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Abstract -- The most popular filtering method used for solving a Simultaneous Localization and 
Mapping is the Extended Kalman Filter. Essentially, it requires prior stochastic knowledge both the 
process and measurement noise statistic. In order to avoid this requirement, these noise statistics have 
been defined at the beginning and kept to be fixed for the whole process. Indeed, it will satisfy the 
desired robustness in the case of simulation. Oppositely, due to the continuous uncertainty affected by 
the dynamic system under time integration, this manner is strongly not recommended. The reason is, 
improperly defined noise will not only degrade the filter performance but also might lead the filter to 
divergence condition. For this reason, there has been a strong manner well-termed as an adaptive-
based strategy that commonly used to equip the classical filter for having an ability to approximate the 
noise statistic. Of course, by knowing the closely responsive noise statistic, the robustness and 
accuracy of an EKF can increase. However, most of the existed Adaptive-EKF only considered that 
the process and measurement noise statistic are characteristically zero-mean and responsive 
covariances. Accordingly, the robustness of EKF can still be enhanced. This paper presents a 
proposed method named as a MAPAEKF-SLAM algorithm used for solving the SLAM problem of a 
mobile robot, Turtlebot2. Sequentially, a classical EKF was estimated using Maximum a Posteriori. 
However, due to the existence of unobserved value, EKF was also smoothed one time based on the 
fixed-interval smoothing method. This smoothing step aims to keep-up the derivation process under 
MAP creation. Realistically, this proposed method was simulated and compared to the conventional 
one. Finally, it has been showing better accuracy in terms of Root Mean Square Error (RMSE) of both 
Estimated Map Coordinate (EMC) and Estimated Path Coordinate (EPC).        
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INTRODUCTION 

In a complex environment, a map is useful 
for autonomous robot navigation. However, the 
robot has no knowledge about the environment 
at the beginning. Therefore, to appropriately 
perform the navigation tasks, the autonomous 
robot should have the ability to build its map and 
simultaneously locate its current position. It is 
well-known as simultaneous localization and 
mapping (SLAM), which was first introduced in 

1988 [1][2] . Recently, the SLAM-based mobile 
robot navigation has intensively received much 

attention because of some challenging factors 
such as continuous uncertainty, system 
complexity, inaccurate system model, limited 
prior information, noise statistics of the process 
and measurement, computational cost and filter 
divergence which are required to be addressed 

[3, 4, 5]  . An effort familiarly used to obtain an 
effective solution for the SLAM problem is 
proposed the probability-based that has been 
effectively and commonly used by others 
researchers such as Extended Kalman Filter [6, 
7, 8].  
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Extended Kalman Filter (EKF) has 
become a popular choice to solve SLAM 
problems. Weingarten and Siegwart [9] used EKF 
for solving the full SLAM problem of AUV in 
especially estimating the local path traveled by 
the robot while forming the scan as well as its 
uncertainty and keeping the scans pose. 
Weingarten and Siegwart utilized an EKF as the 
SLAM-algorithm to track the robot when it moves 
and to incrementally update the Symmetric and 
Perturbation model (SPmodel) of the 3D 

reconstructed stochastic map [9] . Lemaire, 
Lacroix, and Solà adopted EKF to solve the 
bearing only 3D SLAM by estimating the 
parameters used for landmark initialization 
process such as the visual point features tracked 

in the sequence of the acquired images [10] . 
Moreover, regarding survey consequences, 
Dissanayake, Newman, Clark, Durrant-Whyte, 
and Csorba have proven the SLAM problems 
with the performance of EKF by developing zero 
uncertainty of estimated map and absolute 

accuracy of the map [11] .  Huang, Mourikis, and 
Roumeliotis have demonstrated the 
improvement by analyzing the issue of filter 
consistency of extended Kalman filter based 

SLAM, from an observability perspective [12] . By 
examining the observability properties of the 
nonlinear SLAM system model with the 
linearized error-state model employed in the 
EKF. 

The observable subspace of the standard 
EKF is constantly of higher dimension than the 
observable subspace of the underlying nonlinear 
system. Ahmad and Namerikawa declared that 
EKF based mobile robot localization with 
intermittent measurements is examined by 
analyzing the measurement innovation 

characteristics [13] . The uncertainties bound the 
estimation by analyzing the measurement 
innovation to preserve good estimations, 
although sometimes measurement data are 
missing.  They also have proposed the 
theoretical analysis of the EKF to show the 
situations during the problem that occurred. 
Besides, the Jacobian transformation is 
considered one of the main factors to affect the 
estimation performance. In addition, initial state 
covariance, process, and measurement noises 
must be less to execute better estimation results. 
Wang, Wu, Zhou, and He have used State 
Transformation Extended Kalman Filter (ST-
EKF) mechanization method to resolve the 
inconsistency problem of EKF, which is 
improving the propagation rates of the system 

matrix and the error covariance matrix [14] . 
However, these proposed methods cannot 
estimate the noise statistics. Besides that, an 

EKF has complications of a slow convergence 
rate, low accuracy, and poor numerical stability 

as mentioned by Gadsdenin 2011 [3, 5, 15] . For 
this reason, the adaptive-based approaches 
have been popularly attempted and utilized 
nowadays. 

Akhlaghi, Zhou, and Huan have proposed 
the AEKF, which can approximate covariance 
matrices of the process and measurement noise 
statistics. It was conducted by referring to 
innovation and residual for improving the 

dynamic state estimation accuracy of EKF [16] . 
Jetto, Longhi, and Venturini have proposed an 
adaptive EKF for optimizing the linearization 

between KF and EKF [17] . They believed that it 
could be conducted by adjusting the input and 
measurement noise covariance matrices. 
Chatterjee and Matsuno have proposed the 
AEKF based on neuro-fuzzy to estimate the 

elements of covariance matrices [18] . It aims to 
reduce the mismatch between the theoretical 
and actual covariance of the innovation 
sequences. Moreover, Yuzhen, Quande, and 
Benfa have proposed AEKF by using the Sage-
Husa time-varying noise estimator and Taylor 
series of sampling time in AEKF to estimate 

observation noise in real-time [19] . It aims to 
overcome the linearization error and enhance 
environmental adaptability.  

Similarly, to provide proper filtering 
method-based solution for the SLAM problem, 
this paper also presents a proposed method 
named as A MAPAEKF based SLAM algorithm 
(MAPAEKF-SLAM Algorithm). Initially, the 
classical EKF was estimated by utilizing the 
creation of Maximum a Posterior (MAP) aims to 
approximate the posterior values of both the 
process and measurement noise statistic with 
their corresponding covariances. A smoothed 
EKF estimate value continuously tuned the 
suboptimal estimated values. It is obtained 
based on a fixed-point smoothing method as 
utilized by Caballero, Hermoso, Jiménez, and 

Linares in 2003 [20]  as well as by Gao, Li, Zhou, 

and Li in 2015 [21]  . Next, the estimated values 
were mathematically derived to obtain the time-
varying noise statistic. However, due to the 
complexity of deriving these parameters, some 
certain approach was also involved. 

Moreover, the proposed method is 
approached to address the SLAM problem of the 
wheeled mobile robot. Then it was utilized and 
validated under the robot navigation 
performance. Adaptively, the role of Maximum a 
Posterior was used to estimate the unknown 
parameter of a classical EKF for both the 
process and measurement noise statistic with 
their corresponding covariances. Henceforth, it 
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is termed as MAPAEKF-SLAM. It was simulated 
and compared with the classical algorithm in 
terms of RMSE of estimating both path and map 
namely, EPC and EMC, respectively. The 
comparative simulated result has been 
realistically proving that the proposed method 
has good and better accuracy, stability and 
effectiveness.   

The rest parts of this paper are organized 
as follows. Section II contains a classical EKF. 
Section III presents the adaptive EKF with 
process derivation of the first solution given by 
MAP, improved/modified EKF, weight exponent 
method. Section IV presents the MAPAEKF-
SLAM algorithm which is expanded with the 
discussion of the motion model, direct point-
based observation, and inverse point-based 
observation. Section V presents some 
comparative results and discussion. Section VI 
presents the conclusion. 
 
METHOD 
Classical Extended Kalman Filter (EKF)  

Through this paper, EKF is considered as 
the main filtering method used to estimate the path 
traveled by the robot when it moves. Besides that, 
it is utilized to locate all the features on the 
environment at the same time. Since the 
localization of the robot is only for recording the 
current pose of the robot and single-location of the 
feature/landmark, it can declare that this work is 
focused on solving the online SLAM problem.    
 
Considering the nonlinear system has a model as 
shown below 

 (1) 

where  refers to discrete-time index,  is 
state vector,  is control vector,  is 
measurement vector,  and  are 
small adaptive process and measurement noise, 

respectively. While,  and  are the nonlinear 
function and measurement model, respectively. 
The characteristic of this dynamic model (1) is 
described as follows. 

 (2) 

where  is Kronecker delta function. Whereas,  
and  are mean and covariance term, 
respectively. (2) illustrates that the mean values 
of the process and measurement noise are 
nonzero mean but instead  and , respectively. 
At this point, the classical of EKF can be 
presented as follows. 

 (3) 

 (4) 

 (5) 
 (6) 

 (7) 

 (8) 

 (9) 
 (10) 

where  and  refer to the process and 
measurement covariance matrix, respectively. 
While  refers to a Jacobian matrix of the 

transition function  with respect to prior state 

vector  and  refers to a Jacobian matrix 

of the measurement function  concerning 

predicted state vector .  
 
MAP based Adaptive EKF (MAPAEKF) 

Classical EKF requires the known noise 
statistic and an accurate system model. 
Unfortunately, the noise is partially known, and 
the model is might change because of continued 
uncertainty in time integration. Thus, an 
improvement of EKF is required as presented in 
this paper. An adaptive filter strategy approached 
to the classical EKF aims to provide the ability to 
approximate the noise statistic under time 
changes. It can be described as follows 
 

• Suboptimal MAP of Adaptive EKF 
Initially, a classical EKF was estimated by 

using MAP creation, as mentioned on [21, 22, 23, 

24, 25]. Assuming that, the unknown parameters 
are the process  and measurement  noise 
statistics with their covariance  and , 
respectively. Moreover, since  and  are 
considered be a positive definite symmetric 
matrix, then the estimated value of , , , and 

 can be obtained by calculating the maximum 
value of the following objective function  as 
described below 

 (11) 

where ] and . Referring 
to Bayes rule, (11) can be reformulated as follows 

 (12) 

Since  plays no role in optimization, we have 

 (13) 

Assuming that  can be obtained from 
the prior information means it can be regarded as 
being a constant. Then the posteriori distribution 

 can be calculated by 
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multiplying  with 
 as derived below 

 
Note that  and  refer to  and , respectively. 
Whereas,  and  refer to  and , 
respectively. 

Since (1) is the first-order Markov Process, 
then  can be reformulated as 
follows 

 (14) 

then by assuming that (14) is normally distributed 
then it yields 

(15) 

Similarly, for p[Z_k|X_k,q,r,Q,R] we have 

 (16) 

Then assuming that (16) is Gaussian distribution 
then 

 

(17) 

Then by multiplying (15), (17) and 
 we have the following equation 

 

(18) 
Next, by supposing that 

 (19) 

Then (18) can be simplified as follows 

(20) 

At this point, the estimated unknown parameter 
can be calculated by taking the logarithm of the 
objective function , calculating the first derivative 
of logarithm  with respect to , , , and  and 
equating its derived to be zero. These steps can 
be derived as follows. 

Since the logarithm of  is 

(21) 

then , , ,and  are 

 (22) 

 (23) 

(24) 

 (25) 
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The complicated multistep smoothing term  
and  in (21) - (25) might cause inefficiency 
of the MAP estimate. Therefore, to find the 
conventional and efficient recursive form the 
simplification is needed. Note that the recursive 
update process only utilizes the estimated value 
at time k-1 and k, hence the simplification can be 
conducted by replacing  with  in (22) 
and (24) and  with  in (22) - (25). Therefore, 
the suboptimal of MAP noise estimator can be 
expressed as follows 

 (26) 

 (27) 

 (28) 

 (29) 

As can be analyzed from the sequence equations 
above that the estimated value of   is not 
provided obviously by classical EKF. Therefore, 
modifying the original forms in (3)-(10) is required 
aims to compute the noise statistics estimator 
effectively 
 
Modified and Improved EKF 

The process of modifying the EKF can be 
done by calculating the one-step smoothing of the 
EKF gain and its corresponding estimate value 
using the fixed point smoothing algorithm [20], 

[21], [26] . This process can be summarized as 

follows 

 (30) 

 (31) 

 (32) 
 (33) 

 (34) 

 (35) 

 (36) 

considering that the prior state  in (36) 
replaces the term of   in the normal EKF, 
the rest part of modified EKF are chained as 
follows 

 (37) 
 (38) 

 (39) 

 (40) 

 (41) 

 (42) 
 (43) 

Now, the estimate value  and  can be 
adopted from (36) and (42), respectively. 
 
Time-Varying Noise Statistic of EKF Based on 
MAP 

As can be seen above that all the 
suboptimal values under the mathematical 
derivation of MAP creation are clear. Now, both 
the mean of the process and measurement noise 
statistic and their corresponding covariance in 
(26)-(29), respectively, can be derived as follows. 
First, by substituting (42) to (26), then 

(44) 
At this point, it is obvious that the corresponding 
estimated covariance of  is 

(45) 

Now, by first substituting (42) into (27), it yields 

 (46) 

then by deriving and recalling the definition of  in 
(39), it is obtained 
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 (47) 

Obviously, the estimated corresponding 
covariance of measurement noise is then  

(48) 

Note that the existence of  on the original 
function of  can be ignored at this estimation 
process because it is known. Besides that, it does 
not play any role in the optimization as well.   
Finally, the recursive noise statistic and their 
corresponding covariance can be presented as 
follows 

 (49) 

 (50) 

However, to obtain the corresponding recursive 
covariance of (49) and (50), some derivation is 
required. This process can be presented as 
follows 
Since the update covariance (43) is originally 
adopted from the following Joseph form    

 (51) 

then the recursive of the form (45) can be 
alternatively reformatted as follows (see appendix 
A) 

 (52) 

Similarly, for the recursive covariance of the 
measurement noise statistic can be obtained as 
follows (see appendix B)  

(53) 

A MAP Based AEKF-SLAM Algorithm 
The proposed method is applied for solving 

the SLAM problem of wheeled mobile robots. 
Henceforth it is termed as AEKF-SLAM Algorithm 
Based on MAP-WE. Basically, it can be solved by 
locating the current robot position and gathering 
the information of features in a certain 
environment. Therefore, the movement and 
observation method is required. Both are 
discussed in the following subsection. 
 
Motion Model 

 (54) 

By supposing that, the robot is simulated and 
initially located in a certain planar environment. 
Then the kinematic configuration of the robot 
movement can be shown in Figure 1. 
 

 

Figure 1. Kinematic Configuration 
 

Now, considering  and  are the spatial position 
and  is the orientation or the robot heading, then 
the state vector of the robot position can be 
expressed by . The robot moves 
based on the odometry and differential steering 
system, then since the control vector contains 
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two-element vectors represented by  
for right wheel  and left wheel velocity , then 
the motion model is expressed as follows 

 (55) 

 

 (56) 

 

where  is discrete time index,  represent 

the radius caused by the motion,   is the width 
of the robot, and   and   are linear and 
nonlinear motion model respect to the measured 
velocity . The motion is unpredictable 
since the small noise follows the motion control. 
For this reason, the different types of motion 
models are introduced. Thus, the measured right-
wheel  and left-wheel velocity   can be 
regarded as follows with the existence of the 
small perturbation  

 (57) 

 (58) 

where   is the moving factor and   is the turning 
factor. 
 
Direct Point-Based Observation 

Considering that, the state vectors are 
composed of the robot  and landmark state 

. Therefore, a full state vector is 

 for   

and  represent the -th landmark position for 
. 

 
Figure 2. New Detected Landmark 

 
Figure 2 illustrates when the robot’s laser scanner 

detects the -th landmark. Since  
refer to the position of the laser scanner, the direct 
point-based observation model can be calculated 
as follows 

 (59) 

 

 (60) 

where  is the displacement of laser scanner and 
  and  are the distance and bearing sensed 

by laser scanner. Next, by considering that the 
measurement is followed by small perturbation 

 then we have 

 (61) 

Now it can be noted that since (54) - (61) are 
gained, both state transition in (30) and (37) and 
measurement function in (32) and (38) are 
satisfied. 
 
Inverse Point-Based Observation 

A new observed landmark should be 
initialized and added to the state vector . It can 
be conducted by using the inverse observation 
concept. It initiates the mapping process by 
utilizing the information of the current robot and 
landmark position. It can be written as follows 

 (62) 
 

(63) 
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At this point, the completeness of MAPAEKF and 
SLAM are fully derived. Moreover, the flowchart 
of the whole process above can be graphically 
concluded as shown in Figure 3. 
 

 

Figure 3. MAPAEKF-SLAM Algorithm 
 

RESULTS AND DISCUSSION 
In order to verify the effectiveness and 

accuracy, the proposed method was realistically 
simulated. It was compared with the classical 
algorithm, EKF-SLAM algorithm, in terms of 
RMSE of EPC and EMC. Initially, some 
parameters related to the robot were defined as 
follows 

 

Note that these parameters are adopted from the 
real robot platform that is Turtlebot2. 

Furthermore, the initial state and its error 
covariance were also defined as follows 

 

According to the initial noise statistic, different 
SLAM-based algorithm was performed and 
compared. They can be presented as follows 
 
1st Test 

The initial process and measurement noise 
statistic are considered as follows 

 

 

Then the result of the EKF-SLAM and MAPAEKF-
SLAM algorithm can be compared based on 
Figure 4. 
 

 
Figure 4. SLAM-Algorithm Performance (1st Test) 

 
Figure 4 illustrates the performance of 

EKF and MAPAEKF. They are applied to an 
autonomous wheeled mobile robot for solving the 
SLAM problem. It depicts that the MAPAEKF-
SLAM gives a better solution proven by the 
successful in following the reference path. For 
more detail, it can be analyzed by the following 
result. 

 

 
Figure 5. RMSE of Estimated Path (1st Test) 

 
Figure 5 shows the RMSE of different 

performed algorithm in estimating the path. 
Comparing to the conventional approach, 
MAPAEKF-SLAM algorithm has a better accuracy 
pointed by the smaller RMSE in almost all 
benchmarks. Furthermore, an effort to provide 
more comparative result, the different RMSE of 
estimated map is also presented as follows. 
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Figure 6. RMSE of Estimated MAP (1st Test) 

 
Figure 6 shows the different quality of EKF 

and MAPAEKF-SLAM algorithm in estimating the 
location of the landmark. According to this figure, 
the proposed method shows better performance in 
the estimated map for x-coordinate and y-
coordinate. To confirm this statement, Table 1 is 
presented 

 
Table 1. Different SLAM Algorithm in Term of 

Root Mean Square Error of Estimated Path and 
Map 

SLAM 
Alg. 

RMSE of Estimated Path 
Coordinate 

RMSE of 
Estimated Map 

Coordinate 

x y  x y 

EKF 9.2529 10.825 0.1041 8.0529  10.686 

AEKF 8.3448 9.1613 0.1010 8.0533 9.5750 

           
                 

2nd Test 
Relatively, the small noise statistic both the 

process and measurement are unknown. For this 
reason, their initial predetermined value might be 
either small or large. Thus, the second case with 
the increment on those values was considered as 
well. It aims to validate the suitability of the 
proposed method for the dynamic system with the 
large uncertainty and unavoidable noise of the 
sensor and actuator. The initial process and 
measurement noise are considered as follows 

 

 

Like the previous experiment, the general 
performance of the EKF and MAPAEKF-SLAM 
algorithm is evaluated from the following graphical 
performance. 
 

 
Figure 7. SLAM-Algorithm Performance (2nd Test) 
 

Figure 7 depicts that the increment of the 
initial noise statistic does not affect the stability of 
MAPAEKF-SLAM. Therefore, it can be noted that 
the proposed method provides a more stable filter 
compared with the EKF-SLAM algorithm. For the 
2nd Test, the EKF and MAPAEKF-SLAM are also 
performed and compared in terms of RMSE. It is 
depicted in Figure 8.  
 

 
Figure 8. RMSE of Estimated Path (2nd Test) 

 

 
Figure 9. RMSE of Estimated MAP (2nd Test) 

 
According to Figure 8, the MAPAEKF-

SLAM algorithm shows its effectiveness in 
locating the current robot position. It is proven by 
the smaller RMSE for almost all the benchmark. 
Then, it can be noted that the accuracy of the 
MAPAEKF-SLAM algorithm is guaranteed even 
though there exists a noise statistic increment.  



SINERGI Vol. 24, No. 1, February 2020: 37-48 

 

46  H. Suwoyo et al., A MAPAEKF-SLAM Algorithm with Recursive Mean and Covariance of … 
 

Additionally, the result of the estimated map is also 
presented as shown in Figure 9. 

Similarly, Figure 8 shows that the 
MAPAEKF-SLAM has a better solution of 
estimating the map for x-coordinate and y-
coordinate significantly. Therefore, it can be noted 
that the MAPAEKF-SLAM algorithm performed 
well in estimating the landmark. It is confirmed by 
Table 2. 
 

Table 2. Different SLAM Algorithm in Term of 
Root Mean Square Error of Estimated Path and 

Map (2nd Test) 

SLAM 
Alg. 

RMSE of Estimated Path 
Coordinate 

RMSE of 
Estimated Map 

Coordinate 

x y  x y 

EKF 7.6909  8.9144 0.1013 6.8211  8.9208 

AEKF 4.8565 3.9445  0.1009 7.5220 5.3381 

                          

Table.2 shows clearly that the MAPAEKF-SLAM 
algorithm provides a stable filter. Additionally, 
according to the result of the 1st and 2nd Test 
presented above, it can be noted that the 
MAPAEKF-SLAM has better quality in providing 
solutions under noise statistics increment.  
 

CONCLUSION 
This paper presents a proposed method 

termed as the MAPAEKF-SLAM algorithm. The 
contributions can be summarized as follows: 
estimating the noise statistic; improving the 
normal EKF based on one-step smoothing 
method; deriving the suboptimal estimate values 
under the creation of Maximum a Posteriori 
(MAP), the proposed method has been regarded 
to be able to solve SLAM problem even when the 
unknown noise statistic is large. Based on the 
compared result and discussion presented in the 
previous section, its robustness and effectiveness 
have been validated.  
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APPENDIX | Mathematical Derivation of The 
Process and Measurement Noise Statistic 
 
 

Appendix A 

 (A1) 
Alternatively, it can be rewritten as followed
 
 

 (A2) 

Now it is clear that (A2) contains . Moreover, the 

expectation of  is . Therefore, 

the derivation of suboptimal Q can be 
mathematically derived as follows 
 

 (A3) 

Then by substituting (31) and substituting the 
complete form into (45), it yields 

 (A4) 

 
Appendix B 

 (B1) 

Since  is partially reversed to the 

original form before taking the expectation of , it 
is obvious that the following form is the alternative 
equation of (B1) 

 

 (B2) 

Then by substituting (B2) into (48), it yields 

 (B3) 
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 (B4) 

Note that the time index of  is the 
representation of  out of the summation 
operation. It can be simply represented as  as 
well. 
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