SUPER (a,d)-EDGE-ANTIMAGIC TOTAL LABELING OF SILKWORM GRAPH

Dian Anita Hadi ${ }^{19}$, Dafik ${ }^{\mathbf{2 0}}$, Slamin 21

Abstract

An (a, d)-edge-antimagic total labeling of G is a one-to-one mapping f taking the vertices and edges onto $\{1,2,3, \ldots, p+q\}$ Such that the edge-weights $w(u v)=f(u)+f(v)+f(u v)$, uv $\in E(G)$ form an arithmetic sequence $\{a, a+d$, $a+2 d, \ldots, a+(q-1) d\}$, where first term $a>0$ and common difference $d \geq 0$. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we will study a super edge-antimagic total labelings properties of connective $S w_{n}$ graph. The result shows that a connected Silkworm graph admit a super (a, d)-edge antimagic total labeling for $d=0,1,2$. It can be concluded that the result of this research has covered all the feasible n, d.

Key Words: (a, d)-edge-antimagic total labeling, super (a, d)-edge-antimagic total labeling, Silkworm graph.

INTRODUCTION

In mathematics and computer science, graph theory is used to model pairwise relations between objects from a certain collection. A "graph" in this context refers to a collection of vertices or 'nodes' and a collection of edges that connect pairs of vertices. A graph may be undirected, it means for two vertices u, v the edge $u v$ $=$ edge $v u$, or may be directed from one vertex to another. In this study we focus for undirected graph, and how to assign label on either vertex and edge.

A labeling of a graph is any mapping graph that sends some set of graph elements to a set of positive integers. If the domain is the vertex-set or the edge-set, the labelings are called, respectively, vertex labelings or edge labelings. Moreover, if the domain is $V(G) \cup E(G)$ then the labelings are called total labelings. We define the edge-weight of an edge $u v \in E(G)$ under a total labeling to be the sum of the vertex labels corresponding to vertices u, v and edge label corresponding to edge $u v$. If such a labeling exists then G is said to be an (a, d)-edge-antimagic total graph. Such a graph G is called super if the smallest possible labels appear on the vertices. Thus, a super (a, d)-edge-antimagic total graph is a graph that admits a super (a, d)-edge-antimagic total labeling.

[^0]This paper we investigate the existence of super (a, d)-edge-antimagic total labelings of Silkworm graph, and concentrate on the connected Silkworm graph denoted by $S w_{n}$ with vertex set $V(S w n)=\left\{x_{i}, y_{i}, z_{j} ; 1 \leq i \leq n, 1 \leq j \leq n+\right.$ $1\}$ and $E\left(S w_{n}\right)=\left\{x_{i} z_{i}, x_{i} z_{i+1}, z_{i} z_{i+1}, y_{i} z_{i}, y_{i} z_{i+1} ; 1 \leq i \leq n\right\} \cup\left\{y_{i} x_{i+1} ; 1 \leq i \leq n-\right.$ $1\}$. Thus $|V(S w n)|=p=3 n+1$ and $|E(S w n)|=q=6 n-1$.

Figure 1: Silkworm graph $S w n$

RESEARCH METHODS

Research methods a super (a, d)-edge-antimagic total labeling of Silkworm graph are deductive axiomatic and the pattern recognition. The research techniques are as follows: (1) calculate the number of vertex p and size q on the graph $S w_{n}$; (2) determine the upper bound for values of d; (3) determine the EAVL (edgeantimagic vertex labeling) of $S w_{n}$; (4) if the label of $E A V L$ is expandable, then we continue to determine the bijective function of $E A V L$; (5) label the graph $S w_{n}$ with SEATL (super-edge antimagic total labeling) with feasible values of d and (6) determine the bijective function of super-edge.

Lemmas

We start this section by a necessary condition for a graph to be super (a, d)-edge antimagic total, providing a least upper bound for feasible values of d. This lemma can be found in [12]

Lemma 1. If a (p, q)-graph is super (a, d)-edge antimagic total then $d \leq$ $\frac{2 p+q-5}{q-1}$

Proof. Assume that a (p, q)-graph has a super (a, d)-edge antimagic total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ and the edge-weights $\{a, a+d, a+$ $2 d, \ldots, a+(q-1) d\}$. The minimum possible edge-weight in the labeling f is at least $1+2+p+1=p+4$. Thus, $a \geq p+4$. On the other hand, the maximum
possible edge-weight is at most $(p-1)+p+(p+q)=3 p+q-1$. So we obtain $a+$ $(q-1) d \leq 3 p+q-1$ which gives the desired upper bound for the difference d.

Another important lemma obtainded by Figueroa-Centeno et al [6], gives an easy way to find a total labeling for super edge-magicness of graph.

Lemma 2. A (p, q)-graph G is super edge-magic if and only if there exists a bijective function $\boldsymbol{f}: V(G) \rightarrow\{1,2, \ldots, p\}$ such that the set $S=\{\boldsymbol{f}(u)+\boldsymbol{f}(v):$ $u v \in E(G)\}$ consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with magic constant $a=p+q+s$, where $s=\min (S)$ and $S=\{a-(p+1), a-(p+2), \ldots, a-(p+q)\}$.

The two above lemma will be used for develop theorem 1.

RESULT AND DISCUSSIONS

If Silkworm graph has a super (a, d)-edge-antimagic total labeling then, for $p=3 n+1$ and $q=6 n-1$, it follows from Lemma 1 that the upper bound of d is $d \leq 2$ or $d \in\{0,1,2\}$. The following lemma describes an (a, 1)-edge-antimagic vertex labeling for Silkworm graph.

Lemma 3 If $n \geq 2$ then the Silkworm graph $S w_{n}$ has an (3, 1)-edge-antimagic vertex labeling.

Proof. Define the vertex labeling $f_{1}: S w_{n} \rightarrow\{1,2, \ldots, 3 n+1\}$ in the following way:
$f_{1}\left(x_{i}\right)=3_{i}-1$, for $1 \leq i \leq n$
$f_{1}\left(y_{i}\right)=3_{i}$, for $1 \leq i \leq n$
$f_{1}\left(z_{j}\right)=3_{j}-2$, for $1 \leq j \leq n+1$
The vertex labeling is a bijective function. The edge-weights of $S w_{n}$, under the labeling f_{1}, constitute the following sets
$w f_{1}\left(x_{i} z_{i}\right)=6 i-3$, for $1 \leq i \leq n$
$w f_{1}\left(y_{i} z_{i}\right)=6 i-2$, for $1 \leq i \leq n$
$w f_{1}\left(z_{i} z_{i+1}\right)=6 i-1$, for $1 \leq i \leq n$
$w f_{1}\left(x_{i} z_{i+1}\right)=6 i$, for $1 \leq i \leq n$
$w f_{1}\left(y_{i} z_{i+1}\right)=6 i+1$, for $1 \leq i \leq n$
\qquad
$w f_{1}\left(y_{i} x_{i+1}\right)=6 i+2$, for $1 \leq i \leq n-1$

It is not difficult to see that the set $w f_{1}=\{3,4,5, \ldots, 6 n+1\}$ consists of consecutive integers. Thus f_{1} is a $(3,1)$-edge antimagic vertex labeling.

Figure 2: Vertex labeling (3,1)-edge antimagic base on $S w 5$

Theorem 1 If $n \geq 2$ then the graph $S w n$ has a super $(9 n+3,0)$-edge-antimagic total labeling and a super ($3 n+5,2$) -edge-antimagic total labeling.
Proof. Case 1. for $d=0$
The edge label of $S w_{n}$ for $d=0$ are:
$f_{2}\left(x_{i} z_{i}\right)=9 n-6 i+6$, for $1 \leq i \leq n$
$f_{2}\left(y_{i} z_{i}\right)=9 n-6 i+5$, for $1 \leq i \leq n$
$f_{2}\left(z_{i} z_{i+1}\right)=9 n-6 i+4$, for $1 \leq i \leq n$
$f_{2}\left(x_{i} z_{i+1}\right)=9 n-6 i+3$, for $1 \leq i \leq n$
$f_{2}\left(y_{i} z_{i+1}\right)=9 n-6 i+2$, for $1 \leq i \leq n$
$f_{2}\left(y_{i} x_{i+1}\right)=9 n-6 i+1$, for $1 \leq i \leq n-1$

We have proved that the vertex labeling f_{1} is a $(3,1)$-edge antimagic vertex labeling. With respect to Lemma 1 , by completing the edge labels $p+1, p+2, \ldots, p+q$, we are able to extend labeling f_{1} to a super ($a, 0$)-edge-antimagic total labeling.

We can find the total labeling $W f_{2}$ with summing $w f_{1}=w f_{2}$ with edge label f_{2}. It is not difficult to see that the set $W f_{2}=\{9 n+3,9 n+3, \ldots, 9 n+3\}$ contains an arithmetic sequence with the first term $9 n+3$ and common difference 0 . Thus f_{2} is a super $(9 n+3,0)$-edge-antimagic total labeling.

Proof. Case 2. For $d=2$
If $f_{2}(z)$ is edge label of $S w_{n}$ for $d=0$, and $f_{3}(z)$ is edge label of $S w_{n}$ for $d=2$, we can determine:

$$
\begin{aligned}
f_{3}(s) & =2|p|+|q|+1-f_{2}(s) \\
& =2(3 n+1)+(6 n-1)+1-f_{2}(s) \\
& =12 n+2-f_{2}(s)
\end{aligned}
$$

Then, if we subtitute the edge label of $d=0$ to the formula, so we get the edge label of $d=2$:
$f_{3}\left(x_{i} z_{i}\right)=3 n+6 i-4$, for $1 \leq i \leq n$
$f_{3}\left(y_{i} z_{i}\right)=3 n+6 i-3$, for $1 \leq i \leq n$
$f_{3}\left(z_{i} z_{i+1}\right)=3 n+6 i-2$, for $1 \leq i \leq n$
$f_{3}\left(x_{i} z_{i+1}\right)=3 n+6 i-1$, for $1 \leq i \leq n$
$f_{3}\left(y_{i} z_{i+1}\right)=3 n+6 i$, for $1 \leq i \leq n$
$f_{3}\left(y_{i} x_{i+1}\right)=3 n+6 i+1$, for $1 \leq i \leq n-1$

The total labeling f_{3} is a bijective function from $V(S w n) \cup E(S w n)$. The edgeweights of $S w_{n}$, under the labeling f_{2}.

$$
\begin{aligned}
& W f_{3}\left(x_{i} z_{i}\right)=3 n+12 i-7, \text { for } 1 \leq i \leq n \\
& W f_{3}\left(y_{i} z_{i}\right)=3 n+12 i-5, \text { for } 1 \leq i \leq n \\
& W f_{3}\left(z_{i} z_{i+1}\right)=3 n+12 i-3, \text { for } 1 \leq i \leq n \\
& W f_{3}\left(x_{i} z_{i+1}\right)=3 n+12 i-1, \text { for } 1 \leq i \leq n \\
& W f_{3}\left(y_{i} z_{i+1}\right)=3 n+12 i+1, \text { for } 1 \leq i \leq n \\
& W f_{3}\left(y_{i} x_{i+1}\right)=3 n+12 i+3, \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

From the first and second case we can conclude that if $n \geq 2$ then the graph $S w n$ has a super $(9 n+3,0)$-edge-antimagic total labeling and a super $(3 n+5,2)$-edge antimagic total labeling, for $n \geq 2$.

Figure 3: SEATL Silkworm graph $S w_{5}$ for $d=2$

Theorem 2 If $n \geq 2$ then the graph $S w_{n}$ has a super $(6 n+4,1)$-edge-antimagic total labeling.

Proof. let us define the vertex labeling of Silkworm graph $S w n$ as $f_{4}\left(x_{i} z_{i}\right)=$ $f_{1}\left(x_{i} z_{i}\right), f_{4}\left(y_{i} z_{i}\right)=f_{1}\left(y_{i} z_{i}\right), f_{4}\left(z_{i} z_{i+1}\right)=f_{1}\left(z_{i} z_{i+1}\right), f_{4}\left(x_{i} z_{i+1}\right)=f_{1}\left(x_{i} z_{i+1}\right)$, $f_{4}\left(y_{i} z_{i+1}\right)=f_{1}\left(y_{i} z_{i+1}\right)$, and $f_{4}\left(y_{i} x_{i+1}\right)=f_{1}\left(y_{i} x_{i+1}\right)$ then the edge labeling f_{4} for super ($a, 1$)-edge total labeling can be defined as follow:
$f_{4}\left(x_{i} z_{i}\right)=6 n-3 i+4$, for $1 \leq i \leq n$
$f_{4}\left(y_{i} z_{i}\right)=6 n-3 i+3$, for $1 \leq i \leq n$
$f_{4}\left(z_{i} z_{i+1}\right)=6 n-3 i+2$, for $1 \leq i \leq n$
$f_{4}\left(x_{i} z_{i+1}\right)=9 n-3 i+3$, for $1 \leq i \leq n$
$f_{4}\left(y_{i} z_{i+1}\right)=9 n-3 i+2$, for $1 \leq i \leq n$
$f_{4}\left(y_{i} x_{i+1}\right)=9 n-3 i+1$, for $1 \leq i \leq n-1$

The edge-weight of $S w_{n}$ under the labeling f_{4} can be determine by adding the edgeweight of EAVL and the edge labeling by f_{4}. Namely $W f_{4}=w f_{1}+f_{4}$. We can have the following:
$W f_{4}\left(x_{i} z_{i}\right)=6 n+3 i+1$, for $1 \leq i \leq n$
$W f_{4}\left(y_{i} z_{i}\right)=6 n+3 i+2$, for $1 \leq i \leq n$
$W f_{4}\left(z_{i} z_{i+1}\right)=6 n+3 i+3$, for $1 \leq i \leq n$
$W f_{4}\left(x_{i} z_{i+1}\right)=9 n+3 i+1$, for $1 \leq i \leq n$
$W f_{4}\left(y_{i} z_{i+1}\right)=9 n+3 i+2$, for $1 \leq i \leq n$
$W f_{4}\left(y_{i} x_{i+1}\right)=9 n+3 i+3$, for $1 \leq i \leq n-1$

We can state all the above edge-weights in a set $W f_{4}=\{6 n+4,6 n+5, \ldots, 12 n+$ $2\}$.It can be seen that the edge-weights for a consecutive arithmetic sequence. The Silkworm graph $S w_{n}$ admit a super ($6 n+4,1$)-edge-antimagic total labeling.

Figure 4: SEATL Silkworm graph $S w_{5}$ for $d=1$

CONCLUSION

Finally, we can conclude that the graph $S w_{n}$ admit a super (a,d)-edge antimagic total labeling for all feasible d and $n \geq 2$.

REFERENCES

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.

Dafik, Alfin Fajriatin, Kunti Miladiyah. 2012. Super antimagicness of a Well Defined Graph. (Saintifika, vol. 14 No 1 hal 106-118).

Griffin, C. 2012. Graph Theory. United Stated: Creative Commons Attribution Noncommercial-Share.
J. A. Galian. 2009. A Dynamic Survey of Graph Labelling. [serial on line]. http://www. combinatorics.org/Surveys/ds6.pdf. [17 Agustus 2010]
J. A. Gallian. 2013. A Dinamic Survey Of Graph Labeling.Jember: Gallian Survey.124-128.
J. Baugh, Richard. 2009. Discrete Mathematics, seventh edition. New Jersey: Pearson Education, Inc.
K.A. Sugeng, M. Miller and M. Baca, Super edge-antimagic total labelings, Utilitas Math., 71 (2006), 131-141.

Lee, Ming-ju.2013. On Super (a,1)-edge Antimagic Total Labelings Of Subdifition Of Stars .Miaoli: Jen-Teh Junior Collage Of Madicine.1-10.
M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and
antimagic graph labelings, Utilitas Math. 60 (2001), 229-239.
R.M. Figueroa-Centeno, R. Ichishima, F.A. Muntaner-Batle, The place of super edge-magic labelings among ather classes of labelings, Discrete Mathematics, 231 (2001), 153-168.
R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms- (2000), 179-189.

[^0]: ${ }^{19}$ Student of Mathematics Education Department Jember University
 ${ }^{20}$ Lecturer of Mathematics Education Department Jember University
 ${ }^{21}$ Lecturer of Information System Department Jember University

