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Abstract A search is presented for the pair production of
light scalar top quarks in

√
s = 7 TeV proton–proton colli-

sions recorded with the ATLAS detector at the Large Hadron
Collider. This analysis uses the full data sample collected
during 2011 running that corresponds to a total integrated
luminosity of 4.7 fb−1. Light scalar top quarks are searched
for in events with two opposite-sign leptons (e, μ), large
missing transverse momentum and at least one jet in the final
state. No excess over Standard Model expectations is found,
and the results are interpreted under the assumption that the
light scalar top decays to a b-quark in addition to an on-shell
chargino whose decay occurs through a virtual W boson. If
the chargino mass is 106 GeV, light scalar top-quark masses
up to 130 GeV are excluded for neutralino masses below
70 GeV.

1 Introduction

Weak-scale supersymmetry (SUSY) [1–9] is an extension
to the Standard Model (SM) that provides a solution to the
instability of the scalar SM sector with respect to new high-
scale physics. For each known boson or fermion, SUSY in-
troduces a particle with identical quantum numbers except
for a difference of half a unit of spin. In the framework
of a generic R-parity conserving minimal supersymmetric
extension of the SM (MSSM) [10–14], SUSY particles are
produced in pairs and the lightest supersymmetric particle
(LSP) is stable. In a large variety of models, the LSP is
the lightest neutralino, χ̃0

1 , which is only weakly interacting.
The scalar partners of right-handed and left-handed quarks,
q̃R and q̃L, mix to form two mass eigenstates, q̃1 and q̃2,
with q̃1 defined to be the lighter one. In the case of the su-
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persymmetric partner of the top quark (t̃ , stop), large mix-
ing effects can lead to one stop mass eigenstate, t̃1, that is
significantly lighter than the other squarks. Depending on
the SUSY particle mass spectrum, stop pair production and
decay can result in final states topologically similar to t t̄

events.
In this Letter, a search for direct stop pair production is

presented in
√

s = 7 TeV proton–proton collisions recorded
with the ATLAS detector at the Large Hadron Collider, con-
sidering a SUSY particle mass hierarchy such that mt >

mt̃1
> (mχ̃±

1
+mb) and the t̃1 decays exclusively via b+ χ̃±

1 .
The mass of all other supersymmetric particles are set to
be above 2 TeV, and large stop gauge mixing results in
mt̃2

� mt̃1
so that only t̃1 pair production is considered.

The stop is predominantly right-handed, but this has little
effect on the acceptance and efficiency for the final interpre-
tation. The chargino (χ̃±

1 ) mass is set to 106 GeV (above
the present exclusion limit of 103.5 GeV [15]) and it is as-
sumed to decay through a virtual W boson (χ̃±

1 → W ∗χ̃0
1 ).

The choice of chargino mass is identical to that used in
a previous study reported by the CDF experiment [16],
thus allowing easy comparison of the CDF and ATLAS
results. Stops within a mass range between 110 GeV and
160 GeV would be produced with relatively large cross
sections—between 245 pb and 41 pb. In this search, dilep-
ton final states (� = e, μ) are considered. Although these
events could contribute to an anomaly in the measured t t̄

cross section, the relative contribution would be small due
to the low transverse momenta of the visible decay prod-
ucts. Events are required to contain at least one energetic jet,
large missing transverse momentum (Emiss

T ) and low trans-
verse momenta (pT) leptons, to target the light stop final
state.

By targeting very light top squarks, this analysis is com-
plementary to other direct stop searches recently presented
by the ATLAS experiment [17, 18].

mailto:atlas.publications@cern.ch


Page 2 of 20 Eur. Phys. J. C (2012) 72:2237

2 The ATLAS detector

The ATLAS detector [19] is a multi-purpose particle physics
detector with a forward-backward symmetric cylindrical
geometry and nearly 4π coverage in solid angle.1 It con-
tains four superconducting magnet systems, which com-
prise a solenoid surrounding the inner tracking detector (ID),
and the barrel and two end-cap toroids equipping a muon
spectrometer. The ID consists of a silicon pixel detector,
a silicon microstrip detector (SCT), and a transition radia-
tion tracker (TRT). In the pseudorapidity region |η| < 3.2,
high-granularity liquid-argon (LAr) electromagnetic (EM)
sampling calorimeters are used. An iron/scintillator tile
calorimeter provides coverage for hadron detection over
|η| < 1.7. The end-cap and forward regions, spanning
1.5 < |η| < 4.9, are instrumented with LAr calorimeters
for both EM and hadronic measurements. The muon spec-
trometer surrounds the calorimeters and consists of a system
of precision tracking chambers (|η| < 2.7), and detectors for
triggering (|η| < 2.4).

3 Simulated event samples

Monte Carlo (MC) simulated event samples are used to de-
velop and validate the analysis procedure and to evaluate
the SM backgrounds in the signal region. Production of top
quark pairs is simulated with MC@NLO 4.01 [20–22], us-
ing a top-quark mass of 172.5 GeV. Samples of W(→ �ν)

and Z/γ ∗(→ ��), produced with accompanying jets (of
both light and heavy flavour), are obtained with ALPGEN
2.14 [23]. Diboson (WW , WZ, ZZ) production is simu-
lated with HERWIG 6.520 [24] and single top production
with MC@NLO 4.01. Fragmentation and hadronisation for
the ALPGEN 2.14 and MC@NLO 4.01 samples are per-
formed with HERWIG 6.520, using JIMMY 4.31 [25]
for the underlying event. Expected diboson yields are nor-
malised using next-to-leading-order (NLO) QCD predic-
tions obtained with MCFM [26, 27]. The top-quark contribu-
tion is normalised to approximate next-to-next-to-leading-
order (NNLO) calculations [28]. The inclusive W and Z/γ ∗
production cross sections are normalised to the NNLO cross
sections obtained using FEWZ [29]. ALPGEN 2.14 and
POWHEG [30] samples are used to assess the systematic
uncertainties associated with the choice of generator for t t̄

production, and AcerMC [31] samples are used to assess

1ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector and the z-axis
along the beam pipe. Cylindrical coordinates (r,φ) are used in the
transverse plane, φ being the azimuthal angle around the beam pipe.
The pseudorapidity η is defined in terms of the polar angle θ by
η = − ln tan(θ/2).

the uncertainties associated with initial- and final-state radi-
ation (ISR/FSR) [32]. The choice of the parton distribution
functions (PDFs) depends on the generator. CT10 [33] sets
are used for all MC@NLO samples. MRST LO** [34] sets
are used with HERWIG and PYTHIA, and CTEQ6L1 [35]
with ALPGEN 2.14. The stop production models are sim-
ulated using PYTHIA 6.425 [36]. Signal cross sections
are calculated to next-to-leading order in the strong coupling
constant, including the resummation of soft gluon emis-
sion at next-to-leading-logarithmic accuracy (NLO + NLL)
[37–39]. An envelope of cross-section predictions is de-
fined using the 68 % C.L. ranges of the CTEQ6.6 (includ-
ing the αS uncertainty) and MSTW 2008 NLO [40] PDF
sets, together with independent variations of the factorisa-
tion and renormalisation scales by factors of two or one
half. The nominal cross-section value is taken to be the mid-
point of the envelope and the uncertainty assigned is half
the full width of the envelope, following the PDF4LHC
recommendations [41]. All MC samples are produced us-
ing a GEANT4-based [42] detector simulation [43]. The ef-
fect of multiple proton–proton collisions from the same or
different bunch crossings is incorporated into the simula-
tion by overlaying additional PYTHIAminimum bias events
onto hard-scattering events. Simulated events are weighted
to match the distribution of the mean number of interactions
per bunch crossing observed in data.

4 Data and event selection

The analysis uses the full 2011 proton-proton collision data
sample. After applying the beam, detector and data-quality
requirements, the data sample corresponds to a total inte-
grated luminosity of 4.7 fb−1. Events were triggered using
a combination of single and double lepton triggers. The sin-
gle electron triggers vary with the data-taking period, and
the tightest of these has an efficiency of ∼97 % for elec-
trons with pT > 25 GeV. The single muon trigger used
for all data-taking periods reaches an efficiency plateau of
∼75 % (∼90 %) in the barrel (end-caps) for muons with
pT > 20 GeV. All efficiencies are quoted with respect to re-
constructed leptons, passing the baseline lepton definitions.
The double lepton triggers reach similar plateau efficiencies,
but at lower pT thresholds (greater than 17 GeV for electrons
passing the dielectron trigger, and greater than 12 GeV for
muons passing the dimuon trigger; for the electron-muon
trigger the thresholds are 15 and 10 GeV for electrons and
muons, respectively). If a lepton has an offline pT above
the single lepton trigger plateau threshold in a given event,
the relevant single lepton trigger is used. Double lepton
triggers are used for events with no such lepton. An ex-
ception to this rule is applied in the μμ channel. In this
case when one lepton has pT > 20 GeV and the second
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pT > 12 GeV, a logical OR of both triggers is used to re-
cover efficiency.

Jet candidates are reconstructed using the anti-kt jet
clustering algorithm [44] with a radius parameter of 0.4.
The input to this algorithm is the three-dimensional en-
ergy clusters seeded by calorimeter cells with energy sig-
nificantly above the noise resulting from the electronics and
additional proton–proton interactions (calorimeter clusters).
The jet candidate energies are corrected for the effects of
calorimeter non-compensation, inhomogeneities and energy
loss in material in front of the calorimeter, by using pT-
and η-dependent calibration factors based on MC simula-
tions and validated with extensive test-beam and collision-
data studies [45]. Furthermore, the reconstructed jet is mod-
ified such that the jet direction points to the primary ver-
tex, defined as the vertex with the highest summed track
p2

T. Only jet candidates with corrected transverse momenta
pT > 20 GeV and |η| < 4.5 are subsequently retained. Jets
likely to have arisen from detector noise or cosmic rays
are rejected [45]. Electron candidates are required to have
pT > 10 GeV, |η| < 2.47, and pass the “medium” shower
shape and track selection criteria of Ref. [46]. Muon candi-
dates are reconstructed using either a full muon spectrom-
eter track matched to an ID track, or a muon spectrome-
ter segment matched to an extrapolated ID track [47]. They
must be reconstructed with sufficient hits in the pixel, SCT
and TRT detectors. They are required to have pT > 10 GeV
and |η| < 2.4.

Following object reconstruction, overlaps between can-
didate jets and leptons are resolved. Any jet candidate lying
within a distance �R = √

(�η)2 + (�φ)2 = 0.2 of an elec-
tron is discarded. Subsequently, any electron or muon candi-
date remaining within a distance �R = 0.4 of any surviving
jet candidate is discarded.

The measurement of the missing transverse momentum
pmiss

T , and its magnitude Emiss
T , is based on the transverse

momenta of all electrons, muons and jets as described above,
and of all calorimeter clusters with |η| < 4.5 not associated
to such objects.

Following overlap removal, electrons are further required
to have pT > 17 GeV and to pass the “tight” [46] quality
criteria, which places additional requirements on the ratio of
calorimetric energy to track momentum, and the fraction of
high-threshold hits in the TRT. Electrons are also required
to be isolated: the pT sum of tracks above 1 GeV within
a cone of size �R = 0.2 around each electron candidate
(excluding the electron candidates themselves) is required
to be less than 10 % of the electron pT. Muons must have
pT > 12 GeV and must be isolated: the pT sum of tracks
within a cone of size �R = 0.2 around the muon candidate
is required to be less than 1.8 GeV. Jets are subject to the fur-

ther requirements pT > 25 GeV, |η| < 2.5 and a “jet vertex
fraction”2 higher than 0.75.

The top background measurement described below uses
a b-tagging algorithm [48], which exploits the topological
structure of weak b- and c-hadron decays inside a candidate
jet to identify jets containing a b-hadron decay. The nom-
inal b-tagging efficiency, computed from t t̄ MC events, is
on average 60 %, with a misidentification (mis-tag) rate for
light-quark/gluon jets of less than 1 %. To correct small dif-
ferences in the b-tagging efficiency observed in the simula-
tion with respect to the data, a scale factor is applied to all
simulated samples.

During part of the data-taking period, a localised elec-
tronics failure in the electromagnetic calorimeter created a
dead region (�η × �φ ≈ 1.4 × 0.2). For jets in this re-
gion, a correction to their energy is made using the en-
ergy depositions in the neighbouring cells, and is propa-
gated to Emiss

T . If the energy correction exceeds 10 GeV or
10 % of the Emiss

T , the event is discarded. Events with re-
constructed electrons in the calorimeter dead region are also
rejected.

Events are subject to the following requirements. The
primary vertex in the event must have at least five asso-
ciated tracks and each event must contain exactly two se-
lected leptons (electrons or muons) of opposite sign. Both of
these leptons must additionally satisfy the full list of signal
lepton requirements, and the dilepton invariant mass, mll ,
must be greater than 20 GeV across all flavour combina-
tions. In addition, events in the signal region must have at
least one jet with pT > 25 GeV, Emiss

T > 20 GeV, missing

transverse momentum significance3 E
miss,sig
T > 7.5 GeV1/2

to reject multijet events, and leading lepton pT < 30 GeV
(to provide further rejection of the dominant dileptonic t t̄

background). Events in the ee and μμ channels are sub-
ject to a further requirement on the dilepton invariant mass
to reject events arising from Z production and decay. This
selection, summarised in Table 1, has a low signal effi-
ciency, but strong background rejection. The main factor
in the efficiency loss is the lowest lepton pT requirement
needed to reach the efficiency plateau of the dilepton trig-
gers. The kinematic acceptance varies between 0.06 % and
0.3 % for a neutralino mass of 55 GeV as the stop mass
varies between 112 GeV and 180 GeV, and between 0.1 %
and 0.003 % for a stop mass of 140 GeV as the neutralino
mass varies between 1 GeV and 95 GeV (the detector effi-
ciency for these points, defined as the efficiency for recon-

2The jet vertex fraction quantifies the fraction of track transverse mo-
mentum associated to a jet which comes from the primary vertex. The
cut removes jets within the tracker acceptance which originated from
uncorrelated soft collisions.
3In this paper, E

miss,sig
T = Emiss

T /
√

HT, where HT is the scalar sum of
the jet and lepton transverse momenta in each event.
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Table 1 Signal region, top
control region and Z control
region requirements in each
flavour channel. The Z veto
rejects events with
mll > 81 GeV and
mll < 101 GeV

Requirement ee channel μμ channel eμ channel

Signal Region

lepton pT >17 GeV >12 GeV >17(12) GeV for e(μ)

leading lepton pT <30 GeV

mll >20 GeV and Z veto >20 GeV

jet pT ≥1 jet, pT > 25 GeV

Emiss
T >20 GeV

E
miss,sig
T >7.5 GeV1/2

Top Control Region

lepton pT >17 GeV >12 GeV >17(12) GeV for e(μ)

leading lepton pT >30 GeV

mll >20 GeV and Z veto >20 GeV

jet pT ≥2 (b)jets, pT > 25 GeV

b-jet pT ≥1 b jet, pT > 25 GeV

Emiss
T >20 GeV

E
miss,sig
T >7.5 GeV1/2

Z Control Region

lepton pT >17 GeV >12 GeV n/a

leading lepton pT <30 GeV n/a

mll >81 GeV and <101 GeV n/a

jet pT ≥1 jet, pT > 25 GeV n/a

Emiss
T >20 GeV n/a

E
miss,sig
T >4.0 GeV1/2 n/a

structing events that already enter the kinematic acceptance,
is ∼40 %).

5 Background estimation

The dominant SM background, after the signal selection re-
quirements, arises from t t̄ events where both top quarks de-
cay leptonically, with the next most significant background
being Z/γ ∗ + jets. Single top, W + jets, diboson and multi-
jet events give much smaller expected contributions.

The fully leptonic t t̄ background in the signal region is
obtained by extrapolating the number of t t̄ events measured
in a suitable control region (CR), after correcting for con-
tamination from non-t t̄ events, into the signal region (SR).
This extrapolation, detailed in Eq. (1), uses the ratio of the
number of simulated t t̄ events in the signal region to those
in the control region:

(Ntt̄ )SR = [
(Ndata)CR − (Nnon-t t̄ ,MC)CR

] (Ntt̄,MC)SR

(Ntt̄,MC)CR
(1)

The CR is designed to give an event sample dominated
by top events, whilst minimising signal contamination. It is
further chosen to be kinematically similar to the signal re-
gion to minimise systematic uncertainties due to extrapola-
tion. Selection requirements for the top control region are

summarised in Table 1. In this analysis, models with small
stop–chargino mass difference are considered, and hence
soft b-jets are expected in the signal events which are not
efficiently tagged. By requiring a b-jet in the top control re-
gion a high-purity sample of top events is obtained. The sig-
nal contamination in the considered models is typically of
the order of a few per cent, rising to 30 % for models with
mχ̃0

1
= 1 GeV and high mt̃1

. The percentage of SM, non-t t̄
events in the CR is less than 5 % across all channels. The re-
sulting t t̄ background contributions are consistent with the
expected MC yields in all channels within the uncertainties.
Signal contamination is taken into account when setting the
exclusion limit in the next section by including, for each sig-
nal model, the expected signal yield in the top control region
in the (Nnon-t t̄ ,MC)CR term in Eq. (1).

The contribution from Z/γ ∗ + jets events to the signal
region (from ee and μμ events) is evaluated in a similar
way. Data are used to obtain the normalisation of the Z/γ ∗
background in a suitable CR and MC is used to extrapo-
late from CR to SR using an equation analogous to Eq. (1).
This method is used separately for each of the ee and μμ

channels (with selection requirements for the Z CR as sum-
marised in Table 1), whereas the contribution to eμ (includ-
ing those from Z/γ ∗ → ττ ) is taken directly from the MC
simulation due to the limited number of events in the CR.



Eur. Phys. J. C (2012) 72:2237 Page 5 of 20

The contamination from non-Z/γ ∗ + jets SM events in the
CR is less than 5 %, and the signal contamination less than
4 %. The resulting Z background contributions are consis-
tent with the expected MC yields in the ee and μμ channels
within the uncertainties. The effect of signal contamination
of the Z control region on the final exclusion limit can be
neglected to a very good approximation.

Single top, W + jets (including heavy-flavour contribu-
tions) and diboson backgrounds are evaluated in the sig-
nal region directly from the MC simulation. The estimated
contribution from W + jets has been cross-checked using
a data-driven technique (an extension of the “template fit”,
described below), and found to be in good agreement.

The tight requirement on E
miss,sig
T heavily suppresses the

multijet background. A data-driven template fit technique is
used to verify that this background is small, and to assign an
uncertainty on the yield in the signal region. The isolation
requirements on the electrons and muons are reversed to en-
hance the multijet content of selected events. The require-
ments are inverted in the signal region, prior to application
of the E

miss,sig
T requirement. The shape of the E

miss,sig
T dis-

tribution in data for this inverted selection (after subtracting
the dominantly electroweak background using the MC simu-
lation) is then compared to the equivalent distribution in data
for the “normal” isolation requirements in order to validate
that inverting the lepton isolation does not distort the shape
of the distribution. The “normal” and “inverted” shapes were
found to agree very closely for the full range of distribu-
tions considered in the analysis. The inverted E

miss,sig
T dis-

tribution is then renormalised to match the distribution after
nominal isolation requirements. Passing this correctly nor-
malised template through the remaining requirements gives
the multijet yield in the signal region. It is found to be small
in all channels, making up less than 2 % of the total back-
ground.

6 Systematic uncertainties

The total systematic uncertainty on the expected background
in the combined flavour channel (the sum of ee, eμ and μμ

events) is 9.8 %, and is dominated by the uncertainties on the
two largest backgrounds (dileptonic t t̄ and Z + jet events).
The largest source of systematic uncertainty on the t t̄ back-
ground evaluation is the uncertainty on the jet energy scale
(JES), with smaller contributions coming from the jet en-
ergy resolution (JER) uncertainty [45], the theory and MC
modelling uncertainties (using the prescriptions described in
Ref. [49]), the systematic uncertainties on the b-tagging ef-
ficiency [48], and the uncertainty arising from the limited
numbers of MC and data events. Uncertainties [46, 50, 51]
in lepton reconstruction and identification (momentum and

energy scales, resolutions and efficiencies) give smaller con-
tributions.

The primary source of uncertainty on the Z/γ ∗ + jets
background estimate in the combined flavour channel is
the jet energy resolution uncertainty, with smaller contribu-
tions coming from the statistical and jet energy scale uncer-
tainties. Theoretical uncertainties on the Z/γ ∗ + jets back-
ground are investigated by varying the PDF and renormal-
isation scales. An uncertainty on the luminosity of 3.9 %
[52, 53] is included in the systematic uncertainty calcula-
tion for backgrounds taken directly from the MC simula-
tion. The dominant uncertainties on these backgrounds are
the jet energy scale and statistical uncertainties. The system-
atic uncertainty on the multijet yield is obtained by varying
the range in which the template fit is performed, and using
the maximum deviation of the final yield to assign the un-
certainty.

In the considered mχ̃0
1
–mt̃1

mass plane the theoretical
uncertainty on each of the signal cross sections is ap-
proximately 16 %. These arise from considering the cross-
section envelope defined using the 68 % C.L. ranges of
the CTEQ6.6 and MSTW 2008 NLO PDF sets, and in-
dependent variations of the factorisation and renormalisa-
tion scales (see Sect. 3). Further uncertainties on the num-
bers of predicted signal events arise from the JES uncer-
tainty (7–15 %), the JER uncertainty (1–7 %), the lumi-
nosity uncertainty (3.9 %), the uncertainties on calorime-
ter energy clusters used to calculate Emiss

T (2–6 %), the sta-
tistical uncertainty from finite MC event samples (4–20 %)
and smaller contributions from uncertainties on lepton re-
construction and identification, where the quoted ranges dis-
play the maximum variation observed using all signal mod-
els considered in this analysis.

7 Results and interpretation

Table 2 shows the data observations in the signal regions in
each flavour channel, and in the combined flavour channel,
along with the evaluated background contributions. Good
agreement is observed across all channels, and the absence
of evidence for light scalar top production allows a limit
to be set on the visible cross section for non-SM physics,
σvis = σ × ε × A, for which this analysis has an efficiency
ε and acceptance A. The limits are calculated using the
modified frequentist CLs prescription [54] by comparing the
number of observed events in data with the SM and SM-
plus-signal expectations.

All systematic uncertainties and their correlations are
taken into account via nuisance parameters using a profile
likelihood technique [55]. In Fig. 1, the leading lepton pT

distributions in the ee and μμ channels are illustrated along
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Table 2 The expected and observed numbers of events in the sig-
nal region for each flavour channel. In the combined flavour column
(“all”), the statistical uncertainty (first uncertainty quoted, includes the
MC and data statistical errors) on the various background estimates
have each been added in quadrature whilst the systematic uncertainties
(second uncertainty quoted) have been combined taking into account

the correlations between background sources. Observed and expected
upper limits at 95 % confidence level on the visible cross section
σvis = σ × A × ε are also shown.
The expected signal yields and statistical uncertainties on the yields
are quoted for the two mass points illustrated in the figures

ee eμ μμ all

t t̄ 44 ± 4 ± 5 139 ± 7 ± 22 111 ± 8 ± 10 293 ± 12 ± 34

Z/γ ∗ + jets 5 ± 1 ± 2 23 ± 2 ± 8 48 ± 16 ± 27 76 ± 16 ± 27

Single top 3 ± 0.5 ± 1 12 ± 1 ± 2 12 ± 1 ± 2 28 ± 2 ± 5

W + jets 3 ± 3 ± 3 5 ± 2 ± 1 6 ± 2 ± 1 13 ± 3 ± 3

Diboson 4 ± 0.4 ± 0.5 9 ± 0.7 ± 2 10 ± 0.7 ± 1 22 ± 1 ± 3

Multijet 2.9+3.2
−2.9 ± 2.2 2.0 ± 1.4 ± 0.3 3.0 ± 2.8 ± 0.3 8.0 ± 3.7 ± 2.3

Total 61 ± 6 ± 6 189 ± 8 ± 21 190 ± 19 ± 31 440 ± 21 ± 43

Data 48 188 195 431

σvis (exp. limit) [fb] 4.9 11.1 16.2 22.0

σvis (obs. limit) [fb] 3.3 10.9 16.9 21.0

(mt̃1
,mχ̃0

1
) = (112,55) GeV 44.1 ± 4.8 137 ± 8 140 ± 8 322 ± 13

(mt̃1
,mχ̃0

1
) = (160,55) GeV 8.8 ± 1.5 31.4 ± 2.7 36.5 ± 2.9 76.6 ± 4.3

with the Emiss
T and E

miss,sig
T distributions of the data and sim-

ulated events in the signal region (with the background nor-
malisations set to their nominal values).

The observed data yield is in good agreement with the
SM prediction in the combined flavour channel given in Ta-
ble 2.

The results in the combined channel are used to place
exclusions at 95 % confidence level in the mt̃1

–mχ̃0
1

mass
plane, using the CLs method. The resulting 95 % confi-
dence level expected (dashed) and observed (solid) limits are
shown in Fig. 2. Neutralino masses down to 1 GeV are con-
sidered, since there is no LEP limit on the neutralino mass in
the MSSM for the case that the lightest neutralino is predom-
inantly bino in nature. A bino-dominated lightest neutralino
is favoured by the recent LHC Higgs search results.

The observed limits represent a significant extension of
the CDF limit [16] for a chargino mass of 106 GeV to
smaller chargino minus neutralino mass difference (the AT-
LAS limit extends up to a neutralino mass of 70 GeV for a
stop mass of 130 GeV, whilst the CDF limit extends up to a
neutralino mass of 46 GeV).

The limit on the stop mass for neutralino masses of
45 GeV (135 GeV) is comparable to the equivalent CDF
limit. Increasing the chargino mass by 15 GeV leads to a
modest shift of the exclusion limit to higher values of the
neutralino mass, with the reach in stop mass being enhanced
to a lesser degree due to the falling stop production cross
section. For example, for a model with mt̃1

= 130 GeV,
mχ̃±

1
= 120 GeV and mχ̃0

1
= 60 GeV, the value of A × ε

(0.032 %) is slightly higher than for the equivalent model
with mχ̃±

1
= 106 GeV (0.026 %).

8 Conclusions

A search for light top squarks has been performed in the
dilepton final state. SM backgrounds have been evaluated
using a combination of data-driven techniques and MC sim-
ulation. Good agreement is observed between data and the
SM prediction in all three flavour channels. The results are
interpreted in the mt̃1

–mχ̃0
1

plane with the chargino mass
set to 106 GeV, and with the assumption that the decay
t̃1 → bχ̃±

1 occurs 100 % of the time, followed by decay via
a virtual W (χ̃±

1 → W ∗χ̃0
1 ) with an 11 % branching ratio

(per flavour channel) to decay leptonically. A lower limit at
95 % confidence level is set on the stop mass in this plane us-
ing the combined flavour channel. This excludes stop masses
up to 130 GeV (for neutralino masses between 1 GeV and
70 GeV). This limit exceeds that set by the CDF Collabora-
tion for the same scenario [16].
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Fig. 2 95 % exclusion limit in the mt̃1
− mχ̃0

1
mass plane, with

mχ̃±
1

= 106 GeV. The dashed and solid lines show the 95 % C.L.
expected and observed limits, respectively, including all uncertainties
except for the theoretical signal cross-section uncertainty (PDF and
scale). The band around the expected limit shows the ±1σ result. The
dotted ±1σ lines around the observed limit represent the results ob-
tained when moving the nominal signal cross section up or down by
the theoretical uncertainty. Illustrated also is the region excluded at the
95 % C.L. by CDF [16], where the lowest neutralino mass considered
was 44 GeV, indicated by the horizontal dotted line
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