
http://wrap.warwick.ac.uk

Original citation:
Perks, O. F. J., Bird, R. F., Beckingsale, D. A. and Jarvis, S. A. (2012) Exploiting
spatiotemporal locality for fast call stack traversal. In: Workshop on High-performance
Infrastructure for Scalable Tools (WHIST 2012), Venice, Italy, 29 June 2012

Permanent WRAP url:
http://wrap.warwick.ac.uk/59546

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29188378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59546
mailto:publications@warwick.ac.uk

Exploiting Spatiotemporal Locality for Fast Call Stack
Traversal

O. Perks, R.F. Bird, D.A. Beckingsale and S.A. Jarvis
Performace Computing and Visualisation

Department of Computer Science
University of Warwick, UK

{ofjp, rfb, dab, saj}@dcs.warwick.ac.uk

ABSTRACT
In the approach to exascale, scalable tools are becoming in-
creasingly necessary to support parallel applications. Eval-
uating an application’s call stack is a vital technique for a
wide variety of profilers and debuggers, and can create a sig-
nificant performance overhead. In this paper we present a
heuristic technique to reduce the overhead of frequent call
stack evaluations. We use this technique to estimate the sim-
ilarity between successive call stacks, removing the need for
full call stack traversal and eliminating a significant portion
of the performance overhead. We demonstrate this tech-
nique applied to a parallel memory tracing toolkit, WMTools,
and analyse the performance gains and accuracy.

Keywords
Call Stack, Unwind, Context Calling Tree, Memory, Multi-
core, Tracing

1. INTRODUCTION
As we transition from the petascale to the exascale gener-
ation of supercomputers, obtaining raw performance mea-
sured in FLOPS, is just one of the problems facing high-
performance computing institutions. Application developers
are finding it increasingly challenging to scale their applica-
tions in order to fully exploit new platforms and architec-
tures. Tools which support the analysis and maintenance of
large parallel applications at scale are crucial in supporting
code custodians. Unfortunately, the scalability issues facing
parallel applications also impact the tools designed to sup-
port them. As such, the development of exascale tools is a
key area of research.

Evaluating an application’s call stack is a vital technique
for a wide variety of profilers and debuggers, and can rep-
resent a significant performance overhead. The call stack
represents the specific sequence of function calls made by
an application to arrive at the current state, and tracking
changes in the call stack allows tools to monitor the progres-

sion of the application. These call stack changes are repre-
sented as transitions within the context calling tree (CCT).
The analysis afforded by detailed progression monitoring is a
crucial component in a multitude of debuggers, event tracers
and performance profilers. On many architectures, obtain-
ing this information is an inherently expensive operation,
due to the layout of the call stack in memory. We present a
heuristic approach to call stack traversal to reduce this over-
head. Through overhead reduction we aim to make frequent
call stack traversal a more affordable technique, facilitating
fine grained analysis in scalable tools.

Whilst alone this technique does not increase the scalability
of parallel tools it can reduce the impact of existing tools,
increasing their viability at scale. Currently debugging er-
rors in large scale applications can be a multi-stage process,
of first identifying a problem case then attempting to repli-
cate the error conditions at a more manageable scale, where
’heavyweight’ tools can be applied. By reducing the over-
head of a key component in such heavyweight tools, we are
enabling their application at a larger scale.

Our technique is based upon the exploitation of the spa-
tiotemporal temporal locality of calling sites. We employ a
heuristic technique to predict the overlap between successive
call stacks during traversal. The overlap between two call
stacks manifests itself in the form of a shared prefix, repre-
senting a shared path in the CCT from the root to the point
of divergence. The closer two locations are within the CCT,
the larger the shared prefix, and therefore, the larger the
performance gain afforded by applying the heuristic. The
heuristic uses a number of markers to determine this point
of divergence, but can not guarantee the correct inference,
and therefore, the validity of the assumed shared prefix. Us-
ing additional correctness checks we are able to demonstrate
a high degree of accuracy of the heuristic (>90%) in a num-
ber of cases, whilst still providing a significant improvement
in performance.

The technique is presented in the context of WMTools, a
lightweight memory tracing toolkit developed at the Uni-
versity of Warwick [7]. The tool uses function interposition
of standard POSIX memory management functions to track
memory allocations. In previously published literature we
have demonstrated the overheads of memory tracing, for ex-
ample up to an 11.8× slowdown for phdMesh during a 256-
core run. We attributed a large portion of this overhead
to the cost of stack traversal, thus reductions in overheads

would enable the viability of memory tracing at larger scale.

In previously published material we have illustrated that the
performance overheads of memory tracing different applica-
tions vary significantly. In this paper we demonstrate that
the overheads associated with memory tracing are directly
related to the volume of memory management calls com-
bined with the depth of the call stack. We propose a metric,
traversal event density, to capture the likely impact of call
stack traversal on an application. We demonstrate the valid-
ity of this metric, and investigate it’s behaviour as core count
and problem size is changed. By employing a new technique
which exploits the similarity in successive call stacks we co-
erce these previously limiting factors into helping improve
the performance of call stack traversal, whilst maintaining
a high level of accuracy.

Our heuristic is based on a very simple principle: the higher
the number of call stack traversal events within a given pe-
riod of time (high density), the closer these calls will be
in the CCT. This in-turn suggest a large overlap between
successive calls, and therefore a large potential saving.

The stack traversal functionality of WMTools is provided by
libunwind through frame pointers, and as such will be the
traversal method of choice for our analysis. Whilst we have
explored the use of other traversal libraries and methods, the
portability and speed of libunwind were found to be prefer-
able. Additionally experiments with function prologue and
epilogue instrumentation provided poor performance and in
many cases an inability to instrument external libraries, such
as the Message Passing Interface (MPI). Similarly we focus
on the x86_64 architecture, and do not compare the tech-
nique on other architectures with different call stack struc-
tures.

The specific contributions of this paper are as follows:

• We present a heuristic approach to call stack traver-
sal exploiting the spatiotemporal locality of successive
calls, in applications with a heavy use of call stack
traversals;

• We motivate the technique by first quantifying the
severity of the problem, and investigating other tech-
niques applicable to this domain. We demonstrate how
this heuristic technique can be used to reduce call stack
traversal overheads in debugging and tracing tools;

• We evaluate the accuracy of the technique under dif-
ferent circumstances, illustrating additional techniques
which can be employed to mitigate false predictions.

The remainder of this paper is structured as follows: in Sec-
tion 2 we catalogue the state of practice within the analysis
tool domain, with specific reference to call stack traversal;
Section 3 investigates the gravity of the problem, with a
practical investigation based on a parallel memory tracing
tool; Section 4 illustrates the heuristic traversal technique
and existing alternatives within the context of this study.
Section 5 demonstrates a performance comparison of these
techniques, while Section 6 investigates the notion of trad-

ing off accuracy and performance. Finally, we conclude the
paper in Section 7 and document further work.

2. RELATED WORK
Call stack tracing plays a crucial role in debuggers and trac-
ers of all shapes and sizes and the ability to analyse program
location mid-execution enables a whole range of analysis,
techniques, from ‘hot spot’ analysis to backtracking from ab-
normal termination. Due to the importance of this feature,
it has been the focus of a large body of research, specifi-
cally aimed at speeding up the inherently slow backtracking
process.

In a recent study, Mytkowicz et al. discuss a technique simi-
lar to the one we present in this paper [6]. They propose the
evaluation of the first element in the call stack along with the
call stack size, then relate this back to a previously generated
call graph. They deal with ambiguous mappings through a
process they term Activation Record Resizing (ARR), where
by they modify the size of some call functions to increase
unique mappings. This method is shown to work with an
accuracy of 88% (95% for C and 80% for C++) for offline cal-
culation with pre computation of all context mappings, and
74% (73% for C and 75% for C++) for offline calculation, with
a partial mapping. For this accuracy they incur a minimal
runtime cost due to limited intrusion reported as a mean
of 0.17% and maximum of 2.1%. A requirement for this
methodology is the pre-computation of the call graph; this
is performed by dynamically constructing path maps which
require offline ‘training’ runs, thus incurring the full cost of
traversal for a single run. As training runs may not produce
a comprehensive call graph, because the tool is based on
sampling their approach suffered from ‘missing’ mappings.

Whilst the technique they presented is obviously efficient
under certain circumstances, they fail to exploit spatiotem-
poral locality in the disambiguation of mappings. They also
incur the cost of searching all mapped call paths, whereas
the technique presented in this paper only focuses on com-
parison with the previous call stack.

There is a body of research identifying methods of negat-
ing the necessity to traverse the full call path by evaluating
existing information, a key principle in the methodology pre-
sented in this paper. Whaley suggested a technique of mask-
ing the return address with an identifier bit to signal that
the call frame had not been removed from the call stack [13].
This method suffers ambiguity problems from cycles where
a function features multiple times in a previously traversed
call stack, making it difficult to identify which instance of
the function is the crossover between the new suffix and
previous prefix. Despite this he claims to achieve >90% ac-
curacy. Based on sampling, he also demonstrates the effect
of increased sampling rates on the accuracy of the predic-
tions for various benchmark suites on different platforms.
This relates to the concept of traversal density presented in
Section 3.4.

This technique was further elaborated on using the concept
of ‘trampoline’ functions, which remap the return address of
a function to a new function which is able to record infor-
mation, and manage a ‘shadow stack’ which can quickly be
queried to establish the exact call path prefix [3].

Szebenyi et al. developed a suite for mixed mode instru-
mentation incorporating a hybrid sampling and event driven
tracing model designed for MPI applications [11]. To ad-
dress the problem of call path traversal overheads they ex-
pand on the concept of trampoline functions, in the form
of lightweight ‘thunk stacks’, which are inserted into the re-
turn address of functions. This technique enables the stack
walker to identify previously explored stack frames, thus es-
tablishing the prefix.

Additional research has been conducted into other aspects of
call stack traversal, with specific reference to representation
and storage from the perspective of call stack depth [10].

Serrano and Zhuang present a methodology of approximat-
ing the CCT through reconstruction of partial call traces [9].
This techniques uses call stack suffixes and approximates the
point of overlap to join them together to form a CCT. This
is very similar to the technique we employ in this paper,
but applied to a different problem domain. The difference
between the two techniques is that we only consider the im-
mediately preceding call stack, and we have the information
to the root of the CCT and so can better approximate the
shared prefix.

3. CALL STACK TRAVERSAL OVERHEADS
Call stack traversal is the process of interrupting a running
process to establish the sequence of function calls which
brought the code to its current location. This information is
stored on the program stack, which can easily be traversed
by looking at the return pointers for each function to estab-
lish the next function in the sequence.

The libunwind library is considered the industry standard
for call stack traversals, due to its portability and accessible
nature. While it already provides a ‘fast unwind’ facility, it
is inherently a slow operation which, if performed a sufficient
number of times, will have a significant performance impact
on a code. In this section we quantify the frequency and
overheads of this traversal within the context of a parallel
memory tracer, WMTrace.

3.1 WMTrace
WMTrace is a memory tracing tool, designed to perform inter-
position on standard posix memory management functions
to evaluate total heap memory consumption, as part of the
WMTools tool suite [7]. The software is designed to evaluate
parallel MPI-based applications.

Beyond simplistic memory consumption analysis WMTrace

provides functional and temporal breakdowns of memory us-
age. A key component of this is relating memory allocations
to a specific function, more specifically a unique function
call path. As such the tool needs to perform a call stack
traversal on every memory allocation, mapped as malloc or
calloc posix function calls.

In our previous research we demonstrated that profiling a
parallel code with WMTrace can have a significant impact of
application execution time. These slowdown were shown to
result in instrumented execution times of up to 11.8× the
original execution time. Whilst the performance in many
cases is more than acceptable there are many instances where

Table 1: Demonstrator applications and benchmarks used
in our analysis

Language Description
miniFE[5] C++ Unstructured finite element solver

phdMesh[5] C++ Unstructured mesh contact search
AMG[4] C Parallel algebraic multigrid solver

LAMMPS[8] C++ Classical molecular dynamics
LU[2] Fortran 90 LU PDE solver
FT[2] Fortran 90 FFT PDE solver

Graph500[1] C Graph solver
XML Parse Lib[12] C XML parser - serial

the overheads are too significant to be ignored. Specifically,
we demonstrated significant application slowdowns during
the profiling of phdMesh on all core counts and miniFE on
core counts above 64. These cases will largely form the basis
of this paper.

3.2 Applications/Benchmarks
We employ the use of WMTrace on a variety of parallel appli-
cations and benchmarks, illustrated in Table 1, representing
a cross section of languages and scientific disciplines, repre-
senting the interests of various high performance computing
laboratories. All of these applications utilise the Message
Passing Interface (MPI) to achieve parallel execution. Dur-
ing this paper we apply a heavy emphasis to HPC codes,
as they predominantly form the context to surrounding re-
search, though we make an effort to demonstrate the effects
for various scientific domains. As previously discusses the
technique presented is applicable to different types of code,
though we have not performed a wider study and thus can
not comment on performance.

We note that for all the benchmarks a representative prob-
lem set has been used to allow for scaling, and the memory
and time limits of the available compute resource.

As XML Parse Lib is not multithreaded we instead run a
single instance of the problem based on the parsing of a
168 MB XML file.

3.3 Testing Platform
The results presented in this paper are based on the Min-
erva cluster, located at the Centre for Scientific Computing
(CSC) at the University of Warwick. This machine com-
prises 258 dual-socket, hex-core Intel Westmere-EP X5650,
nodes connected via QDR-Infiniband. Each node provides
24GB of system memory (2GB per core). The runs pre-
sented all use the Intel 11.1 compiler toolkit with OpenMPI
1.4.3, compiled with the -O3 optimisation flag and debug-
ging symbols.

3.4 Traversal Frequency
Initially to demonstrate the intensity of traversal we present
findings on the number of instances an application requires
a traversal within a given run. For this we will look at a
selection of different codes which formed the basis of pre-
vious studies; these codes represent a cross section of tool
performance and programming languages. For each code
we indicate how many calls were made and the duration of
un-instrumented runtime to calculate the traversal density.

This will form a basic metric to evaluate the susceptibility
of an application to improved call stack traversal.

Whilst the techniques discussed in this paper are applicable
to all situations with a high density of call stack tracing, we
focus on parallel applications and specifically the strong scal-
ing of applications. Strong scaling is the process of solving
the same problem size on an increased number of processors,
thus reducing the per core computation. In the context of
memory tracing this is crucial, as in general the number
of memory allocations does not reduce at the same rate as
the computation, thus the density of call stack traversals
increases.

Whilst this metric is demonstrated with memory allocations
as the trigger point, it is relevant to all areas where the trig-
ger point can be identified - for example MPI functions for
a communication tracing tool. Analysis of this metric dur-
ing scaling provides a very useful insight into the potential
overheads of tracing with call stack traversal.

The technique could also be applied to interval-driven sam-
pling although the results will differ from event-driven trac-
ing, due to natural clustering of events. Using a time interval
to trigger call stack traversal will naturally create an even
distribution of tracing events throughout the execution. The
technique applied in this paper exploits the natural group-
ing, both in time and location in the CCT to benefit from
large shared prefixes. Time based events are unlikely to gen-
erate call stacks with naturally large shared prefixes due to
the movement in the CCT within that time, thus will not
likely benefit from this technique. Other forms of trigger
events, such as different function calls or hardware signals
would likely share the same clustering effects as the mem-
ory management functions we demonstrate in this paper.
As these clusters will have a naturally higher traversal den-
sity than the code average, we should experience improved
performance and accuracy within them. We expand upon
this clustering in Section 3.5, where we explore the temporal
distribution of allocation evens within different code.

From Table 2 we can clearly see that call stack traversal
density varies between different codes. We also verify our
previous assertion that the density tends to increase as a
code is strong scaled, thus adversely affecting the perfor-
mance of any such analysis tool.

With memory tracing, the density tends to increases during
strong scaling due to a reduction in computation (and there-
fore runtime), not an increase in the number of allocations.
Thus the impact of this density change will have minimal im-
pact on the accuracy of the heuristic. This is due to the fact
that the spatial locality, within the CCT, between successive
events has not changed, but the time between the calls has
decreased. Similarly the time saved by the heuristic will not
vary with any significance during scaling, but rather as the
un-instrumented times fall this time saving will represent an
increased percentage of instrumentation time, thus a larger
impact.

In the case of WMTrace, which generates trace files based
on the events, the impact of this trend is magnified. As
the volume of data generated is directly proportional to the

number of traced events, the increased density will result
in an increased I/O transmission density, which in turn will
contribute to an overall slowdown, but is not the focus of
this study.

3.5 Traversal Temporal Locality
In this Section we further motivate the cause for a heuristic
traversal technique by analysing the distribution of traver-
sal events within normal execution. For this we measure
the time at which an allocation event occurs, and visu-
ally represent the distribution of memory management calls
against time. This representation method allows us to as-
certain more information than simple allocation density, as
discussed previously, as it allows us to visualise allocation
clustering. Whilst our example is based around traversal
events caused by memory events, the technique can be repli-
cated for other trigger events. For example one would expect
similar clustering from the interception of MPI events.

Figure 1 illustrates the distribution of events for miniFE and
phdMesh for single core runs on a reduced data set, showing
the clustering of memory allocation events. From Table 2
we can see that these two codes have significantly different
allocation densities; 1220 events / second and 897747 events
/ second respectively. In the case of miniFE, Figure 1(a), we
see a very natural clustering around five points in the execu-
tion, with varying allocation size. For phdMesh, Figure 1(b),
we see a very different pattern. Due to the excessively high
allocation density there is no real area of clustered alloca-
tions. In part this is due to many objects being allocated
on a per iteration basis within the code, thus there is a con-
stantly high number of allocations. In both cases there are
areas of high density; in miniFE they are clustered, and in
phdMesh they are global, this suggests that potential im-
provements could be made from the heuristic technique.

As discussed previously, the clustering of traversal events
generates small regions of high density, which improves the
performance and accuracy of the heuristic. Whilst the tech-
nique is still applicable to sampling-driven tracing, we lose
this clustering, and thus do not benefit from localised areas
of high density. To see a significant benefit from the heuris-
tic technique applied to a sampling based tracer, you would
need a very small sampling interval, to keep the traversals
as close as possible. Alternatively sampling on hardware
events rather than time intervals would potentially provide
this natural clustering.

4. HEURISTIC TRAVERSAL
The principal of heuristic traversal is that the higher the
density of call stack traversal trigger points, the shorter the
probable distance travelled in the CCT between successive
events.

The implication of this is that sequential events will share a
significant portion of their call stack. Due to the nature of
transitions within the call path tree, differences will occur
at the top of the call stack. We exploit this similarity to
alleviate the need to fully traverse the call stack of the second
event, by ascertaining the point of overlap and assuming
similarity from there on.

To identify the point of intersection between two succes-

Table 2: Call stack traversal density represented as the average number of allocations (Malloc or Calloc) per second of
un-instrumented execution

Core Count
1 2 4 8 16 32

miniFE 1.2x103 3.7x103 1.8x103 6.4x103 1.2x104 1.5x104

phdMesh 9.0x105 2.7x105 6.4x105 1.1x106 1.1x106 8.6x105

AMG 2.1x105 1.1x105 7.8x104 5.1x104 3.7x104 3.3x104

LAMMPS 6.5x100 1.6x103 2.7x103 4.1x103 4.5x103 6.4x103

LU 1.0x10−2 4.6x10−1 1.2x100 3.4x100 9.2x100 1.4x101

FT 6.1x10−1 2.2x100 3.0x100 1.1x101 2.8x101 4.1x101

Graph500 7.7x101 9.5x101 1.9x102 7.1x102 2.8x103 2.9x103

XML Parse Lib 1.6x106 - - - - -

(a) Allocation distribution for miniFE (b) Allocation distribution for phdMesh

Figure 1: Traversal event distribution on miniFE and phdMesh - serial execution

sive call stacks we perform a comparison of the ‘instruction
pointer’ (also known as the ‘program counter’) and the ‘stack
pointer’ for each function in the call stack. The instruction
pointer refers to the function address, which can be resolved
to a function name, and the stack pointer indicates the top
of the stack, for that function, which can be used to simulate
stack size.

Thus when the same function appears in both stack traces,
with an identical stack size, then it is very probable that
the remainder of the stack (the prefix) has not changed, and
thus can be assumed from the previous entries. Whilst this
assumption is not applicable in every case it still results in a
high level of accuracy and a significant performance increase
in many cases.

Figure 2 illustrates the circumstance where a partial traver-
sal of two sequential call stacks can result in a reduction of
traversal depth. Both call stacks share a common prefix,
Function A -> Function B -> Function C. Our aim is to
identify this commonality at the earliest possible point in
this example from the inspection of Function C. To estab-
lish that the call stacks are the same we look at both the
current entry and the stack height. This enables us to elim-
inate false positives like Function F, which appears at the
top of both call stacks, thus perhaps indicating a common
prefix below. In this case it is clear to see that the depth at
this point, shown as X1 and X2 are not the same, thus there
is not a shared prefix at that point. Whereas in the correct
case of Function C, we can clearly see that Y1 and Y2 are
the same, thus correctly identifying our shared prefix.

Bottom

TopCall Stack 1

Function A

Function B

Function C

Function D

Function E

Function F

Call Stack 2

Function A

Function B

Function C

Function G

Function F

X1

Y1

X2

Y2

Figure 2: Call stack comparison for partial reconstruction

In Figure 3 we demonstrate the case of a false positive where
both of our two metrics indicate success, but our key as-
sumption is incorrect. In this case, Function E features in
both call stacks at the same height, which would lead us to
believe that the remaining prefix is shared. This assump-
tion is incorrect, as whilst the two prefixes are similar they
contain a mismatched entry, Function D in call stack 1 and
Function G in call stack 2. The incorrect assumption was
based on the height of the two stacks at Function E be-
ing the same, which in turn implies that Function D and
Function G are the same size.

For this circumstance to have occurred the program must
have unwound the call stack to Function C, then called

Bottom

TopCall Stack 1

Function A

Function B

Function C

Function D

Function E

Function F

Call Stack 2

Function A

Function B

Function C

Function G

Function E

X1

Y1

X2

Y2

Figure 3: Call stack comparison for partial reconstruction
with false positive

Table 3: Overhead analysis of full stack traversal - Slowdown
relative to no stack traversal

Core Count
1 2 4 8 16 32

miniFE 1.00 1.06 1.00 1.03 1.07 1.00
phdMesh 3.51 2.21 2.85 2.98 2.72 2.46
AMG 1.85 1.48 1.30 1.19 1.11 1.05

LAMMPS 1.00 1.02 1.04 1.05 1.05 1.05
LU 1.00 1.00 1.03 1.00 1.03 1.00
FT 1.19 1.00 1.02 1.02 1.46 2.37

Graph500 1.00 1.00 1.00 1.01 1.00 1.00
XML Parse Lib 2.89 - - - - -

Function G which in turn called Function E. The proba-
bility of such a situation occurring is based on the time be-
tween successive traversals, as the smaller the time interval
the smaller the distance travelled in the CCT.

In the above example we made use of a single function differ-
ence, but the reality is slightly more complex. The method
is not only compromised by a single function mismatch, but
also when the sum of the stack sizes of the differing func-
tions are the same in both call stacks. This can mean that
the same functions in a different order, will cause a false
positive.

In the example above referring to functions differing is a fur-
ther oversimplification. A difference in two call stacks may
indicate a difference between two lines within the same func-
tion, rather than the function itself. As we resolve function
pointers to return addresses, as apposed to function names,
we do not distinguish between errors made at a line level or
a function level.

If the stack size is not changed between successive traversals,
then our technique may assume the calls occurred from the
same point within the function. Whilst this is an incorrect
prediction - we rarely analyse call stacks at line level granu-
larity, thus it is of minimal concern, but is still included in
our evaluation metric as a false prediction.

There are techniques to mitigate these false positives for
increased accuracy, but at the cost of some performance,
and this trade-off is discussed in more detail in Section 6.

5. PERFORMANCE AND OVERHEADS

Table 4: Overhead analysis of heuristic stack traversal -
Slowdown relative to no stack traversal

Core Count
1 2 4 8 16 32

miniFE 1.00 1.00 1.01 1.00 1.01 1.00
phdMesh 1.62 1.33 1.49 1.55 1.47 1.39
AMG 1.23 1.13 1.05 1.04 1.00 1.07

LAMMPS 1.00 1.00 1.00 1.00 1.00 1.00
LU 1.00 1.01 1.10 1.00 1.00 1.00
FT 1.00 1.00 1.00 1.00 1.00 1.00

Graph500 1.00 1.00 1.00 1.00 1.00 1.00
XML Parse Lib 2.16 - - - - -

We first motivate the introduction of our call stack traver-
sal technique by analysing the overheads of the existing
methodology. Table 3 presents an analysis of the additional
overhead of stack traversal without any reduction technique.
This method executes a full stack traversal at each trigger
point, in this example Malloc or Calloc events. To establish
these overheads we instrument the code with two different
configurations of WMTrace, which both interpose memory
management functions and output the results to file. For
each configuration we enable stack tracing, and monitor the
difference in runtime, between it and the instrumented time
excluding stack tracing.

As we can see from Table 3 the overhead of the traversals can
be very expensive for some applications. A single core exe-
cution of phdMesh with stack tracing enabled can take 3.5×
longer than an execution excluding stack traversal, similarly
XML Parse Lib runs 2.9× slower under the same conditions.

These overheads represent the relative slowdown of the in-
strumented application using call stack traversal, where 1.00×
represented no slowdown at all, and 2.00× represents the
codes running twice as slow (or 100% slowdown). From Ta-
ble 2 we can compare the overheads with the event densities
of the code and see a strong correlation between density and
overhead, as one would expect.

Some applications do not suffer any observable overhead
from the inclusion of stack traversal. In the case of LU and
FT we attribute this to the very low call stack densities as
shown in Table 2. Other cases the overhead may be mini-
mal due to short call stacks, which are naturally quicker to
traverse. Although the focus of this paper is to minimise
traversal overheads we have included these applications to
give a broad representation of the effects of our technique.
Codes for which there is little motivation for optimisation,
due to minimal overheads, provide an opportunity to evalu-
ate the accuracy of the heuristic.

5.1 Heuristic Overheads
To analyse the performance gains of our heuristic technique
we repeated the above experiment, but this time using the
heuristic stack traversal. Table 4 illustrates the overheads
of our technique when compared to an instrumented run
without stack traversals. When compared with Table 3 we
can see that the overheads of some codes are significantly
reduced.

Whilst we experience good performance improvements in
some circumstances this is not guaranteed. This technique

Table 5: Percentage of positive call stacks with heuristic
stack traversal

Core Count
1 2 4 8 16 32

miniFE 0.54 66.16 73.37 16.02 13.34 11.09
phdMesh 85.31 83.79 81.48 80.55 79.21 77.58
AMG 4.06 4.95 7.51 7.29 53.96 10.45

LAMMPS 76.03 98.09 98.09 98.09 98.09 98.09
LU 84.62 96.95 97.41 91.39 94.59 69.91
FT 59.52 31.65 32.04 18.42 12.78 12.20

Graph500 85.23 85.54 86.20 85.74 86.62 87.46
XML Parse Lib 66.66 - - - - -

has obvious limitations, as not only can it be incorrect if
two paths are similar, but the additional work can cause a
slowdown over full traversal. If traversal events are sparse,
with large jumps in the CCT, then there is unlikely to be
much commonality between the two traces. In this scenario
the effort of looking for a shared prefix may outweigh any
benefit from finding it.

5.2 Heuristic Validation
The overheads of our heuristic technique, presented in Sec-
tion 5.1, present one aspect of the story. As previously dis-
cussed, our technique is fallible, and whilst it can perform
quicker than full traversal it does not guarantee the correct
result. In this section we analyse the percentage of correctly
predicted call stacks across all of the processes of execution.

Table 5 compares every heuristically generated call stack
with the fully traversed “correct” call stack. As we can see
the percentage of correct predictions varies across different
codes, and scales. Whilst this is in part related to event
density, there are other contributing factors.

For codes where low validation is experiences, the perfor-
mance displayed in Table 4 is not representative as it is
generally faster to make a false prediction than an correct
one.

For some codes, for example LAMMPS, we experience very
good accuracy (a mean accuracy of 94.4%), and also see a
slight reduction in overheads. As the overheads of tracing
this application were already low, in part due to the low
traversal event density, it is likely that for each comparison
there was such minimal overlap in call stack prefix that there
was very little time saved and few false positives. Whilst
this is a positive result, our aim is to speed up the worst
performing codes.

If we take the case of AMG we see a very poor accuracy (6.5%).
Whilst the performance increase of the technique paints an
attractive picture the accuracy is too low to make the tech-
nique applicable to this code, in its current format.

The accuracy of the heuristic on codes such as FT is inline
with our hypothesis that a low traversal event density can
result in reduced ability to correctly estimate shared pre-
fixes.

Additionally the validation in Table 5 presents a worst case
scenario for the heuristic technique, as it incorporates ‘drift’.
Drift is where an error in the prefix propagates through the

successive call stacks un-noticed. There are many techniques
to tackle this problem and limit the effect of drift. Seeding
predictions from an accurate call stack will reduce the op-
portunities for drift, and better facilitate its identification.
This ensures accurate predictions which can increase the va-
lidity of future predictions. Alternatively enforcing a full
traversal at either a regular interval, or after large gaps be-
tween traversal events, can force the program to seed from
a correct prefix.

When we eliminate drift, by seeding each traversal from the
correct previous call stack, we experience a significant im-
provement in accuracy for some applications. The average
accuracy for AMG rose from 6.5% to 99.8% suggesting that if
drift is eliminated we will experience higher levels of accu-
racy for this code.

6. PERFORMANCE ACCURACY TRADE-
OFF

In Section 5 we presented an overview of both the perfor-
mance gains and the accuracy of the heuristic technique pre-
sented in this paper. Whilst the technique is designed to im-
prove call stack traversal overheads it does so at the cost of
perfect accuracy. At each traversal a best estimate is made
as to the commonality between the current call path and
the previously traversed one. As outlined in Section 4, this
technique can generate false positives when discrepancies be-
tween the underlying call stacks are unidentifiable at such a
high level. To increase accuracy we must include more error
checking, which will have an additional overhead associated
with it. In this section we build upon the basic heuristic
technique to include a simple accuracy enhancement, and
evaluate it for accuracy versus runtime tradeoffs.

6.1 Second Match
The fundamental basis of the heuristic technique identifies
similarity in call stack return addresses for a corresponding
match in stack size. The performance gain from the tech-
nique is dependent on the identification of a large shared
call stack prefix. The existence of a large shared prefix is
an indication of a small transition in the CCT. When er-
rors in comparison occur they stem from similarities in the
underlying call stack, but without an absolute match being
present. This scenario is demonstrated in Figure 4, where
a second match would identify a problem that a first match
would not.

Our simple accuracy improvement requires a second match.
This modification requires two successive entries in the call
stack to match both on return location and stack size. When
a (previously identified) positive is identified this new method
must traverse one level deeper to confirm. When a false pos-
itive is identified you must continue to traverse until another
match is found. Whilst this is likely to result in slower per-
formance than the original heuristic in the majority of cases
there are circumstances where it will afford both an accu-
racy and performance gain. As the accuracy of predictions
increase, it can become quicker, in some circumstances, to
find the true intercept, as there may be little commonality
between the previous false prediction and the current one.

The impact of this enhancement is that it is far less likely

Bottom

TopCall Stack 1

Function A

Function B

Function C

Function D

Call Stack 2

Function A

Function C

Function B

Function D

X1
Y1

X2
Y2

Figure 4: False positive identified by second match criteria

Table 6: Overhead analysis of second match heuristic stack
traversal - Slowdown relative to no stack traversal

Core Count
1 2 4 8 16 32

miniFE 1.00 1.00 1.00 1.00 1.02 1.00
phdMesh 1.75 1.16 1.61 1.05 1.24 1.50
AMG 1.39 1.22 1.14 1.17 1.00 1.01

LAMMPS 1.00 1.00 1.00 1.00 1.00 1.00
LU 1.00 1.00 1.02 1.02 1.00 1.00
FT 1.00 1.00 1.00 1.00 1.00 1.00

Graph500 1.00 1.00 1.00 1.00 1.03 1.01
XML Parse Lib 2.60 - - - - -

to return false positives, where there is a small modification
in the call path, generally in the form of a function swap.
Again we rely on spatial-temporal locality to assume that
the majority of transitions in the CCT will be at the leaves
(suffix) rather than the root (prefix). Thus a second point
of validation at the suffix can prove crucial in accuracy im-
provements.

Figure 4 demonstrates the case there the order of Function
B andFunction C are rotated. Thus the top of the stack
remains the same, Function D, and the stack size is unaf-
fected. With a first match the technique would not iden-
tify this problem, but by requiring the next entry to also
match, we identify this problem. Obviously this technique
only identifies errors in a single entry lower than the previ-
ous match, and this function rotation could have occurred
at any location in the call stack, rather than just near the
top.

6.1.1 Second Match Overheads and Validation
Table 6 illustrates the overheads of the second match heuris-
tic stack traversal, over a an instrumented execution without
stack traversal. When compared with Table 4 we can see a
reduction in performance, attributed to the additional work
of validation.

The additional overheads are a cost incurred for an increase
in accuracy. Table 7 illustrates the new accuracy rates for
the second match heuristic traversal technique. For the mi-
nor increase in overheads we experience a significant im-
provement in accuracy, when compared to Table 5.

By comparing the results of Tables 7 and 7 we get an idea of
the real improvement gained by enforcing this second match
restriction. These results show that the second match pol-
icy significantly increased the accuracy of predictions for a
selection of applications, inline with our prediction of accu-
rate if drift is eliminated. The additional overheads of this

Table 7: Percentage of positive call stacks with second match
heuristic stack traversal

Core Count
1 2 4 8 16 32

miniFE 99.45 99.75 99.78 99.92 99.91 99.87
phdMesh 100.00 99.04 99.75 95.80 95.90 94.12
AMG 99.99 99.99 99.97 99.94 54.18 77.24

LAMMPS 97.49 98.16 98.16 98.15 98.15 98.16
LU 100.00 97.29 97.51 88.76 95.89 73.75
FT 64.29 58.86 39.83 58.23 56.65 56.85

Graph500 86.03 86.87 87.84 87.81 87.80 88.16
XML Parse Lib 100.00 - - - - -

technique for AMG are minimal, and still present a significant
improvement over the full stack traversal technique.

On average our second match heuristic is only 0.4% slower
than first match, for a mean increase in accuracy of 28.1%.
In some cases second match is faster that first match, such
as certain executions of phdMesh, this is due to the reduced
effort to find the correct call stack when seeded from the
correct previous call stack. Due to the significantly higher
accuracy of second match, each prediction is more likely
to be bases on a correct value, which can reduce the work
involved in finding the pointer of interception between the
two call stacks.

Given the high accuracy of this second match technique (on
average 89.1%) we do not implement any further drift elim-
ination techniques, though we do anticipate a periodic full
stack traversal could be beneficial in many circumstances.
Whilst we exploit the spatiotemporal locality of trade events,
we do not apply a threshold on the use of the heuristic. To
achieve increased accuracy this full stack traversal could be
timed to occur after a duration of inactivity, thus to seed
predictions in a new cluster from a correct trace.

7. CONCLUSION
In this paper we have used a heuristic-based technique to im-
prove the performance of call stack traversal. Using a metric
for traversal density, the average number of trace events per
second of execution, we identify codes which are amenable
to our heuristic-driven technique. We extended the traversal
density metric to consider the clustering of memory alloca-
tions, showing that clusters of allocations are likely to have
very similar call stack prefixes, ensuring the high perfor-
mance of our technique.

The accuracy of our technique is varied, with accuracy of less
than 10% in some cases, and an average of 58%. Using a
‘second match’ policy on call stack comparisons our heuristic
technique is able to achieve a significantly higher lever of
accuracy than a single match policy, resulting in an average
accuracy of 89%.

Across the codes we found our technique to improve the
performance of stack traversal by an average of 12.5% for
first match and 12.1% for second match, over the full stack
traversal technique. The most significant performance gains
came from applications which suffered most from full call
stack traversal. We experienced a 46.5% and 49.9% improve-
ment over full stack traversal for first and second matches
respectively for phdMesh.

Future Work
In future work, we plan to integrate validation techniques
similar to those presented in [13] into the tracing component
of our memory toolkit. We also plan to migrate the tool
to the StackwalkerAPI. This would improve the flexibility
of the tool, as well as allowing direct comparison between
other call stack traversal techniques.

8. REFERENCES
[1] D. A. Bader, J. Berry, S. Kahan, R. Murphy, J. Riedy,

and J. Willcock. ‘The Graph 500 List: Graph 500
Reference Implementations’. Graph500, 2010.
http://www.graph500.org/reference.html (20 June
2012).

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks -
Summary and Preliminary Results. In Proceedings of
the 1991 ACM/IEEE International Conference on
Supercomputing, SC ’91, pages 158–165, New York,
NY, USA, 1991. ACM.

[3] N. Froyd, J. Mellor-Crummey, and R. Fowler.
Low-overhead call path profiling of unmodified,
optimized code. In ICS ’05: Proceedings of the 19th
annual international conference on Supercomputing.
ACM Request Permissions, June 2005.

[4] V. E. Henson and U. M. Yang. BoomerAMG: A
Parallel Algebraic Multigrid Solver and
Preconditioner. Applied Numerical Mathematics,
41(1):155 – 177, 2002.

[5] M. A. Heroux, D. W. Doer̈ıňĆer, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving Performance via Mini-applications
(Mantevo Overview). Technical Report
SAND2009-5574, Sandia National Laboratories,
Albuquerque, NM, USA, September 2009.

[6] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred
call path profiling. In OOPSLA ’09: Proceeding of the
24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications.
ACM Request Permissions, Oct. 2009.

[7] O. Perks, D. Beckingsale, S. Hammond, I. Miller,
J. Herdman, A. Vadgama, L. He, and S. Jarvis.
Towards Automated Memory Model Generation Via
Event Tracing. The Computer Journal, 2012 in press.

[8] S. Plimpton. Fast Parallel Algorithms for Short-range
Molecular Dynamics. J. Comput. Phys., 117:1–19,
March 1995.

[9] M. Serrano and X. Zhuang. Building Approximate
Calling Context from Partial Call Traces. In CGO ’09:
Proceedings of the 7th annual IEEE/ACM
International Symposium on Code Generation and
Optimization, pages 221–230. IEEE Computer Society,
Mar. 2009.

[10] W. N. Sumner, Y. Zheng, D. Weeratunge, and
X. Zhang. Precise calling context encoding. In ICSE
’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering,
pages 525–534. ACM Request Permissions, May 2010.

[11] Z. Szebenyi, T. Gamblin, M. Schulz, B. R.
de Supinski, F. Wolf, and B. J. N. Wylie. Reconciling
Sampling and Direct Instrumentation for Unintrusive
Call-Path Profiling of MPI Programs. In IPDPS ’11:
Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, pages 640–651.
IEEE Computer Society, May 2011.

[12] Unknown. XML Parse Library, 2010.
http://xmlparselib.sourceforge.net/ (20 June
2012).

[13] J. Whaley. A portable sampling-based profiler for Java
virtual machines. In JAVA ’00: Proceedings of the
ACM 2000 conference on Java Grande. ACM, June
2000.

