
http://wrap.warwick.ac.uk/

Original citation:
Warburton, R. and Kalvala, Sara (2009) Towards the automated correction of bugs.
Coventry, UK: Department of Computer Science, University of Warwick. CS-RR-445

Permanent WRAP url:
http://wrap.warwick.ac.uk/59782

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29188453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59782
mailto:publications@warwick.ac.uk

Towards the Automated Correction of Bugs∗

Richard Warburton and Sara Kalvala
Department of Computer Science,

University of Warwick, UK
{R.L.M.Warburton, S.Kalvala}@warwick.ac.uk

December 14, 2009

Abstract

Bugs within Java programs often fall within well-known motifs, usu-
ally arising from misunderstood APIs or language features that encour-
age buggy corner cases. Existing software development tools can detect
some of these situations, and integrated development environments may
attempt to suggest automated fixes for some of the simple cases. We
present a language for specifying program transformations paired with
a novel methodology for identifying and fixing bug patterns within Java
source code. We propose a combination of source code and bytecode anal-
yses: this allows for using the control flow in the bytecode to help identify
the bugs while generating corrected source code. The specification lan-
guage uses a combination of syntactic rewrite rules and dataflow analysis
generated from temporal logic based conditions. We introduce a proto-
type implementation that allows application of these transformations au-
tomatically to programs, and discuss correctness issues within the context
of such program transformations. Finally we discuss other possible areas
of application for this methodology, including generating refactoring oper-
ations from specifications and application to other imperative languages.

1 Introduction

Debugging existing programs, while maintaining the intent of the programmer,
is an unavoidable but difficult task, which can take significant effort in the
software development lifecycle. Some existing tools can detect some of the com-
monly repeated bugs in particular programming languages, and some integrated
development environments (IDEs) may attempt to suggest automated fixes for
some of the simple cases. However, as far as we are aware, there is no general
tool for specifying bug detection mechanisms that also offers suggested fixes
based on the specifications.

∗This work is supported by the EPSRC under grant EP/DO32466/1 “Verification of the
optimising phase of a compiler”.

1

In this paper we propose a domain specific language, with side conditions
derived from temporal logic, that offers a solution for this difficult problem of
finding and fixing subtle bugs. Traditional application of abstract interpretation
and static analysis is focused around checking a specified property of a specified
program. In this work we seek to find bugs in large families of programs by
facilitating the coding of common bug patterns and then detecting instances of
those bug patterns. Each instance of a bug pattern is a potential bug and each
pattern has one or more resolutions associated with it, that can be instantiated
for a given potential bug.

We consider some concurrency bugs, since they require more than simple
syntactic pattern matching to be identified yet are amenable to temporal analy-
sis. We use Java as our example platform, though our methodology is applicable
to many imperative languages. Our approach to considering temporal control
flow properties is to syntactically match specific threading library calls, as one
would with normal literals.

Our contributions in this paper are as follows:

1. We simplify the construction of tools for static analysis of bug patterns.

2. We propose a method to automatically fix a larger class of bugs than
previous tools.

3. We show how to codify common bug patterns within a formally defined
language.

In Section 2 we place our work in context, by identifying the kind of bugs
which we consider and also the approach to software development for which our
approach is particularly suited. We then describe, in Section 3, the language
TRANSfix which can be used for both identifying bugs and implementing the
transformations which correct the bugs. The prototype implementation FixBugs
which applies bug fixes written in TRANSfix to Java programs is described in
Section 4.

2 Methodology and Application

2.1 Example Bug Patterns and Categories

We use as starting point the classification of common Java bugs due to Hov-
emeyer and Pugh [Hovemeyer and Pugh(2004)] and which are used in the de-
scription of the FindBugs tool which detects most of them.

Many of the bugs identified by Hovemeyer and Pugh are simple and their
identification requires merely a syntactic pattern matching system. Many of
them, however, don’t have obvious fixes.

2.1.1 Method does not release lock on all paths

This bug arises when a method acquires a lock, but there exists a path through
the method where the lock isn’t released. The FindBugs implementation focuses

2

Lock l = . . . ;
l . l o ck () ;
try {

// do something
} f ina l ly {

l . unlock () ;
}

Figure 1: Pattern for correct locking

on the java.util.concurrent lock, as specified in JSR-166. Figure 1 illustrates
the solution to this bug.

2.1.2 Method may fail to close stream

This bug occurs when a method creates an IO stream object but does not assign
it to any fields, pass it to other methods that might close it, or return it, and
does not appear to close the stream on all paths out of the method. This may
result in a file descriptor leak. Good programming discipline requires the use of
a finally block to ensure that streams are closed. Figure 2 shows an example
of (1) where not to place a close and (2) where to place it correctly.

2.1.3 Failed database transactions may not be rolled back

JDBC, a Java library for database connections, models the begin, committing
and ending of transactions through explicit calls to methods. A common bug
pattern is a failure to check whether a transaction needs to be rolled back if its
commit fails. The correct pattern is illustrated in Figure 3. Another common
problem is the failure to ensure that all paths either end in a commit or a
rollback.

2.2 Placing debugging within software development

In general, a good approach to tooling the fixing of bugs is to not entirely
automate the application of transformations to the users’ programs, since fixes
may not always be semantics preserving, as they may change not only the way in
which a program operates, but also its overall input/output function. Since the
automated tool may not be designed to consider the specification of the program,
there is the rirk of introducing new bugs into a currently working system. Bug
patterns usually identify scenarios that are likely to be a bugs, rather than being
guaranteed to be so. In this context, the conservative approach is to not alter
the program, but simply suggest bug fixes to the user.

It may be at times difficult to instrument a bug-finding/fixing tool, and ide-
ally potential users should be assumed to have little experience or understanding
of the system in order to productively use it. Their existing development tools
may incorporate some way of reporting suggested improvements to code, and

3

BufferedReader in = null ;
try {

in = new BufferedReader (
new Fi leReader (‘ ‘ f oo ’ ’)) ;

S t r ing s ;
while ((s=in . readLine ()) != null) {

System . out . p r i n t l n (s) ;
}
// (1) c l o s e mis taken ly p laced
in . c l o s e () ;

} catch (Exception e) {
e . pr intStackTrace () ;

} f ina l ly {
// (2) the c l o s e shou ld be p laced wi th
// guarded by a nu l l check

i f (in != null) {
try {

in . c l o s e () ;
} catch (IOException e) {

e . pr intStackTrace () ;
}

}
}

Figure 2: Possibly Unclosed File Handle

try {
conn . setAutoCommit (fa l se) :
. . . .
conn . commit () ;

} catch (java . s q l . SQLException e) {
i f (conn != null) {

try {
conn . r o l l b a c k () ;

} catch (java . s q l . SQLException e) {
e . pr intStackTrace () ;

}
}

}

Figure 3: JDBC Commit and Rollback Pattern

4

these should still be supported. When using a more sophisticated bug-fixing
tool, the user could simply see contextual and appropriate descriptions of the
transformations, rather than their formal specification. In this context, the tai-
loring and deployment of bug-fixing techniques would be an activity undertaken
by a few key team members, rather than necessarily every developer.

The inclusion within the development cycle of phases dedicated to improving
code quality, such as the refactoring phases promoted by some agile methodolo-
gies, provides bug fixing program transformations with a suitable hook on which
to integrate themselves to existing methodologies. Within a more traditional,
waterfall, development model such an approach could be useful during a testing
phase, after the program has been mainly written, but before it is shipped to
customers.

The bug-fixing methodology described in this paper fits in particularly well
with modern agile software engineering methodologies, such as Extreme Pro-
gramming, which have increased focus on the quality of the code itself. Ap-
plication of best practices, unit testing, many eyes reading code through pair
programming, etc. all attempt to reduce bugs cropping up within the program
being developed by reducing the likelihood of the programmer writing bugs.
Whilst these developments have been of positive benefit to programmers, expe-
rience shows that bugs still occur.

Our implementation, described in Section 4, uses the Eclipse toolkit’s inter-
mediate representation to perform program transformation. This enables the
production of source code that is formatted according to users’ preferred style
guidelines and integrates into the context in which programs are being devel-
oped, and ensures that the generated code requires no further formatting.

While we have incorporated a few common bugs into FixBugs, the aim is to
provide a framework in which more bugs can be accounted for. The designing
of new transformations is eased compared to traditional static analysis systems
since the programmer doesn’t have to implement a detailed static analysis and
transformation toolkit in order to achieve their specific goal. Since the program
transformations themselves are merely syntactic substitutions, it should be rel-
atively natural for any experienced programmer to tailor the system to common
bugs in their application area.

The FixBugs approach isn’t intended to subsume traditional debugging tech-
niques such as testing, or traditional formal analysis techniques such as static
analysis and model checking. Its integration into existing tools and techniques
should complement their usage, allowing automated FixBugs sweeps of the code
to be made in order to offer potential improvements to the code base. Bugs can
be found as early as possible through these automated tools, rather than being
identified later through failing test cases, at a much higher cost.

5

3 A Language for Detecting and Fixing Bugs

3.1 Basis: the TRANS language

In previous work concerned with the application of formally specified optimiza-
tions on bytecode programs [Warburton and Kalvala(2009)], we developed and
extended Lacey’s TRANS language [Lacey(2003), Kalvala et al.(2009)Kalvala, Warburton, and Lacey].
In TRANS, compiler optimisations are represented through two components: a
rewrite rule and a side condition which indicates the situations in which the
rewrite can be applied safely.

Temporal logic is used for specifying side conditions under which a transfor-
mation may apply. Temporal logics traditionally describe properties of a system
relative to a point in time, but in TRANS the points of interest are nodes (or
program points) in a control flow graph (or CFG) representing a program. A
logical judgement of the form: φ @ n states that the formula φ is satisfied at
node n of the control flow graph.

The language for expressing conditions is based on CTL [Clarke and Emerson(1982)],
a path-based logic which can express many optimisations while still being effi-
cient to model-check. More specifically, a variant of CTL including past tem-
poral operators (

←−
E and

←−
A) is used, to make it easier to specify properties of

programs, and the next state operators (EX and AX) are extended with in-
formation on the kind of edge they operate over. For example, the operators
EXseq and AXbranch stand for “there exists a next state via a seq edge” and
“for all next states reached via a branch edge” respectively.

Two types of these basic predicates can be used to obtain information about
a node in the control flow graph. The formula node(x) holds at a node n in
a valuation that maps n to x. The formula stmt(s) holds at a node n where
the valuation makes the pattern s match the statement at node n. As well
as judgements about states, the language can make “global” judgements. For
example, the formula φ @ n ∧ conlit(c) states that φ holds at n and c is a
constant literal throughout the program.

User defined predicates can be incorporated via a simple macro system.
These can be used in the same way as core language predicates, and are defined
by an equality between a named binding and the temporal logic condition that
the predicate should be ’expanded’ into.

3.2 From TRANS to TRANSfix

We describe a variant of the TRANS language, called TRANSfix, suitable for
specifying the transformation of Java source code with the aim of correcting
bugs that may appear within programs. In contrast to the TRANS language for
optimisations, where the goal is to produce optimized low-level code, TRANSfix

is used to produce source code, since the goal of debugging is usually to maintain
reusable and readable source code, for the developers of the software to continue
working on. Rather than operating on the low-level code which is used as input
for the temporal logic side conditions, rewrite rules must operate on the source

6

let nullable = ¬µZ. ∃x. use(x) ∧
←−
AX(A(¬def(c)

←−
U def(c) ∧

not assigned null(x) ∨ Z))

Figure 4: Macro Within Nullable Checking

program itself.
TRANSfix specifications consist of actions and conditions: if the condition

holds true then the action is applied. Many actions consist of replacing state-
ments with other statements, although they can also include adding new meth-
ods to classes. Actions are applied if side conditions hold true.

We also allow the use of µ-calculus [Kozen(1983)] to describe properties
about nodes. Modal µ-calculus is a fix point based temporal logic with least (µ)
and greatest (ν) fix point operators. It is interpreted over labelled transition sys-
tems, and in our approach we rely on the same correspondence between Kripke
Structures and Control Flow Graphs. In other words the CFG is the model
for our µ-calculus. An example use of µ-calculus is given in Figure 4. Steffen
uses this logic to generate dataflow analyses from temporal logic [Steffen(1993)].
Our work continues this line of work and applies such ideas to the field of static
program analysis and bug fixing.

A BNF for the TRANSfix pattern matching language is provided in Figure 8.
Interesting aspects of TRANSfix are its use of metavariables, the new actions and
strategies, and the type system.

3.2.1 Metavariables and wildcards

The core syntax of the rewrite rules is based on standard programming con-
structs (assignment statements, while statements, if statements, etc) which we
assume are well understood. The syntax is expanded with constructs to support
meta-variables, representing either syntactic fragments of the program or nodes
of the CFG.

The language for transformations is a Java statement grammar, extended
with metavariables that can bind to different program structures, and wildcards
that can match any statement or sequence of statements. For example, the
pattern for matching an integer assignment to an addition expression, that is
later followed by re-assignment to that variable, is shown in Figure 5. Figure 6
gives a code snippet which matches to that pattern, and metavariable bindings
that show how the pattern is matched.

The language for code reconstruction is the same as pattern matching. Its
application is fundamentally different, however. In reconstruction metavariables
are substituted with a statement, expression or type that has been bound to the
metavariable during pattern matching, and model checking. Each statement in
the syntax tree isomorphically corresponds to a node within the CFG, which

7

n : int x = l + r ;
. . . .

m: x = e ;

Figure 5: TRANSfix Pattern Matching

int z = y + 5 ;
System . out . p r i n t l n (x) ;
z = z + 1 ;

Metavariable Binding
x z
l, r y, 5
e z + 1

Figure 6: Sample Java Code Listing

enables the use of the results of model checking the side conditions in the code
reconstruction.

A consequence of the desire to produce source code is the necessity of incor-
porating scoping; while scoping doesn’t exist within methods at a bytecode level,
is a necessary part of the transformation language of TRANSfix. This allows us
to match programming language constructs such as try and catch blocks.

The TRANSfix language contains a wildcard operator “....” that matches
against any statement or sequence of statements, including no statements. Since
a wildcard statement is a normal pattern matching statement, it can also be
bound using a label, allowing the matching or arbitrary blocks of code in strate-
gic locations. In order to facilitate the writing of specifications that are in-
tuitive to programmers, we also allow wildcards to be used in the reconstruc-
tion of statements. This is syntactic sugar for binding the wildcard statements
to metavariables using labels, and then substituting in metavariable references
within the reconstruction pattern. Figure 7 gives an example translation. Wild-
card substitutions are indexed, so the nth wildcard block in pattern matching
is substituted into the nth wildcard position in reconstruction.

3.2.2 Java Types

We provide pattern matching for Java types as well. The pattern ::m will bind
any type to the metavariable m. One can explicitly refer to primitive types, such
as int or object types, such as java.util.Vector. One can also match arrays.
The two new calls within the expressions grammar allow pattern matching array
initialisers specifically.

8

REPLACE
l . l o ck ()
. . . .
l . unlock ()

WITH
try {

l . l o ck ()
. . . .

} f ina l ly {
l . unlock ()

}

Before

REPLACE
obj . l o ck ()

1 :
obj . unlock ()

WITH
try {

obj . l o ck ()
‘ 1 ‘

} f ina l ly {
obj . unlock ()

}

After

Figure 7: Removing Wildcard Reconstruction Sugar

3.3 Actions

A simple rewrite merely replaces code snippets with new code; however, many
transformations must actually change the structure of the class or apply rewrites
at multiple places. These structural changes are supported by additional actions.

The ADD METHOD action takes the return type of the method, its name, argu-
ments and a statement to act as the body. This is then added to a class, specified
through a metavar. This is our primary method of transforming classes.

The COMPOSE action performs sequential composition on the two actions that
it is passed as arguments and forms a new atomic action. (This is not to be
confused with the THEN strategy (see below) for composing two transformations.)
Note that these actions are both disabled if the side condition doesn’t hold true
for a given set of metavar bindings.

Combining uses of actions has many applications, for example one could
rewrite a block of code into a method, and replace it with a call to this method,
by using a REPLACE composed with an ADD METHOD.

A non-deterministic choice action, called CHOOSE ... OR, is used when the
same analysis might suggest more than one possible fix. This fits in with the
methodology of debugging we propose since user must confirm the application
of a transformation, thus they may be in a better position to make that choice.

3.3.1 Strategies

As in the TRANS language, strategies are operators for combining different trans-
formations. The MATCH φ IN T strategy restricts the domain of information
in the transformation T by the condition φ. The T1 THEN T2 strategy applies
the sequential composition of T1 and T2. When actions are applied normally,
ambiguity with respect to what node actions and rewrites are applied to are
automatically resolved. In other words, if there are several bindings that have
the same value for a node attribute that is being used in a rewrite rule then
only one of them is non-deterministically selected. The APPLY ALL T strategy

9

type ::= :: metavar
| primitive-type
| object-type
| type []

expr-pattern ::= metavar (expression, expression ...)?
| expression op expression
| unop expression
| (type) expression
| new type expression
| expression instanceof type
| new type []

statement ::= metavar: statement
|
| ;
| ‘ metavar ‘
| type metavar = expression
| if expression statement statement
| while expression statement
| try expression catch statement

finally statement
| return expression ;
| expression ;
| { statement* }
| return expression ;
| throw expression ;
| synchronized (expression) { statement }
| for (expression*, expression, expression*)

{ statement }
| switch (expression) { statement* }
| case expression: statement ;
| default ;
| assert expression ;
| continue metavar ;
| break metavar? ;
| this (expression, expression ...);
| super (expression, expression ...);

node-condition ::= µ condition-var. node-condition
| ν condition-var. node-condition
| node-condition ∨ node-condition
| node-condition ∧ node-condition
| ¬ node-condition
| ∃ metavar . node-condition
| [EX | AX |

←−−
EX |

←−−
AX][metavar]

(node-condition)
| [E | A |

←−
E |
←−
A] (node-condition

U node-condition)
| node(metavar)

side-condition ::= side-condition ∨ side-condition
| side-condition ∧ side-condition
| ¬ side-condition
| node-condition @ metavar
| pred (metavar1,. . . ,metavarn)

action ::= REPLACE statement* WITH statement*
| COMPOSE action WITH action
| CHOOSE action OR action
| ADD METHOD type metavar(

type metavar, ...) statement TO metavar

transform ::= action WHERE side-condition
| MATCH side-condition IN transform
| APPLY ALL transform
| transform � transform
| transform THEN transform

Figure 8: BNF for TRANSfix

10

uses all of the valuations within transformation T , without this restriction.

3.4 Type System

TRANSfix is endowed with a simple type system that ensures that programs
transformed by a TRANSfix specification are syntactically valid Java programs.
For example, anything nested at an expression level is an expression. It doesn’t
guarantee that the programs output are well typed Java programs. We cannot
ensure output programs are correctly typed because strategies (transformational
combinators), such as THEN, may be used to combine a transformation that fixes
an incorrect program.

In order to differentiate types of meta-variables being used in transformations
from the types of Java variables, we refer to the former types as kinds. The
kind system provides guarantees that can be used in our implementation, see
Section 4. There are three Kinds within the kind system:

Type Kind for metavariables that bind to Java types

Expression Kind for metavariables used for Java expressions

Statement Kind for statements and blocks.

The kind system guarantees two important properties:

1. that no metavariable may bind to, or substitute into a position that re-
quires more than one Kind.

2. that no metavariable may be used in a substitution, if it is not bound
before hand.

A relatively simple algorithm is used to check these properties. A pass is
made of the syntactic replacement rules and side conditions, keeping note of
what context a metavariable is used in. If a metavariable is used in a context
which implies it would need to be of more than one Kind, then kind checking
fails. If there exist metavariables referred to in the substitution part of replace-
ment that isn’t bound by either the pattern matching, or the side condition then
it also fails.

3.5 Specification Examples

3.5.1 Method does not release lock on all paths

The full specification is provided in Figure 9. Position l within the program
matches the point at which the lock is locked, and u at the position where its
unlocked. The side condition holds true where you can sometimes unlock if you
have locked, but not on every path. The replacement rule moves the unlock
statement within a finally clause, ensuring that the lock gets executed on all
paths through the method.

11

REPLACE
l . l o ck ()
. . . .
l . unlock ()

WITH
try {

l . l o ck ()
. . . .

} f ina l ly {
l . unlock ()

}
WHERE

EF(u) ∧ ¬AF(u)@ l

Figure 9: Transformation to ensure lock released on all paths

3.5.2 Database Transactions

Figure 10 shows a specification for ensuring that transactions are surrounded by
the correct catch pattern for SQLException instances. The pattern matching of
a call to the setAutoCommit method, matches the beginning of the transaction.
The wildcard binds to anything between that and the commit call, i.e. a whole
transaction. This block of code is then replaced with another block, surrounded
by a catch statement. The catch statement rolls back the transaction in case of
a database failure.

The side condition checks to ensure that the commit call can never be fol-
lowed by a rollback. It also ensure thats conn is of the correct type.

3.5.3 Unclosed File Handles

Figure 11 gives a specification that rearranges the closing mechanism for file han-
dles. It matches the type of the stream object into the metavariable streamtype
and ensures this is a stream in the side condition. The other component of the
side condition ensures that the close method throws an exception.

It uses wildcard matching to keep the body of the try block in place, whilst
moving the close call at the end of the method within a finally block -
ensuring that it always gets called.

4 Prototype Implementation

The approach proposed in this paper, based on specifying bug fixes with TRANSfix

and matching the specifications against low-level program representations, has
been prototyped in the implementation we call FixBugs. This implementation
takes a Java program in both source and Bytecode form and applies transfor-
mations to it, outputting a series of programs representing possible bug-fixed
variants of the program.

12

REPLACE
conn . setAutoCommit (fa l se) :
. . . .

commit : conn . commit () ;
WITH

try {
conn . setAutoCommit (fa l se) :
. . . .
conn . commit () ;

} catch (java . s q l . SQLException e) {
i f (conn != null) {

try {
conn . r o l l b a c k () ;

} catch (java . s q l . SQLException e) {
e . pr intStackTrace () ;

}
}

}
WHERE

type(conn,’java.sql.Connection’) ∧¬AF(stmt(conn.rollback();))@
commit

Figure 10: Correction for JDBC Commit and Rollback Pattern

4.1 Architecture

As shown in Figure 12, the FixBugs system comprises several components:

• the Core parses TRANSfix specifications, and calls into various components
as required;

• the Pattern Matcher produces bindings to metavariables from source code
and a pattern;

• the Model Checker produces bindings to metavariables that satisfy the
side condition formulae; and

• the Generator alters the program itself, given bound metavariables, ac-
cording to the actions.

The Model Checker relies on the ASM bytecode library [’Eric Bruneton et al.(2002)’Eric Bruneton, Lenglet, and Coupaye]
in order to generate the control flow graph of the program, as explained in Sec-
tion 4.3. The Java programs source code is parsed using the Eclipse [Eclipse Foundation(2009)]
project’s Java developer tools. These provide a standardised intermediate rep-
resentation for the programs. This representation is also used by the Generator,
which manipulates this representation directly, and concrete syntax is generated
from this abstract syntax.

13

REPLACE
: : streamtype stream = null ;
try {

. . . .
throw : stream . c l o s e () ;

} catch (ex e) {
c :

}
WITH

: : streamtype stream = null ;
try {

. . . .
} catch (ex e) {

. . . .
} f ina l ly {

i f (stream != null) {
try {

stream . c l o s e () ;
} catch (’ IOException ’ e) {

e . pr intStackTrace () ;
}

}
}

WHERE

subtype(streamtype,’java.io.OutputStream’) ∧
EF (node(c)) @ throw

Figure 11: Closing File Handles

Java Source

?

Eclipse IR

- Bytecode

?

ASM IR

?

6

Pattern Matcher
??

Model Checker�Bindings

- Bindings

TRANSfix Source

6

Patterns ? ?
Generator

- {Java programs}

Figure 12: FixBugs Architecture

14

4.2 Representation

An important issue in writing static analysis systems is the representation over
which the analysis is performed, notably whether at source code level, object
code level or some intermediate representation. In order to bug-fix the programs
themselves (rather than a low-level representation) it is necessary to perform
the transformation at the source code level. Many existing systems for detecting
bugs perform analysis at the bytecode level, and thus have difficulty incorpo-
rating automatic fixes to programs. There are many advantages, however, to
performing analysis at a lower level: for example, it is easier to extract the con-
trol flow graph from a language whose control flow is represented by conditional
goto statements, rather than loops.

We attempt to blend the best of both worlds with our approach to analysis.
We perform syntactic analysis against the source code of the program, whilst
performing semantic analysis on a bytecode representation. We use the standard
debugging information from the Java Bytecode format in order to correlate the
results from the source and Bytecode analyses.

4.3 Silhouettes

One line of Java source code is compiled into one or more lines of Java Bytecode.
Consequently there is a subtle impedance mismatch between two systems when
using the debugging information to bridge the analysis results of these two
representational levels. We unify these levels within FixBugs through the concept
of a silhouette. The silhouette of a line of source code is the corresponding set
of lines of its bytecode. This concept is reflected within all aspects of the
analysis. For example the control flow graph silhouette of a source code line is
the subgraph within the control flow graph that corresponds to that source code
line. Every edge within the control flow graph of the program’s source code has
a corresponding edge within the bytecode control flow graph, but the inverse
relation doesn’t hold.

Silhouettes consequently partition the Bytecode control flow graph into sev-
eral overlapping subgraphs. The edges between these subgraphs fall into two
categories. An edge (from,to) is inbound with respect to some silhouette S if
the to node, but not the from node is a member of S, it is outbound if the from
node is a member of S, but not to. If both from and to are within S we say that
the edge is contained within S. The relation between source code and bytecode
CFGs is illustrated in Figure 13.

We can minimise the Java control flow graph from the Bytecode represen-
tation very simply with the following steps:

1. extract Bytecode control flow graph (G) using ASM.

2. compute line numbering function (L) using ASM.

3. coalesce (G) to form (G′).

15

if(x > 0)

x = x + 1 System.out.println(x);

const0

iload_1

if_icmpge

iload_1 getstatic

iconst_1

iadd

istore_1

iload_1

invokevirtual

Figure 13: CFG Coalescing

16

TRANSfix

[Scala] Scala→ Bytecode

[Bytecode]

TRANSfix

[Bytecode]

�

�� �Program

[Java] Java→ Java

[TRANSfix]

�� �Program

[Java]

TRANSfix

[Bytecode]

aa !!
JVM

Figure 14: Transformational Diagram for FixBugs

Within the FixBugs implementation we represent the successor function of
G as a map from integers onto sets of integers, and L as an array of integers.
In order to calculate G′ we therefore replace every edge (from,to) in G with an
edge (L(from),L(to)). This ensures all inbound and outbound edges are replaced
accordingly. We then remove all edges whose from and to nodes are identical,
since they represent contained edges that don’t exist within the source code
control flow graph G′.

The existence of Bytecode analysis libraries, such as ASM makes it easier
to extract the control flow graph and coalesce than to write a custom source
code analysis. It also allows us to integrate other information more easily ex-
tracted at a Bytecode level, and then relabel it onto the Java control flow graph
accordingly.

4.4 Implementation Details

Most of the software is written primarily in Scala, chosen because of its support
for a functional style of programming, combined with the plentiful libraries that
are available on the Java platform. Specification files are parsed using the parser
combinators in Scala’s standard library, and disjoint union datatypes, modelled
using case classes provide an intermediate representation for TRANSfix specifi-
cations. Scala’s pattern matching can then be used in order to bind TRANSfix

metavariables to elements of Java source code, represented using Eclipse’s Inter-
mediate Representation. This development approach is described in Figure 14.

Being a prototype, the current implementation doesn’t provide support for
all the features of the TRANSfix language, such as strategies, µ-calculus and
class-level actions. The gist of the approach, however, should map directly to
these concepts, albeit with some programming effort.

17

4.5 Performance

While we are happy with the performance of this prototype implementation in
practice (applying the bug fixing transformations usually takes in the order of
seconds) we have yet to complete an analysis of its computational complexity.

Computational Tree Logic is polynomial time checkable in the size of the sys-
tem times the length of the formula [Clarke et al.(1996)Clarke, Emerson, and Sistla].
These correspond to the number of statements in the program being trans-
formed, and the side condition of the transformational specification. Modal
µ-calculus is exponential time checkable, however the worse case scenario is
only reached in the case of nesting ν and µ operators within each other. Such a
temporal side condition is only really necessary in complex analyses, which may
require exponential time dataflow analysis algorithms themselves. The alterna-
tion free subset of modal µ-calculus is linear time checkable in the size of the
model times the size of the specification [Cleaveland and Steffen(1993)]. Our
pattern matching, and reconstruction implementations are both linear in the
size of the pattern plus the size of the method.

We provided a thorough investigation of the performance of several common
compiler optimisations specified in TRANS and compared it to existing hand
written dataflow analyses in [Warburton and Kalvala(2009)]. In general, gen-
erated optimisations are 2x slower than hand written optimisations to apply
to Java bytecode programs, however, some pathological cases exist that cause
worse performance.

There are several differences between the TRANS implementation in [Warburton and Kalvala(2009)]
and the TRANSfix implementation in this paper. The TRANS implementation
compiles specifications, rather than interpreting them, and it also uses Binary
Decision Diagrams in order to symbolically represent the state space of the
analysis, rather than the explicit model checking we perform. These differences
reflect the prototype nature of the implementation described here compared to
the relative completeness of the TRANS implementation. The use of TRANS
in optimization must consider more states than the proposed use of TRANSfix,
since reducing silhouettes to a source code CFG reduces the number of nodes
within the graph, as several bytecode statements may correspond to one source
code statement.

5 Analysis

5.1 Related Work

FindBugs is a system for detecting bugs within Java programs [Hovemeyer and Pugh(2004)].
It defines a concept of a bug pattern, which is a common construct within a
program that commonly causes errors. Misunderstood API features, and dif-
ficult language features are good examples of bug patterns. Findbugs detects
these patterns through static analysis, but does not attempt to fix them. Its
bug detection mechanisms are hand written in Java.

18

UCDetector1 is a plugin for the commonly used Eclipse Java IDE that finds
unecessary code within a project. Its detection mechanism is a custom dead
code static analysis. It can also detect when the visibility of a method can
be restricted, for example from public to private. It can automatically fix
the dead code issues that it detects, but only performs limited analysis of the
programs.

The Netbeans IDE will in future have a system for migrating users away
from deprecated method calls, by automatically applying a source code trans-
formation that rewrites a call to a deprecated method into a different method
call. These transformations are specified in an anotation to the method defini-
tion. The transformation language is simplified, allowing constraints on argu-
ment types, and a few specialised metavariables for substitution, for example
$0 represents the object that is calling the method.

Dataflow analysis has long been employed within the compiler optimisation
community to iteratively compute the nodes within a program at which optimi-
sations can be soundly applied [Aho et al.(2007)Aho, Lam, Sethi, and Ullman,
Muchnick(1997)]. Model checking is a technique in which a decision is made as to
whether a given model satisfies some specification. David Schmidt and Bernhard
Steffen recognised that there is a strong link between these two research areas.
Equations for dataflow analyses have been shown to be expressible in modal
µ-calculus [Schmidt and Steffen(1998)], and dataflow analysis algorithms have
been generated from modal logics [Steffen(1993)]. This approach is implemented
in DFA & OPT-Metaframe [Klein et al.(1996)Klein, Knoop, Koschutzki, and Steffen],
a toolkit designed to aid compiler construction by generating analyses and trans-
formations from specifications. Transformations within this system are imple-
mented imperatively, rather than using declarative style rewrite rules, however,
the temporal logic specification is converted into a model checker and then op-
timised. In our case, we found CTL to be sufficient to model the side conditions
of transformations.

Rewrite rules with temporal conditions have also been used in the Cobalt sys-
tem [Lerner et al.(2003)Lerner, Millstein, and Chambers] which focuses on au-
tomated provability and also provides executable specifications, achieved through
temporal conditions common to many dataflow analysis approaches. Since
Cobalt is designed for generating compiler analyses and transformation it has
a focus on automatically discharging proof obligations for program equivalence.
The specific nature of Cobalt’s temporal conditions, while facilitating automatic
discharging of proof obligations, is limited compared to the flexibility provided
in TRANSfix from supporting CTL side conditions, even if this may require more
expensive model checking.

Rhodium is another domain specific language for developing compiler optimi-
sations [Lerner et al.(2005)Lerner, Millstein, Rice, and Chambers]. Rhodium con-
sists of local rules that manipulate dataflow facts. This is a significant departure
in approach from TRANS, since it uses more traditional, dataflow analysis based
specifications rather than temporal side conditions.

1http://www.ucdetector.org/

19

The Temporal Transformation Logic (TTL) [Kanade et al.(2006)Kanade, Sanyal, and Khedker]
also uses CTL, but emphasizes verification of the soundness of the transforma-
tions themselves, ie that they are semantics preserving. Accordingly, instead of
approaching optimisation as rewriting, TTL has a set of transformational prim-
itives, each representing a common element used within compiler optimisations,
for example replacing an expression with a variable. Each of the transforma-
tional primitives has an associated soundness condition that, if satisfied, implies
the soundness of the transformation.

5.2 Optimisations

Some existing compiler optimisations can be used to remove potential bugs, or
unclear code within programs, for example dead assignment removal, or un-
reachable code elimination. These can be specified within the existing TRANS
system, of which TRANSfix is an extension.

Since these would be semantics preserving optimisations, there is less con-
cern about applying them automatically. However user feedback might still be
beneficial here, since a user may have written a method, and wish to keep it
within their codebase, but may not have started to use it within their code.
Consequently, removal of dead code, even if semantics preserving, should be
applied with care.

Other optimisations specified in TRANS include lazy code motion, constant
propagation, strength reduction, branch elimination, skip elimination, loop fu-
sion, and lazy strength reduction; further details of these can be found in
[Kalvala et al.(2009)Kalvala, Warburton, and Lacey].

5.3 Correctness Issues

Unlike compiler optimisations, transformations applied to fix bugs are not se-
mantics preserving. The very aim of the transformation is to alter the program
semantics in order to remove a bug. Consequently one is assuming that the
program itself is incorrect according to some specification, but can be corrected
to match this specification.

It is possible that the program itself might be correct, and accordingly the
transformations shouldn’t be applied automatically. Additionally the bug find-
ing patterns that we focus on correspond to behaviours that are generally con-
sidered bugs within a program, for example deadlocks.

5.4 Further Applications

Other elements of IDE and language analysis tool construction can also benefit
from the source transformation language we outline here. Refactoring operations
are an interesting example of such a transformation.

A refactoring operation attempts to change the structure of a program in-
ternally, in order to improve readability or maintainability, without altering the
observable functional behaviour of the program, for example by extracting some

20

block of code into a named method. In this context existing formal analysis of
TRANS-like languages could be useful for ensuring observational equivalence.

Refactoring operations require further information from the user of the IDE
that TRANSfix doesn’t provide, for example in the Extract Method refactoring
operation one would need to know what the name of the method is. In order to
automatically apply such transformations the concept of schematic variables is
introduced.

A schematic variable is a variable that isn’t bound in the pattern matching
or temporal constraints, we syntactically differentiate schematic variables by
prefixing them with a ? symbol, such as ?x. We can use the type system
described in Section 3.4 and underlying syntactic structure of the transformation
to infer the type of any schematic variable. When applying the transformations
we can use the schematic variables to display appropriate user interface dialogs
in a given IDE.

5.5 Further Work

We intend to work further on the implementation:

1. Improve the performance by implementing a symbolic model checker, or
backing onto a SAT solver.

2. Complete the implementation of language features, for example schematic
variables and strategies.

3. Integrate into IDEs, in order to be able to use the tool effectively, rather
than to simply experiment with TRANSfix.

We would like to extend our methodology in order to be able to ensure that
we are soundly applying transformations, rather than simply leaving the choice
of whether to apply these transformations to the user of the tool. The required
soundness properties could be annotated onto the program. For example our
specification for ensuring that locks are released on all paths is sound iff the
user of the system wishes a lock to be in a released state as a post-condition of
the method. Information of this nature can already be added to Java programs
using the existing annotations framework, that has been recently extended by
[Ernst(2009)]. There are already existing tools for invariant detection about par-
tially annotated Java programs, [Ernst et al.(2007)Ernst, Perkins, Guo, McCamant, Pacheco, Tschantz, and Xiao]
infers properties about nullness of variables. Another element of such an exten-
sion would be the ability to automatically infer the soundness of transformations
with respect to given pre and post condtions, progress has been made towards
the inverse goal, for example [Scherpelz et al.(2007)Scherpelz, Lerner, and Chambers]
provides a system for automatically inferring dataflow analyses from facts.

5.6 Conclusions

We have introduced an approach that allows one to specify static analyses that
can be applied to programs, and transformations that can be used to debug the

21

programs. We describe a tool that allows the automated application of these
transformations to programs and how its use can be integrated into existing de-
velopment methodologies. Our implementation uses a novel technique for com-
bining source code and object code analysis through silhouettes—a technique
for unifying information annotated onto a control flow graph. This provides the
same underlying model as the TRANSfix specification language for transforma-
tions.

We hope that in future this approach can be combined with partial program
specifications in order to place the automated fixing of bugs through formally
specified program transformation on a sound semantic footing. The codifying of
common bug patterns in itself helps programmers to understand and appreciate
the art of computer programming through the subtleties of its science.

References

[Aho et al.(2007)Aho, Lam, Sethi, and Ullman] A. V. Aho, M. S. Lam,
R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Pearson Education;, 2nd edition, 2007.

[Clarke and Emerson(1982)] E. M. Clarke and E. A. Emerson. Design and syn-
thesis of synchronization skeletons using branching-time temporal logic. In
Logic of Programs, Workshop, pages 52–71, London, UK, 1982. Springer-
Verlag. ISBN 3-540-11212-X.

[Clarke et al.(1996)Clarke, Emerson, and Sistla] E. M. Clarke, E. A. Emerson,
and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8:244–263, 1996.

[Cleaveland and Steffen(1993)] R. Cleaveland and B. Steffen. A linear-time
model-checking algorithm for the alternation-free modal mu-calculus. For-
mal Methods in System Design, 2(2):121–147, 1993.

[Eclipse Foundation(2009)] Eclipse Foundation. Eclipse website, 2009.
http://www.eclipse.org.

[’Eric Bruneton et al.(2002)’Eric Bruneton, Lenglet, and Coupaye] ’Eric
Bruneton, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to
implement adaptable systems. In Proceedings of the ASF (ACM SIGOPS
France) Journ’ees Composants 2002 : Syst‘emes ‘a composants adaptables
et extensibles (Adaptable and extensible component systems), 2002.

[Ernst(2009)] M. D. Ernst. Type Annotations Specification (JSR 308). http:
//types.cs.washington.edu/jsr308/, October 5, 2009.

[Ernst et al.(2007)Ernst, Perkins, Guo, McCamant, Pacheco, Tschantz, and Xiao]
M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

22

http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

Tschantz, and C. Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3):35–45, Dec. 2007.

[Hovemeyer and Pugh(2004)] D. Hovemeyer and W. Pugh. Finding bugs is easy.
ACM SIGPLAN Notices, 39(12):92–106, 2004.

[Kalvala et al.(2009)Kalvala, Warburton, and Lacey] S. Kalvala, R. Warbur-
ton, and D. Lacey. Program transformations using temporal logic side
conditions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 31(4), 2009.

[Kanade et al.(2006)Kanade, Sanyal, and Khedker] A. Kanade, A. Sanyal, and
U. Khedker. A PVS based framework for validating compiler optimizations.
In SEFM ’06: Proceedings of the Fourth IEEE International Conference on
Software Engineering and Formal Methods, pages 108–117, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2678-0. doi: http:
//dx.doi.org/10.1109/SEFM.2006.4.

[Klein et al.(1996)Klein, Knoop, Koschutzki, and Steffen] M. Klein, D. Knoop,
D. Koschutzki, and B. Steffen. DFA & OPT-METAFrame: A toolkit for
program analysis and optimization. In Procs. of the 2nd International
Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’96), volume 1055 of Lecture Notes in Computer Science,
pages 422–426. Springer, 1996.

[Kozen(1983)] D. Kozen. Results on the proposition mu-calculus. Theoretical
Computer Science, 27, 1983.

[Lacey(2003)] D. Lacey. Program Transformation using Temporal Logic Speci-
fications. PhD thesis, Oxford University Computing Laboratory, 2003.

[Lerner et al.(2003)Lerner, Millstein, and Chambers] S. Lerner, T. Millstein,
and C. Chambers. Automatically proving the correctness of compiler op-
timizations. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. ACM Press, 2003. cite-
seer.ist.psu.edu/lerner03automatically.html.

[Lerner et al.(2005)Lerner, Millstein, Rice, and Chambers] S. Lerner, T. Mill-
stein, E. Rice, and C. Chambers. Automated soundness proofs for dataflow
analyses and transformations via local rules. In POPL ’05: Proceedings of
the 32nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 364–377, New York, NY, USA, 2005. ACM Press.
ISBN 1-58113-830-X. doi: http://doi.acm.org/10.1145/1040305.1040335.

[Muchnick(1997)] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[Scherpelz et al.(2007)Scherpelz, Lerner, and Chambers] E. R. Scherpelz,
S. Lerner, and C. Chambers. Automatic inference of optimizer flow
functions from semantic meanings. In PLDI, pages 135–145, 2007.

23

[Schmidt and Steffen(1998)] D. Schmidt and B. Steffen. Data-flow analysis as
model checking of abstract interpretations. In G. Levi, editor, 5th Static
Analysis Symposium, volume 1503 of LNCS, September 1998.

[Steffen(1993)] B. Steffen. Generating data flow analysis algorithms from modal
specifications. Science of Computer Programming, 21:115–139, 1993.

[Warburton and Kalvala(2009)] R. Warburton and S. Kalvala. From specifica-
tion to optimisation: An architecture for optimisation of java bytecode.
In O. de Moor and M. I. Schwartzbach, editors, Compiler Construction,
18th International Conference, volume 5501 of Lecture Notes in Computer
Science. Springer, 2009.

24

	Introduction
	Methodology and Application
	Example Bug Patterns and Categories
	Method does not release lock on all paths
	Method may fail to close stream
	Failed database transactions may not be rolled back

	Placing debugging within software development

	A Language for Detecting and Fixing Bugs
	Basis: the TRANS language
	From TRANS to TRANSfix
	Metavariables and wildcards
	Java Types

	Actions
	Strategies

	Type System
	Specification Examples
	Method does not release lock on all paths
	Database Transactions
	Unclosed File Handles

	Prototype Implementation
	Architecture
	Representation
	Silhouettes
	Implementation Details
	Performance

	Analysis
	Related Work
	Optimisations
	Correctness Issues
	Further Applications
	Further Work
	Conclusions

