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Number of cycles in the graph of 312-avoiding permutations

Richard Ehrenborg, Sergey Kitaev∗ and Einar Steingŕımsson

Abstract

The graph of overlapping permutations is defined in a way analogous to the De Bruijn graph
on strings of symbols. That is, for every permutation π = π1π2 · · ·πn+1 there is a directed
edge from the standardization of π1π2 · · ·πn to the standardization of π2π3 · · ·πn+1. We give
a formula for the number of cycles of length d in the subgraph of overlapping 312-avoiding
permutations. Using this we also give a refinement of the enumeration of 312-avoiding affine
permutations and point out some open problems on this graph, which so far has been little
studied.

1 Introduction and preliminaries

One of the classical objects in combinatorics is the De Bruijn graph. This is the directed graph
on vertex set {0, 1, . . . , q − 1}n, the set of all strings of length n over an alphabet of size q, whose
directed edges go from each vertex x1 · · ·xn to each vertex x2 · · ·xn+1. That is, there is a directed
edge from the string x to the string y if and only if the last n− 1 coordinates of x agree with the
first n− 1 coordinates of y.

The De Bruijn graph has been much studied, especially in connection with combinatorics on
words, and one of its well known properties (see for instance [10, page 126]) is the fact that its
number of directed cycles of length d, for d ≤ n, is given by

1

d

∑

e|d

µ (d/e) qe, (1.1)

where the sum is over all divisors e of length d, and where µ denotes the number theoretic Möbius

function. Recall that µ(n) is (−1)k if n is a product of k distinct primes and is zero otherwise.
A natural variation on the De Bruijn graphs is obtained by replacing words over an alphabet

by permutations of the set of integers {1, 2, . . . , n}, where the overlapping condition determining
directed edges in De Bruijn graphs is replaced by the condition that the head and tail of two per-
mutations have the same standardization, that is, that their letters appear in the same order of size.
This graph of overlapping permutations, denoted G(n), has a directed edge for each permutation
π ∈ Sn+1 from the standardization of π1π2 · · ·πn to the standardization of π2π3 · · ·πn+1. As an
example, there is a directed edge from 2341 to 3412 in G(4) labeled 24513, since the standardiza-
tions of 2451 and 4513 are 2341 and 3412, respectively. In fact, between these two vertices there is
another directed edge labeled 34512. The simple case of n = 2 is illustrated in Figure 1. Note that,
apart from the path and cycle graphs mentioned in Section 3, all graphs in this paper are directed,
although we do not explicitly refer to them as directed graphs.
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Figure 1: The graph G(2) of overlapping permutations.

The graph G(n) appeared in [4] in connection with universal cycles on permutations. It has also
appeared in [7], where it was used as a tool in determining the asymptotic behavior of consecutive
pattern avoidance, and in [2], where it is called the graph of overlapping patterns (see also [11,
Section 5.6]).

What is the number of directed cycles in this graph G(n), that is, the analogue to the question
for which Equation (1.1) is the answer. This is a natural question which does not seem to have
been studied so far. We have not been able to solve that problem (and we do not recognize
the associated number sequences). We do here, however, solve that problem when the graph is
restricted to permutations of length n avoiding the pattern 312, that is, permutations containing
no three letters the first of which is the largest and the second of which is the smallest. We prove
in Theorem 5.2 that the number of directed cycles of length d in the restriction of the graph is

1

d

∑

e|d

µ (d/e)

(
2e

e

)
, (1.2)

for d not exceeding n. Note the similarity between this and the expression in Equation (1.1): the
power qe in (1.1) is replaced here by the central binomial coefficient

(
2e
e

)
.

It is easy to see, due to straightforward symmetries, that permutations avoiding a particular
one of the patterns 132, 213 and 231 yield a graph isomorphic to the one for 312, which is the
representative we have chosen. It is also easy to see that permutations avoiding 123 (or, equivalently,
321) give rise to a nonisomorphic graph. For this latter case we have no solution for the number of
cycles, and we do not recognize the number sequences counting the cycles in that graph.

Using similar techniques, we prove that the number of 312-avoiding affine permutations in S̃d

with k cut points is given by the binomial coefficient
(
2d−k−1
d−1

)
. This refines a result of Crites [6]

who showed that the number of 312-avoiding affine permutations is
(
2d−1
d−1

)
. As a corollary to our

results we show that each affine permutation has a cut point or is, in other words, decomposable.
The connection between cycles in the graph of overlapping permutations and affine permutations

goes through bi-infinite sequences. A bi-infinite sequence (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct
real numbers yields a bi-infinite walk where the ith edge is given by the standardization of f =
(f(i), f(i+1), . . . , f(i+n)), that is, the unique permutation of {1, 2, . . . , n+1} whose letters appear
in the same order of size as the numbers in f . This walk is a closed walk of length d if the sequence
is periodic, in the sense that f(i) < f(j) if and only if f(i+d) < f(j+d). Thus, infinite d-periodic
sequences correspond to d-cycles.

The paper is organized as follows. In Section 2 we introduce some definitions related to pattern
avoidance, affine permutations and bi-infinite sequences. The last of these play an important
role in the proof of the main result, as do ordinary and cyclic compositions of an integer, which
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are introduced in Section 3. In Section 4 we give results on the number of affine 312-avoiding
permutations with a given number of cut points and show that every such permutation does have
a cut point. In Section 5 we present the main result, about the number of d-cycles in G(n, 312)
and subsequently give a bijection that proves this, in Sections 6 and 7. Finally, in Section 8, we
list several open problems in this area.

2 Pattern-avoiding permutations, affine permutations and bi-infinite

sequences

We first introduce some formal definitions that are needed later on.
For a permutation x = x1 · · ·xn consisting of distinct real numbers, let Π(x) denote the stan-

dardization of x, also known as the reduced form of x, that is, the unique permutation π = π1 · · ·πn
in the symmetric group Sn whose elements have the same relative order as those in x. In other
words, xi < xj if and only if πi < πj for all 1 ≤ i < j ≤ n and π is built on the set {1, 2, . . . , n}.
For example, Π(3(−2)02) = 4123.

The graph of overlapping permutations G(n) has the elements of the symmetric group Sn as
its vertex set and for every permutation σ = σ1 · · ·σn+1 in Sn+1 there is a directed edge from
Π(σ1 · · ·σn) to Π(σ2 · · ·σn+1).

A permutation π = π1π2 · · ·πn ∈ Sn avoids a permutation τ ∈ Sk if there are no integers
1 ≤ i1 < i2 < · · · < ik ≤ n such that Π(πi1πi2 · · ·πin) = τ . In this context, τ is called a pattern and
we say that π avoids the pattern τ . Let Sn(τ) denote the set of τ -avoiding permutations in Sn.
Especially, we are interested in 312-avoiding permutations, which are those that have no indices
i < j < k such that πj < πk < πi. It is well known that the number of 312-avoiding permutations
in Sn is given by the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

A cut point of a permutation π ∈ Sn is an index j with 1 ≤ j ≤ n − 1 such that for all i
and k satisfying 1 ≤ i ≤ j < k ≤ n we have that πi < πk. The cut points split a permutation
into components, each ending at a cut point. A permutation without cut points is said to be
indecomposable (or, sometimes, irreducible). As an example, the permutation 31246758 has three
cut points, namely 3, 4, and 7, and components 312, 4, 675 and 8, wheres 2413 is indecomposable.
The following proposition is well known (see, for instance, [5]), and it is easy to prove, e.g. using the
following argument. Every 312-avoiding permutation is of the form A1B, where each element of B
is larger than every element of A, which implies that a 312-avoiding permutation is indecomposable
precisely when B is empty. Such permutations with B empty directly correspond bijectively to the
312-avoiding permutations A of length n− 1, which leads to the following result.

Proposition 2.1. The number of 312-avoiding indecomposable permutations in Sn is given by the

Catalan number Cn−1.

One extension of the notion of a permutation is the notion of an affine permutations. While
the symmetric group Sd is the Weyl group Ad−1, the group of affine permutations S̃d is the
affine Weyl group Ãd−1. However, the combinatorial description of affine permutations is due to
Lusztig (unpublished) and the first combinatorial study of them was conducted in [3, 8]. An affine
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permutation π ∈ S̃d is a bijection π : Z −→ Z such that

π(i+ d) = π(i) + d, (2.1)

d−1∑

i=0

(π(i)− i) = 0. (2.2)

Note that the first condition implies that the values π(0) through π(d − 1) determine the whole
affine permutation.

We now extend the notion of an affine permutation to bi-infinite sequences. A bi-infinite se-

quence is defined to be an injective function f : Z −→ R. Alternatively, one can think of a bi-infinite
sequence as a bi-infinite list (. . . , f(−1), f(0), f(1), f(2), . . .) of distinct real numbers. We say that
two bi-infinite sequences f and g are equivalent if there is a strictly increasing continuous function
T : R −→ R such that g(i) = T (f(i)). Equivalently, it is enough to assume that T is strictly in-
creasing and bijective. It is straightforward that this relation is an equivalence relation. We think
about the equivalence classes as bi-infinite permutations. Hence, it is natural to extend notions
from permutation patterns theory to bi-infinite sequences.

A cut point for a bi-infinite sequence f is an index j such that for all integers i ≤ j < k we have
that f(i) < f(k). The inversion set for a bi-infinite sequence f is the set

Inv(f) = {(i, j) ∈ Z
2 : i < j, f(i) > f(j)}.

A bi-infinite sequence is periodic with period d, if for all integers i and j, the inequality f(i) < f(j)
is equivalent to the inequality f(i + d) < f(j + d). Equivalently, a bi-infinite sequence is periodic
with period d if the inversion set satisfies the condition (i, j) ∈ Inv(f) is equivalent to (i+d, j+d) ∈
Inv(f). Extending the notion of pattern avoidance, we say that a bi-infinite sequence f avoids the
pattern σ ∈ Sn if there are no integers i1 < i2 < · · · < in such that Π(f(i1)f(i2) · · · f(in)) = σ.

3 Compositions and cyclic compositions

A composition of a non-negative integer d into k parts is a list of k positive integers (a1, a2, . . . , ak)
such that their sum is d. Let α1, α2, . . . be a sequence of numbers and f(t) =

∑
i≥1 αit

i be the
associated generating function. Form a new sequence (βd,k)d≥1 by the relation

βd,k =
∑

(a1,a2,...,ak)

αa1αa2 · · ·αak

where the sum is over all compositions of d into k parts. Additionally, we set β0,k to be the
Kronecker delta δ0,k, which is equal to 1 if k = 0 and 0 otherwise. Also, let the sequence (βd)d≥0 be
defined by the sum βd =

∑
k≥0 βd,k. The following relations are classical generatingfunctionology:

∑

d≥0

βd,kt
d = (f(t))k and

∑

d≥0

βdt
d =

1

1− f(t)
. (3.1)

For a family of sets Si, where αi is the cardinality of a set Si, we can give a combinatorial
interpretation to the number βd,k, hence also βd. An enriched composition is a pair (a, s) where a

is a composition (a1, a2, . . . , ak) of d into k parts and s = (s1, s2, . . . , sk) is a list of the same length
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such that the element si belongs to the set Sai . Now βd,k is the number of enriched compositions
of d into k parts, and βd is the number of enriched compositions of d.

Note that each connected subgraph of a path is also a path. Hence a composition (a1, a2, . . . , ak)
of d can be thought of as a subgraph of the path on d vertices, where ai is the size of the ith connected
component. The number of connected components of the subgraph is the number of parts of the
composition. With this analogue in mind we define a cyclic composition to be a subgraph of the
labeled cycle on d vertices where each component is a path. Note that we rule out the case of the
cycle being a subgraph of itself. Yet again, the number of paths is the number of components k.
Observe that k is also the number of edges removed to obtain the subgraph. Since there are d
edges in a cycle, we have

(
d
k

)
cyclic compositions of d into k parts for k ≥ 1. For instance, there are(

4
2

)
= 6 cyclic compositions of 4 into two parts, namely, two consisting of two 2s and four consisting

of 1 and 3 (see Figure 2).

s s

s s1 2

34
s s

s s1 2

34
s s

s s1 2

34
s s

s s1 2

34
s s

s s1 2

34
s s

s s1 2

34

Figure 2: The 6 cyclic compositions of 4 into two parts.

To be more formal, let Zd denote both the integers modulo d and the cycle of length d, where
we connect i and i+1 modulo d. A cyclic composition is a set partition P = {B1,B2, . . . ,Bk} where
each block Bi is a path in the cycle Zd. Equivalently, each block Bi is the image of an interval [pi, qi]
of integers under the quotient map Z −→ Zd with the restriction 0 ≤ qi − pi ≤ d − 1. Also, let ai
be qi − pi + 1, that is, the cardinality of the interval [pi, qi] and its associated path.

Similar to compositions, we construct new sequences (γd,k)d≥1 and (γd)d≥1 as follows:

γd,k =
∑

P

αa1αa2 · · ·αak

where the sum is over all cyclic compositions P of d into k parts and ai is the size of the ith part.
Also, let γd denote the sum γd =

∑
k≥1 γd,k.

Proposition 3.1. The generating functions for γd,k and γd are given by

∑

d≥k

γd,kt
d = tf ′(t)(f(t))k−1 =

t

k
D

(
(f(t))k

)
and (3.2)

∑

d≥1

γdt
d =

tf ′(t)

1− f(t)
, (3.3)

where D is the differential operator with respect to t.

Proof. To observe the first relation, consider the component containing the vertex 1 of the cycle.
Also, assume that this component has size i. Then there are i possibilities how to choose this
component. This is encoded by the generating function

∑
i≥1 iαit

i = tf ′(t). Next we have to

choose a composition of d− i into k − 1 parts, which is given by (f(t))k−1. The first result follows
from multiplication of generating functions. The second result follows from summing Equation (3.2)
over all k.
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As a brief example of Equation (3.3), note that setting αi = 1 enumerates the number of cyclic
compositions. We have f(t) = 1/(1− t)− 1 and obtain

∑
d≥1 γdt

d = 1/(1− 2t)− 1/(1− t), yielding

the answer of 2d − 1 for the number of cyclic compositions of d.
Combining generating functions in Equations (3.1) and (3.2) we have the following result.

Corollary 3.2. The two quantities βd,k and γd,k are related by

γd,k =
d

k
βd,k. (3.4)

An enriched cyclic composition is a pair (P, s) where P is a cyclic composition {B1,B2, . . . ,Bk}
of d into k parts and s = (s1, s2, . . . , sk) is a list of length k such that the element si belongs
to the set S|Bi|. Now γd,k has the combinatorial interpretation as the number of enriched cyclic
compositions of d into k parts, and βd is the number of enriched cyclic compositions of d.

Let C(t) and CB(t) denote the generating functions for the Catalan numbers and the central
binomial coefficients, that is,

C(t) =
∑

d≥0

Cdt
d =

1−
√
1− 4t

2t
,

CB(t) =
∑

d≥0

(
2d

d

)
td =

1√
1− 4t

.

Lemma 3.3. Let αi = Ci−1+δi,1 where δi,1 denotes the Kronecker delta. Then the central binomial

coefficient is given by the sum (
2d

d

)
=

∑

P

αa1αa2 · · ·αak ,

where the sum is over all cyclic compositions P of d and d ≥ 1.

Proof. First, observe that
∑

i≥1 αit
i = t + tC(t). The result now follows from Equation (3.3) and

the identity

CB(t)− 1 =
t(t+ tC(t))′

1− t− tC(t)
.

The following two well-known identities involving the Catalan numbers are worth keeping in
mind in the next section, where we prove similar results regarding affine 312-avoiding permutations.
We have ∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 =
k

d

(
2d− k − 1

d− 1

)
, (3.5)

where the sum is over all compositions of d into k parts. The numbers in the right hand side
give Catalan’s triangle, sequence A009766 in [12]. One of many things they enumerate is the set
of 312-avoiding permutations of length d that split into (at most) k components. Namely, such
a permutation can be decomposed as A1A2 · · ·Ak where every letter of Ai is smaller than each
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letter of Aj for i < j. Since each component is an indecomposable 312-avoiding permutation, these
permutations with k components are counted by the left hand side. By a similar argument we have

∑

(a1,a2,...,ak)

Ca1−1Ca2−1 · · ·Cak−1 = Cd,

where the sum is over all compositions of d.
By combining Corollary 3.2 and Equation (3.5) we have:

Lemma 3.4. The following identity holds

∑

P

Ca1−1Ca2−1 · · ·Cak−1 =

(
2d− k − 1

d− 1

)
, (3.6)

where the sum is over all cyclic compositions P of d into k parts.

4 312-avoiding affine permutations

Before we continue, we take a detour to study 312-avoiding affine permutations. Recall that an affine
permutation π ∈ S̃d is 312-avoiding if there are no integers i < j < k such that π(j) < π(k) < π(i).
Crites [6] proved the following result for affine permutations.

Theorem 4.1 (Theorem 6 in [6]). The number of 312-avoiding affine permutations in S̃d is given

by
(
2d−1
d

)
.

We give a refinement of this result. Recall that a cut point for an affine permutation π is an
index j such that for i ≤ j < k the inequality π(i) < π(k) holds. Note that, if j is a cut point, then
so is any index congruent to j modulo d. Hence, we count the number of equivalence classes of cut
points.

Theorem 4.2. Let k be a positive integer and k ≤ d. The number of 312-avoiding affine permuta-

tions in S̃d that have k cut points modulo d is given by

(
2d− k − 1

d− 1

)
.

Proof. Consider a cyclic composition {B1,B2, . . . ,Bk} into k parts of the cycle Zd and enrich each
block with an indecomposable 312-avoiding permutation. By Proposition 2.1 there are Ca−1 in-
decomposable 312-avoiding permutations in Sa, hence the total number of enriched cyclic com-
positions is given by Lemma 3.4, that is,

(
2d−k−1
d−1

)
. Let the ith block Bi be the image of the

interval [pi, qi]. View the permutation πi enriching Bi as a bijection on this interval. That is, we
have the bijection πi : [pi, qi] −→ [pi, qi]. Now concatenate these k bijections, that is, define

π :
⋃

1≤i≤k

[pi, qi] = [p1, qk] −→ [p1, qk]

by π(j) = πi(j) if j ∈ [pi, qi]. Finally, extend π to all integers by Condition (2.1). By construction,
it is clear that π is a 312-avoiding affine permutation with k cut points and that all 312-avoiding
affine permutations with k cut points are constructed this way.
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1234 4321

Figure 3: The graph G(3, 312), which has two 1-cycles, two 2-cycles and six 3-cycles.

Corollary 4.3. Every 312-avoiding affine permutation in S̃d has a cut point.

Proof. Since the sum of
(
2d−k−1
d−1

)
for k from 1 to d is

(
2d−1
d

)
, and by Theorem 4.1, all the 312-avoiding

affine permutations have been accounted for.

A more direct proof is as follows.

A second proof of Corollary 4.3. Let π be an affine 312-avoiding permutation in S̃d. Let P be the
set {(i, π(i)) : i ∈ Z}. Define a poset structure on the set P by (i, π(i)) <P (j, π(j)) if i > j and
π(i) < π(j). Note, for instance, that the set {(i, π(i)) : i ≡ j mod d} forms an infinite antichain.

Now if an element (i, π(i)) is greater than both of the elements (j, π(j)) and (k, π(k)), and
these two elements are incomparable, then this triple forms a 312-pattern. Since we assumed π is
312-avoiding we have that the lower order ideal generated by a single element is a chain. In other
words, the poset is a forest with the minimal elements as roots.

Pick a minimal element (i, π(i)) in the poset. We claim that i is a cut point. Among the
maximal elements above (i, π(i)) in the poset pick an element (j, π(j)) with the largest second
coordinate. We claim that if k ≤ i then π(k) ≤ π(j). There is nothing to prove if π(k) ≤ π(i).
If π(k) ≥ π(i) then we have (k, π(k)) ≥P (i, π(i)). But we picked (j, π(j)) to be the element with
largest second coordinate, which proves the claim. Next we claim that if k > i then π(k) > π(j).
Assume that π(k) < π(j). Since (i, π(i)) is a minimal element we know that π(i) < π(j). However,
this yields a contradiction since Π(π(j), π(i), π(k)) = 312, the prohibited pattern. Hence, i is a cut
point.

5 The graph of 312-avoiding permutations

Recall that G(n) denotes the directed graph of overlapping permutations, that is, it has the vertex
set Sn and for every permutation σ = σ1 · · ·σn+1 in Sn+1 there is a directed edge from Π(σ1 · · ·σn)
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to Π(σ2 · · ·σn+1) labelled σ. Furthermore, let G(n, τ) be the graph of overlapping τ -avoiding per-
mutations, that is, it is the subgraph of G(n) having the vertex set Sn(τ) and the edge set Sn+1(τ).
For an example, see Figure 3 where the graph G(3, 312) is presented.

A closed walk of length d in a graph is a list of d edges (e1, e2, . . . , ed) such that head(ei) =
tail(ei+1) for 1 ≤ i ≤ d−1 and head(ed) = tail(e1), where for a directed edge e, head(e) is the node
the edge points to, while tail(e) is the other node incident to e. Thus, (1342, 2314, 2134) and its
cyclic shift (2134, 1342, 2314) are two different closed walks.

Define an equivalence on the set of closed walks by cyclic shifting, that is, two closed walks
(e1, e2, . . . , ed) and (ei, ei+1, . . . , ed, e1, e2, . . . , ei−1) are equivalent. Then a d-cycle is defined to be
an equivalence class of size d. For instance, the graph G(3, 312) in Figure 3 has six closed walks of
length 2, namely,

(1234, 1234), (4321, 4321), (1324, 2143), (2143, 1324), (2314, 3241) and (3241, 2314).

However, the graph G(3, 312) has only two 2-cycles, since the first two closed walks yield 1-cycles
while the fourth (respectively, sixth) walk is equivalent to the third (respectively, fifth) walk.

The number of closed walks of a fixed length is given by the following result.

Theorem 5.1. The number of closed walks of length d in G(n, 312), for d ≤ n, is given by
(
2d
d

)
.

A bijective proof of Theorem 5.1 will be given in the following two sections.

Theorem 5.2. The number of d-cycles in G(n, 312), for d ≤ n, is given by

1

d

∑

e|d

µ (d/e)

(
2e

e

)
.

Proof. Let h(d) denote the number of d-cycles. A closed walk of length d can be obtained by
choosing a divisor e of d, an e-cycle and a starting point on the cycle. By repeating the e-cycle d/e
times we obtain a closed walk of length d. Hence, we have

(
2d

d

)
=

∑

e|d

e · h(e).

The result now follows by classical Möbius inversion.

6 The bijection

It remains to show that the number of closed walks of length d in G(n, 312) is given by
(
2d
d

)
. We do

this by constructing a bijection between closed walks and enriched cyclic compositions. The proof
of this bijection involves bi-infinite sequences. Let Wd denote the set of all closed walks of length d
in the graph G(n, 312).

Given a cyclic composition P on Zd, we enrich each part of size a either with a 312-avoiding
indecomposable permutation from the symmetric group Sa, or, if a = 1, with the symbol D. The
symbol D stands for “Down” and it will be used for the part of the bi-infinite sequence that is
decreasing. Note that if a = 1, then the enrichment is either the identity permutation 1 in S1
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or the symbol D. Let Ed denote the set of all these enriched cyclic compositions. Note that the
number of enrichments of a part of size a is the Catalan number Ca−1 plus the Kronecker delta δa,1.
Hence, by Lemma 3.3, we know that the total number of these structures is the central binomial
coefficient

(
2d
d

)
.

We now describe a bijection Φ : Ed −→ Wd. Let P = (B1,B2, . . . ,Bk) be an enriched cyclic
composition in Ed. Recall that the ith block Bi is the image of the interval [pi, qi] under the quotient
map Z −→ Zd. If the enrichment on the part Bi is a permutation, we view it as a permutation
πi on the set [pi, qi]. Let Bi be the set Bi =

⋃
j∈Z[pi + jd, qi + jd]. Note that B1,B2, . . . ,Bk is a

partition of the integers Z. Furthermore, extend πi by the relation πi(j + d) = πi(j) + d. That is,
now πi is a bijection on the set Bi. Construct a bi-infinite sequence f by

f(j) =

{
exp(πi(j)) if j ∈ Bi and part Bi is enriched with a permutation,

− exp(j) if j ∈ Bi and part Bi is enriched with the symbol D.

By construction, the bi-infinite sequence f is d-periodic. It also is 312-avoiding.

Claim 6.1. The bi-infinite sequence f is 312-avoiding.

Assume not, that is, there are three integers x < y < z such that f(y) < f(z) < f(x). Assume
that f(y) < 0 < f(z). Then both f(x) and f(z) are positive. Since f(y) is negative, x and z belong
to different intervals of the form Bi + j · d. But between these types of intervals f is increasing,
yielding the contradiction f(x) < f(z). Hence if f(y) is negative then so is f(z). But the negative
values of f form a decreasing sequence, since this is a subsequence of − exp(j). This contradicts
f(y) < f(z). Now assume that f(y) > 0. Since f(x) > f(y), x has to belong to the same interval
Bi+ j ·d as y. Similarly, since f(x) > f(z), z has to belong to the same interval Bi+ j ·d as x. This
contradicts to the fact that the block Bi was enriched with a 312-avoiding permutation, proving
the claim.

Finally, we construct an infinite walk (. . . , σ−1, σ0, σ1, σ2, . . .) in the graph G(n, 312) by letting
σi be the standardization Π(f(i), f(i+1), . . . , f(i+n)). Note that this permutation is 312-avoiding
and as an edge in the graph, it has the tail Π(f(i), f(i+1), . . . , f(i+n− 1)) and the head Π(f(i+
1), f(i+2), . . . , f(i+n)). Since f is d-periodic the infinite walk has period d. Restricting the walk
to (σ1, σ2, . . . , σd) gives a closed walk in the set Wd. This completes the description of the map Φ.

Example 6.2. As an example of how the bijection Φ works, consider the cyclic composition of
d = 8 consisting of the interval [−1, 1] and the five singletons {2}, {3}, {4}, {5}, {6}. Enrich the
singletons {2}, {3} and {5} with the symbol D. Enrich the interval [−1, 1] with the permutation
231 and the two remaining singletons with the permutation 1. Then a graphical representation
of the associated sequence f is in Figure 4. In the graph G(8, 312) the sequence f describes the
8-cycle:

45362178, 43521786, 34216758, 43267581, 32564718, 35647281, 56473821, 54637218.

In the graph G(9, 312) the sequence f describes the 8-cycle whose three first edges are 453621897,
435217869 and 453278691.
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Figure 4: A schematic representation of the sequence appearing in Example 6.2.

7 The inverse bijection

One can always lift an infinite walk in the graph to a bi-infinite sequence. However, as Remark 7.1
shows, an infinite walk could lift to several non-equivalent sequences, and they do not all have the
desired properties. Thus, when lifting a walk to a sequence we have the additional requirements
in Conditions (7.1) and (7.2). Their interpretation is that we do not introduce an inversion in the
bi-infinite sequence, unless we are required to do so by a local condition.

Remark 7.1. Consider the two bi-infinite sequences

h1(n) = n+ (−1)n and h2(n) = n+ 2(−1)n.

Observe that they both encode the same 2-cycle in G(2, 312). That is,

Π(h1(n), h1(n+ 1), h1(n+ 2)) = Π(h2(n), h2(n+ 1), h2(n+ 2)) =

{
132 if n is odd,

213 if n is even.

However, note that h2 is not 312-avoiding, whereas h1 is. Furthermore, h2 does not have any cut
points, whereas h1 does. Hence, when constructing the inverse map to Φ we have to be careful in
constructing a bi-infinite sequence which is 312-avoiding.

We now construct the inverse map of Φ. Given the closed walk (σ1, σ2, . . . , σd) in Wd we extend
it to an infinite walk by letting σj+d = σj for all integers j.

We are going to find a sequence . . . , g(−1), g(0), g(1), g(2), . . . such that Π(g(i), g(i+1), . . . , g(i+
n)) = σi for all integers i. To find such a sequence, let g(k) = σ1(k) for 1 ≤ k ≤ n+1. Now alternate
the following two steps to extend g to all of the integers.
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(+) Assume that we have picked the values g(i), g(i + 1), . . . , g(j − 1) of the sequence. We will
now pick the value of g(j). That is, we are extending the sequence in the positive direction.
Let σ be the permutation σi−n. Let a and b be the real numbers (including ±∞) given by

a =

{
g(σ−1(σ(n+ 1)− 1) + s) if σ(n+ 1) > 1,

−∞ if σ(n+ 1) = 1,

b =

{
g(σ−1(σ(n+ 1) + 1) + s) if σ(n+ 1) < n+ 1,

∞ if σ(n+ 1) = n+ 1,

where s is the shift s = j−n− 1. Then any real number x in the open interval (a, b) satisfies
Π(g(j − n), . . . , g(j − 1), x) = σ. However, we have one more requirement, we will pick x as
large as possible with respect to the already picked values g(i), g(i+1), . . . , g(j−n−1). That
is, we pick g(j) = x such that

max(a, {g(k) : g(k) < b, i ≤ k ≤ j − 1}) < x < b. (7.1)

Note that we are picking a real number g(j) = x in an open interval. If the interval is
bounded, it is fine to use the average of the two endpoints. However, any number in the open
interval will do, since there are plenty (read infinite) of real numbers in the interval both less
than and greater than our pick.

(–) Now we extend the sequence in the negative direction. Assume that we have picked the values
g(i + 1), g(i + 2), . . . , g(j) of the sequence. We will now pick the value of g(i). Let σ now
denote the permutation σi. Let the two bounds a and b be given by

a =

{
g(σ−1(σ(1)− 1) + s) if σ(1) > 1,

−∞ if σ(1) = 1,

b =

{
g(σ−1(σ(1) + 1) + s) if σ(1) < n+ 1,

∞ if σ(1) = n+ 1,

where s = i− 1. Yet again, any real number x in the open interval (a, b) satisfies Π(x, g(i+
1), . . . , g(i + n)) = σ. However, now we pick x as small as possible with the already picked
values g(i+ 1), . . . , g(j). That is, we pick g(i) = x such that

a < x < min(b, {g(k) : g(k) > a, i+ 1 ≤ k ≤ j}) (7.2)

The purpose of the two conditions in (7.1) and (7.2) is to avoid introducing any extra inversions
in the sequence g. These conditions will come into play at the end of this construction in the case
when the set D (to be defined soon) is empty.

Claim 7.2. The sequence g is locally 312-avoiding, that is, if i < j < k, where k − i ≤ n then

Π(g(i), g(j), g(k)) 6= 312.

This holds true since σi is 312-avoiding.

Claim 7.3. For all i we have g(i) 6= g(i+ d).
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Since d ≤ n and Π(g(i), g(i + 1), . . . , g(i + d), . . . , g(i + n)) is a permutation, g(i) and g(i + d)
are distinct.

Claim 7.4. For i < j and j − i < n the inequality g(i) < g(j) is equivalent to g(i+ d) < g(j + d).

Since σi = σi+d we have the string of the equivalences g(i) < g(j) ⇐⇒ σi(1) < σi(j− i+1) ⇐⇒
σi+d(1) < σi+d(j − i+ 1) ⇐⇒ g(i+ d) < g(j + d).

Hence, the bi-infinite sequence g decomposes into d sequences, each of which is monotone. We
now partition the integers Z into two sets D = {i : g(i) > g(i+ d)} and U = {i : g(i) < g(i+ d)}.
Note that since d ≤ n we have that i ∈ D is equivalent to i + d ∈ D. That is, D consists of the
sequences that are decreasing and U of the increasing sequences.

Claim 7.5. The subsequence {g(i)}i∈D is decreasing.

Assume that {g(i)}i∈D is not decreasing. Then there are two entries i, j ∈ D such that i < j,
j − i ≤ d − 1, and g(i) < g(j). Also, we have that g(j − d) > g(j). Combining the last two
inequalities gives an occurrence of 312 since Π(g(j−d), g(i), g(j)) = 312. This contradiction proves
that {g(i)}i∈D is decreasing.

Claim 7.6. The values of the sequence {g(i)}i∈D are all smaller than the values of {g(j)}j∈U .

We begin when i and j are close to each other, that is, when i < j < i + d, i ∈ D and j ∈ U .
Assume that g(i) > g(j). Then we have the string of inequalities g(i− d) > g(i) > g(j) > g(j − d)
implying that Π(g(i−d), g(j−d), g(i)) = 312, a contradiction. Hence, we conclude that g(i) < g(j).
Now pick i′ ∈ D and j′ ∈ U . If i′ < j′ let i = i′ and j = j′ − d · ⌊(j′ − i′)/d⌋. If i′ > j′ let
i = i′−d·⌈(i′−j′)/d⌉ and j = j′. (Here ⌊·⌋ and ⌈·⌉ are the usual floor and ceiling functions.) In both
cases we have i ∈ D, j ∈ U and i < j < i+d. Furthermore, we have that g(i′) ≤ g(i) < g(j) ≤ g(j′),
proving the claim.

Now assume that D is non-empty. The case when D is empty requires an extra argument,
which we postpone to the end of this section. Pick p1 to be an element in the set D. Decompose
the interval [p1, p1 + d− 1] of cardinality d into smaller intervals, according to the rules:

(d) If i ∈ D∩ [p1, p1+d−1] then let the singleton {i} = [i, i] be an interval in the decomposition.
Moreover, enrich this singleton with the symbol D.

(u) If i ≤ j, i − 1, j + 1 ∈ D and [i, j] ⊆ U ∩ [p1, p1 + d − 1] then we use the argument at the
end of Section 3 to decompose the interval [i, j] into smaller intervals, each enriched with
an indecomposable 312-avoiding permutation. That is, we use the permutation Π(g(i), g(i+
1), . . . , g(j)) to decompose the interval.

Let the decomposition of the interval [p1, p1 + d − 1] be {[p1, q1], [p2, q2], . . . , [pr, qr]}, where qi +
1 = pi+1. Extend this decomposition to a decomposition {[pi, qi]}i∈Z of the integers Z by letting
pi+r = pi + d and qi+r = qi + d. Note that under the quotient map Z −→ Zd we obtain a cyclic
composition.

Claim 7.7. If the intervals [pi, qi] and [pk, qk] are not enriched with the symbol D, i < k, x ∈ [pi, qi]
and z ∈ [pk, qk] then we have g(x) < g(z).
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First assume that z − x ≤ d. If there is no interval [pj , qj ] between these two intervals (i <
j < k) that is enriched with the symbol D then the inequality follows by the decomposition into
indecomposable permutations in part (u) above. If there is an interval [pj , qj ] in between which
is enriched with the symbol D, then consider the pattern Π(g(x), g(pj), g(z)). Since [pj , qj ] is
enriched by D we have that g(pj) < g(x) and g(pj) < g(z). Hence, if g(x) > g(z), we obtain the
pattern 312, a contradiction. Finally, if z−x > d, we obtain the inequality by using that U consists
of the increasing sequences.

The last claim states that we do not lose information if we view the permutation enriching
the interval [pi, qi] as a bijection on this interval. The resulting composition, viewed as a cyclic
composition with its enrichment, is the inverse image of the map Φ.

When the set D is empty, we need to be more careful to show that the sequence g has a cut
point. We will use an argument similar to that in the second proof of Corollary 4.3. However, there
is an added complication since all we know is that g is locally 312-avoiding. By Condition (7.1) we
have the following lemma.

Lemma 7.8. Assume that j < k and g(j) > g(k). Then there is a chain j = j0 < j1 < · · · < jL = k
such that g(j0) > g(j1) > · · · > g(jL) and jh+1 − jh ≤ n for all indices 0 ≤ h ≤ jL − 1.

Proof. When we selected the value of g(jL), we picked this value in an interval (a, b) where b was
one of the values from the list g(jL−n), . . . , g(jL− 2), g(jL− 1). Hence, let jL−1 be the index such
that g(jL−1) = b.

Assume that g(j) < g(jL−1). Condition (7.1) states that we picked g(jL) as large as possible in
the interval (a, b). Hence, the assumption g(j) < g(jL−1) implies that g(j) < g(jL), a contradiction.
We conclude that g(j) > g(jL−1). By iterating this argument we obtain the chain.

Now the argument is the same as in the second proof of Corollary 4.3, except in the case when
we use the 312-avoidance. That is, we have picked (i, g(i)) as a minimal element in the poset P
and (j, g(j)) to be an element larger than or equal to the minimal element (i, g(i)) maximizing the
second coordinate. Observe that i − j ≤ d. The local 312-avoidance condition implies that the
poset order between (i, g(i)) and (j, g(j)) is a chain. That is, we have the string of inequalities
g(j) > g(j + 1) > · · · > g(i− 1) > g(i).

The remaining case is to show that there is no index k such that i < k and g(i) < g(k) < g(j).
First pick j′ in the interval [j, i− 1] such that g(j′+1) < g(k) < g(j′). Next use Lemma 7.8 to pick
the first element of the chain j′1 such that j′ < j′1 ≤ j′ + n and g(j′ + 1) < g(j′1) < g(j′). However,
this is a 312-pattern, contradicting the assumption that there is such a k. Hence, we conclude that
the sequence g has a cut point.

Let the cut point be p1 − 1. Consider the composition of the interval [p1, p1 + d− 1] consisting
of one part. That is, this part is the interval [p1, p1 + d − 1]. Now, in a way similar to part (u)
above, we decompose this interval into smaller intervals, each enriched with an indecomposable 312-
avoiding permutations using the permutation Π(g(p1), g(p1+1), . . . , g(p1+ d− 1)). This completes
the inverse of Φ in the case when the set D is empty.

8 Open problems

In conclusion, we list a few open problems.
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Question 8.1. The sequence 1
d

∑
e|d µ (d/e)

(
2e
e

)
from Theorem 5.2 appears in the On-Line Ency-

clopedia of Integer Sequences [12] as sequence A060165. It has been previously studied by Puri and
Ward [13, 14]. When q is a prime power, the number of monic irreducible polynomials of degree d
in GF (q)[x] is given by Equation (1.1). Is there a similar algebraic interpretation for the numbers
occurring in Theorem 5.2?

Question 8.2. Can the number of d-cycles in the graph G(n, 321) be determined? Equivalently,
what is the number of closed walks in G(n, 321) of length d? Of course, the same question can be
asked for any set of patterns of length 3 or more, as well as for the entire graph G(n).

Question 8.3. One of the earliest results on De Bruijn graphs is that the number of complete
cycles, also known as Eulerian cycles, is given by

(q!)q
n−1

qn
.

This result goes back to 1894 by Flye Sainte-Marie [9] in the case when q = 2 and the general case
to van Aardenne-Ehrenfest and De Bruijn [1]. Is there an analogous result for the graph G(n) of
overlapping permutations? It seems, from the small examples we have studied, that the number
of complete cycles in the graph of overlapping permutations has small prime factors, which gives
hope that there is an explicit formula.

Question 8.4. Observe that G(n, 312) does not have any complete cycles since there are vertices
with different out- and in-degrees. Hence, it is natural to ask: For which sets S of patterns do
all vertices in the graph G(n, S) have the same out- and in-degree? Also, what is the number of
complete cycles in these graphs?

Question 8.5. Lastly, it would be interesting to find bijective proofs of Lemmas 3.3 and 3.4.
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