ru(bipy)]3+ 1009.41595 1009.41711 -1.15 

unassigned 1038.91884 - - 

y18
2+ 1056.50832 1056.50896 -0.61 

[b16 - H• + Ru(bipy) – H+]2+ 1057.91506 1057.91571 -0.61 

y9 1086.57323 1086.57310 0.12 

y19
2+ 1106.04297 1106.04317 -0.18 

[b26 -H• + Ru(bipy)]3+ 1112.45942 1112.45898 0.40 

[b17 -H• + Ru(bipy) – H+]2+ 1114.96023 1114.95941 0.74 

[b27 – H• + Ru(bipy) – H2O]3+ 1140.13817 1140.13804 0.11 

[b27 – H• + Ru(bipy)]3+ 1146.14131 1146.14156 -0.22 

[y20 – H2O]2+ 1153.58038 1153.57992 0.40 

[b18 -H• + Ru(bipy) – H+]2+ 1164.49414 1164.49362 0.45 

y20
2+ 1162.58498 1162.58520 -0.19 

unassigned 1194.48649 - - 

unassigned 1220.54028 - - 

[b19 - H• + Ru(bipy) – H+]2+ 1239.99060 1239.99059 0.01 

unassigned 1244.50987 - - 

ALYLVCGERGF 1257.59302 1257.59323 -0.17 

▲ y11 1272.63720 1272.63710 - 
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unassigned 1303.57739 - - 

unassigned 1383.60369 - - 

[EALYLVCGERGF – H2O]+ 1386.63546 1386.63583 -0.27 

▲y12 1423.63060 1423.63100 - 

[b23 + Ru(bipy) – H+]2+ 1440.08826 1440.08781 0.31 

unassigned 1466.64051 - - 

unassigned 1484.65119 - - 

[b24 + Ru(bipy) – H+]2+ 1513.62217 1513.62202 0.10 

y13 1522.69902 1522.69940 -0.25 

[b25 + Ru(bipy) – H+]2+ 1587.15656 1587.15622 0.21 

unassigned 1598.78783 - - 

EALYLVCGERGFFY 1696.76653 1696.76757 -0.61 

EALYLVCGERGFFYT 1797.81361 1797.81525 -0.91 

Mean Absolute Average 
 
Standard Deviation 

  0.34 
 

0.32 
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Appendix C 

 

Appendix C contains the list of compounds assigned in the selected mass region for 

the genuine and counterfeit vodka samples in chapter 5, as well as the principal 

component scores calculated and plotted in the PCA analysis. 

 

Table C-1: Assigned peaks in the (-) ESI mass spectra of genuine and counterfeit 

samples. ▲ indicates a peak used for internal calibration 

Theo. m/z Proposed molecular 
formula 

▲101.06080 C5H10O2 

▲115.07645 C6H12O2 

121.02950 C7H6O2 

▲143.10775 C8H16O2 

145.12340 C8H18O2 

149.02442 C8H6O3 

151.04007 C8H8O3 

153.03240 C5H10O3 

155.00176 C4H4N2O 

155.07137 C8H12O3 

155.10775 C9H16O2 

157.08702 C8H14O3 

▲157.12340 C9H18O2 

159.10267 C8H16O3 

161.08193 C7H14O4 

163.04007 C9H8O3 

164.98382 C8H6S2 
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165.01933 C8H6O4 

166.95752 C4H4O3S 

166.99390 C5H8O2S 

168.97317 C4H6O3S 

169.08702 C9H14O3 

171.10267 C9H16O3 

▲171.13905 C10H20O2 

173.00666 C10H6OS 

175.09758 C8H16O4 

176.98382 C9H6S2 

177.05572 C10H10O3 

179.03498 C9H8O4 

179.05611 C6H12O6 

182.98882 C5H8O3S 

182.99438 C8H8OS2 

183.03306 C8H8N2O 

183.10267 C10H16O3 

184.96808 C4H6O4S 

▲185.15470 C11H22O2 

187.06120 C8H12O5S 

187.09758 C9H16O4 

187.13397 C10H20O3 

188.99938 C4H10O4S 

189.11323 C9H18O4 

191.01973 C6H8O7 

191.12888 C9H20O4 

192.97873 C9H6OS2 

194.95799 C8H3O2S2 

197.00447 C6H10O3S 

197.04555 C9H10O5 
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197.15470 C12H22O2 

198.98373 C5H8O4S 

▲199.17035 C12H24O2 

200.94524 C4H6O3S2 

201.11323 C10H18O4 

202.92450 C3H4O4S2 

205.15979 C14H22O 

207.08741 C8H16O6 

209.09500 C8H18O3 

212.99938 C6H10O4S 

213.18600 C13H26O2 

214.93006 C7H4O2S3 

215.03279 C6H12O6 

219.17544 C15H24O 

221.08193 C12H14O4 

225.06159 C7H14O8 

225.08991 C9H18O4 

225.18600 C14H26O2 

226.97865 C6H8O5S 

227.09250 C11H16O5 

▲227.20165 C14H28O2 

229.14453 C12H22O4 

235.17035 C15H24O2 

239.07724 C8H16O8 

239.12888 C13H20O4 

239.16527 C14H24O3 

240.99430 C7H10O5S 

▲241.21730 C15H30O2 

242.97356 C6H8O6S 

245.02779 C13H10O3S 
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248.96049 C12H6S2 

249.15300 C12H26O3S 

250.14487 C14H21NO3 

250.93976 C11H4OS2 

253.21730 C16H30O2 

255.00995 C8H12O5S 

255.10048 C10H20O5 

255.16018 C14H24O4 

▲255.23295 C16H32O2 

256.93256 C10H6S3 

256.98921 C7H10O6S 

257.17583 C14H26O4 

263.03835 C13H12O4S 

264.16052 C15H23NO3 

264.95541 C12H6OS2 

265.14790 C12H26O4S 

267.08741 C13H16O6 

267.12717 C11H24O5S 

267.16018 C15H24O4 

269.17583 C15H26O4 

▲269.24860 C17H34O2 

270.91183 C10H4OS3 

271.00486 C8H12O6S 

278.97106 C13H8OS2 

280.98671 C13H10OS2 

281.24860 C18H34O2 

▲283.26425 C18H36O2 

286.90674 C10H4O2S3 

293.13945 C16H22O5 

293.17583 C17H26O4 
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295.00236 C14H12OS2 

301.23843 C17H34O4 

303.13686 C15H24O4 

305.06448 C9H18O9 

307.21261 C15H32O6 

310.99727 C14H12O2S2 

311.16864 C17H28O3S 

314.93804 C12H8O2S3 

317.28499 C22H38O 

319.08013 C10H20O9 

325.18429 C18H30O3S 

329.26973 C19H38O4 

339.19994 C19H32O3S 

340.97145 C14H10O4S2 

341.10894 C12H22O11 

354.98710 C15H12O4S2 

357.30103 C21H42O4 

359.11950 C12H24O12 

363.09078 C18H20O6S 

365.24641 C19H38O4 

369.00275 C16H14O4S2 

373.09876 C12H22O13 

373.25956 C20H38O6 

373.34759 C26H46O 

374.10677 C19H21NO5S 

377.08561 C12H22O11 

387.11441 C13H24O13 

393.27771 C21H42O4 

401.13006 C14H26O13 

401.29086 C22H42O6 
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403.30651 C22H44O6 

415.14571 C15H28O13 

417.32216 C23H46O6 

421.04978 C24H10N4O2 

683.22515 C24H44O22 

 

Table C-2: Principal component scores calculated for each vodka sample using the 

intensities for the m/z values listed in Table C-1; gen = genuine product, CF = 

counterfeit product 

Vodka PC1 PC2 
Smirnoff (gen) -7.771 1.028 

Stoilichnaya (gen) -13.475 0.262 

Soviet (gen) 4.120 0.406 

Aros (gen) -0.490 4.635 

Dannoff (gen) 4.480 4.760 

Luxury Blk (gen) 0.146 3.250 

Vladivar (gen) 4.914 4.073 

Wyborowka (gen) 3.677 3.158 

Noble Russian (gen) -14.329 -0.093 

Russian Std (gen) -14.550 -0.182 

Glens (gen) 2.179 2.449 

Troika (gen) 14.284 5.424 

Soviet 541 (CF) 7.928 1.299 

Smirnoff 648 (CF) -13.448 -0.232 

Smirnoff 818 (CF) -13.343 0.206 

Arctic Ice 815 (CF) 7.261 5.006 

Arctic Ice 886 (CF) 7.027 1.568 

Chekov (CF) 1.303 -1.175 

Vodka (CF) 7.492 3.418 
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Drop (CF) 0.867 -0.787 

BB07520 (CF) 6.148 -9.982 

BB07682 (CF) -14.335 -0.522 

BB02537 (CF) 5.346 -6.812 

BB04539 (CF) 9.786 -8.955 

BB07813 (CF) 1.543 -4.676 

T15737 (CF) 3.238 -7.525 
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Appendix D 

Appendix D contains the supplementary information for chapter 6 – the use of 

carbon nanotubes as an alternative to a matrix in MALDI analysis. 

 

Table D-1: Assignment of peaks detected in MALDI-TOF spectrum of PEG-1000 

plus 2,5-DHB matrix 

Assignment m/z 
unassigned 176.9284 

unassigned 198.8956 

unassigned 268.1576 

unassigned 338.9832 

unassigned 354.9451 

unassigned 360.9660 

unassigned 521.0155 

unassigned 683.0485 

unassigned) 699.0276 

unassigned 701.3885 

unassigned 715.0002 

C34H70O18Na 789.4453 

C36H74O19Na 833.4740 

C38H78O20Na 877.4977 

C40H82O21Na 921.5255 

C42H86O22Na 965.5503 

C44H90O23Na 1009.5786 

C46H94O24Na 1053.6045 

C48H98O25Na 1097.6295 

C50H102O26Na 1141.6560 

C52H106O27Na 1185.6782 
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C54H110O28Na 1229.7060 

C56H114O29Na 1273.7342 

C58H118O30Na 1317.7544 

C60H122O31Na 1361.7866 

C62H126O32Na 1405.8080 

C64H130O33Na 1449.8346 

C66H134O34Na 1493.8674 

C38H138O18Na 1537.8931 

 

Table D-2:  Assignment of peaks detected in MALDI-TOF spectrum of substance P 

plus 2,5-DHB 

Assignment m/z 
unassigned 339.0004 

unassigned 359.9880 

unassigned 360.9842 

unassigned 537.0264 

unassigned 698.0636 

unassigned 699.0625 

unassigned 700.0627 

unassigned 1037.1111 

[M+H] + 1347.8166 

[M+Na]+ 1369.7984 
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