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Abstract. An  (a, d)-edge-antimagic  total   labeling  of G  is a  one-to-one  mapping 

𝑓 taking the vertices and edges onto {1, 2, 3, . . . , p + q} Such that the edge-weights 

w(uv)  = 𝑓(u)+  𝑓(v)+𝑓(uv), uv ∈ E(G)  form an arithmetic sequence {a, a+d, 

a+2d, . . . , a+ (q − 1)d}, where first term  a > 0 and  common  difference d ≥ 0.  

Such a graph G is called super if the smallest possible labels appear on the vertices.  

In this paper we will study a super edge-antimagic total labelings properties of 

connective Swn graph.   The result shows that a connected Silkworm graph admit a 

super (a, d)-edge antimagic total labeling for d = 0, 1, 2. It can be concluded that 

the result of this research has covered all the feasible n, d. 
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INTRODUCTION 

In mathematics and computer science, graph theory is used to model pairwise 

relations between objects from a certain collection.  A ”graph”  in this context refers 

to a collection of vertices  or ’nodes’ and a collection of edges that connect  pairs  of 

vertices.  A graph may  be undirected, it means  for two vertices  u, v the  edge uv  

= edge vu,  or may  be directed  from one vertex  to another. In this study we focus 

for undirected graph, and how to assign label on either vertex and edge. 

A labeling of a graph is any mapping graph that sends some set of graph 

elements to a set of positive integers.  If the domain is the vertex-set or the edge-set, 

the labelings are called, respectively, vertex labelings or edge labelings.  Moreover, 

if the domain is 𝑉(𝐺) ∪ 𝐸(𝐺) then the labelings are called total labelings.  We define 

the edge-weight of an edge 𝑢𝑣 ∈  𝐸(𝐺)  under a total labeling to be the sum of the 

vertex labels corresponding to vertices u, v and edge label corresponding to edge 

uv.  If such a labeling exists then G is said to be an (a, d)-edge-antimagic total 

graph.  Such a graph G is called super if the smallest possible labels appear on the 

vertices.  Thus, a super (a, d)-edge-antimagic total graph is a graph that admits a 

super (a, d)-edge-antimagic total labeling. 
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This  paper  we investigate the  existence  of super  (a, d)-edge-antimagic total  

labelings of Silkworm graph,  and concentrate on the connected  Silkworm graph  

denoted  by Swn with  vertex  set  𝑉(𝑆𝑤𝑛) = {𝑥𝑖, 𝑦𝑖, 𝑧𝑗 ;  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 +

1} and 𝐸(𝑆𝑤𝑛) = {𝑥𝑖𝑧𝑖 , 𝑥𝑖𝑧𝑖+1, 𝑧𝑖𝑧𝑖+1, 𝑦𝑖𝑧𝑖, 𝑦𝑖𝑧𝑖+1; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖𝑥𝑖+1; 1 ≤ 𝑖 ≤ 𝑛 −

1}.  Thus |V (Swn)| = p = 3n + 1 and |E(Swn)| = q = 6n − 1. 

 

 

Figure 1: Silkworm graph Swn 

 

RESEARCH METHODS 

Research methods a  super (a, d)-edge-antimagic total labeling of Silkworm 

graph are deductive axiomatic and the pattern recognition.  The research techniques 

are as follows: (1) calculate  the  number  of vertex  p and  size q on the  graph  Swn; 

(2) determine the upper bound for values of d; (3) determine  the EAVL (edge-

antimagic vertex labeling) of Swn; (4) if the label of EAVL is expandable, then we 

continue to determine  the bijective function  of EAVL; (5) label the  graph  Swn  

with  SEATL (super-edge  antimagic  total labeling) with feasible values of d and (6) 

determine  the bijective function of super-edge.          □ 

Lemmas 

We  start this  section  by  a  necessary  condition  for a  graph  to  be  super  

(a, d)-edge antimagic total,  providing a least upper bound for feasible values of d. 

This lemma can be found in [12] 

Lemma 1.  If a (p, q)-graph is super (a, d)-edge antimagic total then 𝑑 ≤

 
2𝑝+𝑞−5

𝑞−1  

Proof.  Assume  that a (p, q)-graph  has  a super (a, d)-edge  antimagic  total  

labeling 𝑓: 𝑉 (𝐺) ∪ 𝐸(𝐺) →  {1, 2, . . . , 𝑝 + 𝑞} and the edge-weights {𝑎, 𝑎 + 𝑑, 𝑎 +

2𝑑, . . . , 𝑎 + (𝑞 − 1)𝑑}. The  minimum  possible edge-weight in the labeling f is at  

least 1 + 2 + p + 1 = p + 4. Thus, a ≥ p + 4. On the other hand, the maximum 
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possible edge-weight is at most (p − 1) + p + (p + q) = 3p + q − 1. So we obtain a + 

(q − 1) d ≤  3p + q − 1 which gives the desired upper bound for the difference d.     □             

Another important lemma obtainded by Figueroa-Centeno et al [6], gives an 

easy way to find a total labeling for super edge-magicness of graph. 

Lemma 2.  A (p, q)-graph G is super edge-magic if and only if there exists a 

bijective function  𝑓: 𝑉 (𝐺)   →  {1, 2, . . . , 𝑝} such that the set 𝑆 = {𝑓(𝑢) + 𝑓(𝑣) ∶

 𝑢𝑣 ∈ 𝐸(𝐺)} consists of q consecutive integers.   In such a case, f extends to a super 

edge-magic labeling of G with magic constant a = p + q + s, where s = min(S) and 

S = {a − (p +1), a − (p + 2), . . . , a − (p + q)}. 

The two above lemma will be used for develop theorem 1. 

 

RESULT AND DISCUSSIONS 

If Silkworm graph  has a super (a, d)-edge-antimagic total  labeling then,  for 

p = 3n + 1 and  q = 6n − 1,  it  follows from  Lemma  1 that the  upper  bound  of 

d is d  ≤ 2 or 𝑑 ∈  {0, 1, 2}.  The following lemma describes an (a, 1)-edge-antimagic 

vertex labeling for Silkworm graph. 

Lemma 3 If n ≥ 2 then the Silkworm graph Swn has an (3, 1)-edge-antimagic 

vertex labeling. 

Proof. Define the vertex labeling 𝑓1  : Swn →  {1, 2, . . . , 3𝑛 +  1} in the following 

way: 

𝑓1(𝑥𝑖) = 3𝑖  −  1, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛  

𝑓1(𝑦𝑖) =  3𝑖, 𝑓𝑜𝑟 1 ≤  𝑖 ≤  𝑛 

𝑓1(𝑧𝑗) = 3𝑗 − 2, 𝑓𝑜𝑟 1 ≤ 𝑗 ≤  𝑛 + 1 

The vertex labeling is a bijective function. The edge-weights of Swn, under the 

labeling 𝑓1, constitute the following sets 

𝑤𝑓1(𝑥𝑖𝑧𝑖)     = 6𝑖 −  3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑤𝑓1(𝑦𝑖𝑧𝑖)     = 6𝑖 −  2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑤𝑓1(𝑧𝑖𝑧𝑖+1) = 6𝑖 −  1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑤𝑓1(𝑥𝑖𝑧𝑖+1) = 6𝑖 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑤𝑓1(𝑦𝑖𝑧𝑖+1) = 6𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  
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𝑤𝑓1(𝑦𝑖𝑥𝑖+1) = 6𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

It is not difficult to see that the set 𝑤𝑓1 = {3, 4, 5, . . . , 6𝑛 + 1} consists of 

consecutive integers. Thus  𝑓1 is a (3, 1)-edge antimagic vertex labeling.                        □    

                

 

Figure 2: Vertex labeling (3,1)-edge antimagic  base on Sw5 

 

Theorem 1 If 𝑛 ≥  2 then the graph Swn has a super (9𝑛 + 3, 0)-edge-antimagic 

total labeling and a super (3𝑛 + 5, 2) −edge-antimagic total labeling. 

Proof. Case 1.  for d = 0 

The edge label of Swn for d = 0 are: 

𝑓2(𝑥𝑖𝑧𝑖)     = 9𝑛 − 6𝑖 + 6, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓2(𝑦𝑖𝑧𝑖)     = 9𝑛 − 6𝑖 + 5, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓2(𝑧𝑖𝑧𝑖+1) = 9𝑛 − 6𝑖 + 4, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓2(𝑥𝑖𝑧𝑖+1) = 9𝑛 − 6𝑖 + 3 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓2(𝑦𝑖𝑧𝑖+1) = 9𝑛 − 6𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓2(𝑦𝑖𝑥𝑖+1) = 9𝑛 − 6𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

We have proved that the vertex labeling  𝑓1  is a (3, 1)-edge antimagic vertex labeling. 

With respect to Lemma 1, by completing the edge labels 𝑝 + 1, 𝑝 + 2, . . . , 𝑝 + 𝑞, we 

are able to extend  labeling 𝑓1    to a super (a, 0)-edge-antimagic total  labeling. 

We can find the total labeling  𝑊𝑓2  with summing  𝑤𝑓1  = 𝑤𝑓2  with edge label  𝑓2 .  

It is not difficult to see that the set  𝑊𝑓2 = {9𝑛 + 3, 9𝑛 + 3, . . . , 9𝑛 + 3} contains 

an arithmetic sequence with the first term  9𝑛 + 3 and common difference 0. Thus  

𝑓2  is a super (9𝑛 + 3, 0)-edge-antimagic total labeling. 
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Proof. Case 2.  For d =2 

If 𝑓2(𝑧) is edge label of Swn for d = 0, and 𝑓3(𝑧) is edge label of Swn for d = 2, 

we can determine: 

𝑓3(𝑠) = 2|𝑝| + |𝑞| + 1 − 𝑓2(𝑠)  

= 2(3𝑛 + 1) + (6𝑛 − 1) + 1 − 𝑓2(𝑠)  

= 12𝑛 + 2 − 𝑓2(𝑠)  

Then, if we subtitute the edge label of 𝑑 = 0 to the formula, so we get the edge 

label of 𝑑 = 2: 

𝑓3(𝑥𝑖𝑧𝑖)     = 3𝑛 + 6𝑖 − 4, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓3(𝑦𝑖𝑧𝑖)     = 3𝑛 + 6𝑖 − 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓3(𝑧𝑖𝑧𝑖+1) = 3𝑛 + 6𝑖 − 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓3(𝑥𝑖𝑧𝑖+1) = 3𝑛 + 6𝑖 − 1 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓3(𝑦𝑖𝑧𝑖+1) = 3𝑛 + 6𝑖, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓3(𝑦𝑖𝑥𝑖+1) = 3𝑛 + 6𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

The total labeling 𝑓3  is a bijective function from 𝑉(𝑆𝑤𝑛) ∪ 𝐸(𝑆𝑤𝑛). The edge-

weights of Swn, under the labeling 𝑓2.           □ 

𝑊𝑓3(𝑥𝑖𝑧𝑖)     = 3𝑛 + 12𝑖 − 7, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓3(𝑦𝑖𝑧𝑖)     = 3𝑛 + 12𝑖 − 5, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓3(𝑧𝑖𝑧𝑖+1) = 3𝑛 + 12𝑖 − 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓3(𝑥𝑖𝑧𝑖+1) = 3𝑛 + 12𝑖 − 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓3(𝑦𝑖𝑧𝑖+1) = 3𝑛 + 12𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓3(𝑦𝑖𝑥𝑖+1) = 3𝑛 + 12𝑖 + 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

From the first and second case we can conclude that if 𝑛 ≥ 2 then the graph Swn 

has a super (9𝑛 + 3, 0)-edge-antimagic total labeling and a super (3𝑛 + 5, 2)-edge 

antimagic total labeling, for 𝑛 ≥ 2 .                                                                                                      
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Figure 3: SEATL Silkworm graph 𝑆𝑤5 for d = 2 

 

Theorem 2 If 𝑛 ≥ 2 then the graph 𝑆𝑤𝑛 has a super (6𝑛 + 4, 1)-edge-antimagic 

total labeling. 

Proof. let us define the vertex  labeling of Silkworm graph  Swn as 𝑓4(𝑥𝑖𝑧𝑖) =

𝑓1(𝑥𝑖𝑧𝑖), 𝑓4(𝑦𝑖𝑧𝑖) = 𝑓1(𝑦𝑖𝑧𝑖), 𝑓4(𝑧𝑖𝑧𝑖+1) = 𝑓1(𝑧𝑖𝑧𝑖+1), 𝑓4(𝑥𝑖𝑧𝑖+1) = 𝑓1(𝑥𝑖𝑧𝑖+1),  

𝑓4(𝑦𝑖𝑧𝑖+1) = 𝑓1(𝑦𝑖𝑧𝑖+1), and 𝑓4(𝑦𝑖𝑥𝑖+1) = 𝑓1(𝑦𝑖𝑥𝑖+1) then  the  edge labeling 𝑓4 for 

super  (a, 1)-edge total  labeling can be defined as follow: 

𝑓4(𝑥𝑖𝑧𝑖)     = 6𝑛 − 3𝑖 + 4, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓4(𝑦𝑖𝑧𝑖)     = 6𝑛 − 3𝑖 + 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓4(𝑧𝑖𝑧𝑖+1) = 6𝑛 − 3𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓4(𝑥𝑖𝑧𝑖+1) = 9𝑛 − 3𝑖 + 3 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓4(𝑦𝑖𝑧𝑖+1) = 9𝑛 − 3𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑓4(𝑦𝑖𝑥𝑖+1) = 9𝑛 − 3𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 

 

The edge-weight of Swn under the labeling  𝑓4  can be determine by adding the edge- 

weight of EAVL and the edge labeling by 𝑓4.  Namely 𝑊𝑓4 = 𝑤𝑓1 + 𝑓4. We can have 

the following: 

𝑊𝑓4(𝑥𝑖𝑧𝑖)     = 6𝑛 + 3𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓4(𝑦𝑖𝑧𝑖)     = 6𝑛 + 3𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓4(𝑧𝑖𝑧𝑖+1) = 6𝑛 + 3𝑖 + 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓4(𝑥𝑖𝑧𝑖+1) = 9𝑛 + 3𝑖 + 1, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓4(𝑦𝑖𝑧𝑖+1) = 9𝑛 + 3𝑖 + 2, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛  

𝑊𝑓4(𝑦𝑖𝑥𝑖+1) = 9𝑛 + 3𝑖 + 3, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1 
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We can state all the above edge-weights in a set 𝑊𝑓4 = {6𝑛 + 4, 6𝑛 + 5, . . . , 12𝑛 +

 2}.It can be seen that the edge-weights for a consecutive arithmetic sequence.  The 

Silkworm graph Swn admit a super (6n + 4, 1)-edge-antimagic total labeling.         □  

 

Figure 4: SEATL Silkworm graph  𝑆𝑤5  for d = 1 

 

CONCLUSION  

Finally, we can conclude that the graph Swn admit a super (a,d)-edge  antimagic  

total labeling for all feasible d and 𝑛 ≥ 2. 

 

REFERENCES 

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad.  Math.  Bull. 13 

(1970), 451–461. 

 

Dafik, Alfin Fajriatin, Kunti  Miladiyah.  2012. Super antimagicness of a Well Defi- 

ned Graph. (Saintifika, vol.14 No 1 hal 106-118). 

 

Griffin, C. 2012. Graph Theory.  United Stated: Creative Commons Attribution 

Noncommercial-Share. 

 

J. A.  Galian.  2009. A Dynamic Survey of Graph Labelling. [serial on line]. 

http://www. combinatorics.org/Surveys/ds6.pdf. [17 Agustus 2010] 

 

J. A.   Gallian.   2013.  A Dinamic Survey Of Graph Labeling.Jember:   Gallian 

Survey.124-128. 

 

J.  Baugh,   Richard.   2009.  Discrete Mathematics, seventh edition.  New Jersey: 

Pearson Education, Inc. 

 

K.A. Sugeng, M. Miller and M. Baca, Super edge-antimagic total labelings, Utilitas 

Math., 71 (2006), 131-141. 

 

Lee, Ming-ju.2013.  On Super (a,1)-edge  Antimagic Total Labelings Of Subdifition 

Of Stars .Miaoli:  Jen-Teh Junior  Collage Of Madicine.1-10. 
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