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ABSTRACT

We have carried-out 98-level configuration-interaction / close-coupling (CI/CC) inter-
mediate coupling frame transformation (ICFT) and Breit–Pauli R-matrix calculations for the
electron-impact excitation of Be-like Al 9+. The close agreement that we find between the
two sets of effective collision strengths demonstrates the continued robustness of the ICFT
method. On the other hand, a comparison of this data with previous 238-level CI/CC ICFT
effective collision strengths shows that the results for excitation up to n = 4 levels are sys-
tematically and increasingly underestimated over a wide range of temperatures by R-matrix
calculations whose close-coupling expansion extends only to n = 4 (98-levels).

Thus, we find to be false a recent conjecture that the ICFT approach may not be com-
pletely robust. The conjecture was based upon a comparison of 98-level CI/CC Dirac R-matrix
effective collision strengths for Al 9+ with those from the 238-level CI/CC ICFT R-matrix
calculations. The disagreement found recently is due to a lack of convergence of the close-
coupling expansion in the 98-level CI/CC Dirac work. The earlier 238-level CI/CC ICFT work
has a superior target to the 98-level CI/CC Dirac one and provides more accurate atomic data.

Similar considerations need to be made for other Be-like ions and for other sequences.

Key words: Atomic data – Techniques: spectroscopic

1 INTRODUCTION

Electron-impact excitation is the dominant process for populating

the radiating states of ions whose emission lines form the basis for

the spectroscopic diagnostic modelling of non-equilibrium astro-

physical and laboratory plasmas. As such, a great deal of effort

over many years has gone in to calculating a large amount of colli-

sion data, which is incorporated into databases and modelling suites

such as CHIANTI1 and OPEN-ADAS2. The pre-eminent method-

ology used is the R-matrix one. However, there are many variations

on this theme.

The intermediate coupling frame transformation (ICFT) R-

matrix method is an approximation to the Breit–Pauli R-matrix

method (BPRM) which neglects the spin–orbit interaction between

the colliding electron and the ion. Thus, it is physically well mo-

tivated. There is a good deal of literature which verifi es the ac-

curacy of the ICFT approach: the original comparisons of the re-

sults of ICFT and Breit–Pauli R-matrix calculations by Griffin et al.

(1998, 1999) on Mg-like ions and Badnell & Griffin (1999) on Ni4+;

more recent ones by Liang & Badnell (2010) comparing ICFT R-

⋆ E-mail: luis.fernandez-menchero@strath.ac.uk (LFM);

badnell@phys.strath.ac.uk (NRB);

gd232@cam.ac.uk (GDZ)
1 http://www.chiantidatabase.org
2 http://open.adas.ac.uk

matrix and Dirac Atomic R-matrix Code (DARC) calculations for

Ne-like Fe16+ and Kr26+, Liang et al. (2009) on ICFT with Breit–

Pauli and DARC for Na-like Fe15+; and most recently Badnell &

Ballance (2014) compared the results of ICFT, BPRM and DARC

calculations for Fe2+. The differences observed between ICFT and

other R-matrix results are all well within the uncertainties to be

expected due to the use of different confi guration interaction and

close-coupling expansions and resonance resolution. Indeed, the

Badnell & Ballance (2014) work on Fe2+ used identical atomic

structures and close-coupling expansions for the ICFT and Breit–

Pauli R-matrix calculations and found excellent agreement, better

than 5%. Their DARC calculations out of necessity used a some-

what different atomic structure, and the low-level structure of Fe2+

is challenging, but still gave agreement to within ∼ 20% at 104 K.

Extensive calculations have been carried-out applying the

ICFT R-matrix method to whole isoelectronic sequences (for el-

ements, typically, up to Zn), the most recent ones being Mg-like

(Fernández-Menchero et al. 2014b), Be-like (Fernández-Menchero

et al. 2014a) and B-like (Liang et al. 2012) — this last paper con-

tains references to earlier sequences.

Thus it is both surprising and of great concern to fi nd a work

which counters this trend: Aggarwal & Keenan (2015a) made a

comparison of the results of a 98-level DARC calculation on Be-

like Al 9+ (Aggarwal & Keenan 2014c) with a 238-level ICFT

R-matrix one (Fernández-Menchero et al. 2014a). Aggarwal &

Keenan (2015a) found that the effective collision strengths obtained
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2 L. F. Menchero et al

from the 238-level ICFT R-matrix calculation were signifi cantly

larger than the DARC ones in many instances and they suggested

that the results of Fernández-Menchero et al. (2014a) were less re-

liable, querying the ICFT method, resonance resolution and its high

energy / temperature behaviour.

In addition, Aggarwal & Keenan (2015a) alighted on the re-

cent paper by Storey et al. (2014) which reported a problem in

the outer-region ICFT calculation of O2+, when compared to a full

Breit–Pauli calculation, and suggested that this could be the main

cause of the discrepancies for Al 9+. However, Storey et al. (2014)

noted that such an issue only arises when resonance effective quan-

tum numbers become small. The problem is peculiar to low-charge

ions such as O2+ and unusually small R-matrix box sizes. Storey

et al. (2014) focused on providing a solution to their problem at

hand. We note that the problem does not arise in the fi rst place

if the R-matrix box size is increased (beyond its default in their

case) to encompass a spectroscopic n = 3 orbital, say. This is why

the issue had not arisen before: all previous calculations (including

Fernández-Menchero et al. (2014a)) used larger, often much larger,

box sizes. The problem noted by Storey et al. (2014) is not relevant

in general. Aggarwal & Keenan (2015a) noted a similar trend for

other ions of the Be-like sequence Cl13+, K15+, Ge28+ (Aggarwal &

Keenan 2014a) and Ti18+ (Aggarwal & Keenan 2012).

Where does that leave us with regard to the discrepancies

noted by Aggarwal & Keenan (2015a)? The concern of Aggar-

wal & Keenan (2015a) was the disagreement between R-matrix

calculations of (apparent) comparable complexity. However, the

works of Aggarwal & Keenan (2014c) and Fernández-Menchero

et al. (2014a) are not of comparable complexity. We show here

that the much larger close-coupling expansion used by (Fernández-

Menchero et al. 2014a) (238 vs 98 levels) gives rise to a system-

atic enhancement of effective collision strengths over a wide range

of temperatures, which increases as one excites higher-and-higher

levels.

In addition, we analyze the uncertainty in the effective colli-

sion strengths due to the incompleteness of the confi guration inter-

action expansion, the validity of the ICFT vs Breit–Pauli method,

viz. the neglect of the spin–orbit interaction of the colliding elec-

tron, and the effect of resonance resolution and position on low

temperature effective collision strengths.

The paper is organized as follows. In section 2 we describe the

methodology we used for the different calculations we have per-

formed. In section 3 we discuss the atomic structure of Al 9+ and

present results for energies, line strengths and infi nite energy plane

wave Born collision strengths. In section 4 we compare and con-

trast effective collision strengths. In section 5 we present our main

conclusions. Atomic units are used unless otherwise specifi ed.

2 METHODOLOGY

In the following sections we compare the results of the 238-level

confi guration-interaction / close-coupling (CI/CC) ICFT R-matrix

calculation by Fernández-Menchero et al. (2014a) for Al 9+ with

the results of new ICFT and Breit–Pauli 98-level CI/CC R-matrix

calculations — the latter being the same sized CI & CC expansions

that were used by Aggarwal & Keenan (2012, 2014a,c). Where pos-

sible (meaningful), our new 98-level CC calculations follow the

same prescription as Fernández-Menchero et al. (2014a) e.g. with

respect to angular momentum and energy specifi cation.

The target description uses the  program (Bad-

nell 2011). Fernández-Menchero et al. (2014a) included all of the

Table 1. Scaling parameters (λnl) used in the 98-level CI structure calcula-

tion.

Orbital λnl

1s 1.57175

2s 1.29675

2p 1.17081

3s 1.29004

3p 1.15958

3d 1.29791

4s 1.29797

4p 1.15413

4d 1.30212

4f 1.50916

confi gurations 1s2 {2s2, 2s2p, 2p2} and 1s2 {2s, 2p} nl with n = 3− 7

and l = s, p, d, f, g for n = 3 − 5 and l = s, p, d for n = 6, 7, which

makes a total of 238 levels. In the present work, we restrict our-

selves to n = 4 (with l = s, p, d, f) which gives a total of 98 levels.

The Thomas–Fermi potential scaling parameters, λnl, for the atomic

structure calculation with the CI basis set of 98 levels are given

in Table 1, those for the CI calculation with 238 levels are given

in Fernández-Menchero et al. (2014a). The λnl parameters for the

98-level CI calculation were obtained in the same way as the ones

for the 238-level calculation (Fernández-Menchero et al. 2014a):

by minimizing the equally-weighted sum of all LS -coupling term

energies.

For the collision calculations we use the inner-region R-matrix

programs of Hummer et al. (1993); Berrington et al. (1995) and

the outer-region  program of Berrington et al. (1987); Badnell

(1999) plus the ICFT one of Griffin et al. (1998). We will com-

pare the results of ICFT and Breit–Pauli R-matrix methods to treat

relativistic effects in the scattering problem. Both can use the ex-

act same Breit–Pauli atomic structure. This is important as it en-

ables us to isolate differences due solely to the differing treatment

of relativistic effects in the scattering. We note that Berrington et al.

(2005) have shown that the Breit–Pauli R-matrix method gives es-

sentially the same results as the Dirac one for Z . 30.

The ICFT R-matrix method fi rst carries-out an LS -coupling

close-coupling calculation for the CI target described above and it

includes the mass-velocity and Darwin one-body relativistic oper-

ators. The LS -coupling reactance K-matrices are fi rst recoupled to

jK-coupling and then transformed to intermediate coupling using

the term coupling coefficients (Hummer et al. 1993) for the Breit–

Pauli target. This imposes the exact same atomic structure on the

ICFT K-matrices as a Breit–Pauli one which uses the same CI ex-

pansion and radial orbitals. In particular, the fi ne-structure levels

within a term are non-degenerate in the fi nal scattering calculation.

This method is the one which was used by Fernández-Menchero

et al. (2014a).

The second method which we use is the Breit–Pauli (BP) one.

In this method the close-coupling expansion is made in intermedi-

ate coupling as well, in addition to the target CI, i.e. the one-body

effective (nuclear plus Blume & Watson) spin–orbit operator is in-

cluded in the (N + 1)-electron Hamiltonian. The Breit–Pauli for-

malism increases considerably the size of the Hamiltonian matrix,

which makes it impractical to use this method for 238 CC levels.

The essential physical difference between the ICFT and Breit-

Pauli R-matrix methods is the neglect by the former of the effective

spin–orbit interaction between the colliding electron and the ion.

The practical benefi t of the ICFT method over the Breit–Pauli one

c© 2015 RAS, MNRAS 000, 1–11
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is the diagonalization of much smaller (N+1)-electron Hamiltonian

matrices and a much smaller set of coupled scattering equations to

be solved in the outer-region by .

3 STRUCTURE

Table 2 compares our energies for the fi rst 98 levels of Al9+ calcu-

lated with the 98- and 238-level CI targets. These energies are com-

pared also with the observed ones tabulated in the NIST3 database,

which were taken from work of Martin & Zalubas (1979). There

are ten levels in Table 2 which do not follow the same order in both

structure calculations: from level index 82 to 84 and from 88 to

94. We use the order of the 98-level CI calculation to index levels

for comparison purposes. Energies calculated with both CI expan-

sions have differences smaller than 0.5% with the observed ones for

most of the levels, and differences of around 2% for the low lying

singlet states. In general, the differences are similar to those found

by Aggarwal & Keenan (2014c). In the original paper from Martin

& Zalubas (1979) there are several gaps in the level energies, and

some of them are labeled as “inaccurate”, so we refer the reader to

the original work to avoid hasty conclusions.

It is difficult to relate differences in energies directly to dif-

ferences in collision data. However, differences in oscillator or

line strengths (S ) and infi nite energy plane-wave Born collision

strengths (ΩPWB
∞

), essentially non-dipole electric multipole line

strengths, can be so related. Burgess & Tully (1992) show how infi -

nite energy / temperature and ordinary / effective collision strengths

(Ω∞/Υ∞) from any scattering calculation, including an R-matrix

one, are directly related to these quantities, viz.

Υ∞ = Ω∞ = Ω
PWB
∞

(1)

for non-dipole allowed transitions, while for electric dipole ones

Ω∞ = lim
E→∞

4S

3
ln

(

E

∆E
+ e

)

, (2)

and

Υ∞ = lim
T→∞

4S

3
ln

(

kT

∆E
+ e

)

, (3)

where ∆E is the excitation energy for the transition.

In practice, we fi nd that changes in the line strength, S , or

ΩPWB
∞

between two different atomic structures change not only the

infi nite energy values but also the (background) ordinary collision

strength correspondingly over a wide range of collision energies,

and hence the effective collision strength over a wide range of tem-

peratures, unless dominated by resonances. A 20% change, say, in

S or ΩPWB
∞

provides a very realistic measure of the resulting change

in effective collision strengths. Thus, care must be taken when at-

tempting to deduce anything about scattering methods from differ-

ences in the collision data without reference to differences in the

underlying atomic structure.

To illustrate, we show in Fig. 1 a comparison of the reduced

quantity y∞, given by

y∞ = Ω
PWB
∞

or
4S

3
, (4)

for the two atomic structure calculations which we consider (which

we label 98-level CI and 238-level CI). We show points for a total of

4035 transitions resulting from the common 98 levels. These split

3 http://physics.nist.gov
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Figure 1. A comparison of y∞ (see eq. 4) for the 98- vs 238-level CI atomic

structures for transitions amongst the 98 lowest common levels of Al 9+.

◦: transitions with upper level with n = 2; �: transitions with upper level

with n = 3; ⋄: transitions with upper level with n = 4; dashed lines: 20%

fractional difference.

into 1466 dipole transitions and 2569 Born-allowed transitions,

while there are an additional 718 forbidden transitions that are not

represented. We highlight by colour and symbol transitions to upper

levels with n = 2, 3, 4. We see that transitions up to n = 2 are very

well converged. Only one transition differs by more than 10%; it is

the very weak (∼ 10−8) Born transition 6−9: 2p2 3P0 − 2p2 1D2 (off

the scale). There is good convergence for transitions up to n = 3,

with 233 out of 801 transitions which differ by more than 20% but

mostly for the weaker transitions. However, there is much more

spread for transitions up to n = 4, 1834 of 3202 transitions differ

by more than 20%. This plot illustrates that the n = 4 levels of the

98-level CI structure are not so well converged with respect to the

CI expansion. We expect that their representation by the 238-level

CI expansion to be much better converged.

We circle several transitions for comment. The transition 31−

41: 2p3p 3P1 − 2p3d 3Po
2

is a dipole one, its line strength changes

by a factor of 18 between the 98- and 238-level structures. Note

also the transitions 75 − 80: 2p4d 1Do
2
− 2p4f 1F3 and 73 − 81:

2p4d 3Fo
2
− 2p4f 3F3. Both transitions are dipole allowed and quite

strong and yet differ by about a factor of 20 and 30 between the two

structures. These levels lie towards the upper end of the 98-level CI

expansion. These differences highlight the need for as accurate an

atomic description as possible to obtain the best target for accurate

collision data and the need to exercise extreme caution when mak-

ing comparisons of collision data based on different atomic struc-

tures.

4 COLLISIONS

In this section, we carry-out a series of comparisons of effective

collision strengths for Al 9+ at the temperature of peak abundance

for an electron collisional plasma (Bryans et al. 2006). We then

look at issues relating in particular to low temperature (e.g. pho-

toionized) plasmas and much higher temperature plasmas (e.g. so-

lar flares).

c© 2015 RAS, MNRAS 000, 1–11
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Table 2. Al9+ target levels. Key: i: level index; Conf.: configuration; Level: level IC designation (largest weight); ENIST: observed energy from the NIST

database (Martin & Zalubas 1979); E98: calculated energy with 98-level CI expansion; E238: calculated energy with 238-level CI expansion (see text); %:

percentage difference between theoretical and NIST data. All energies are in cm−1.

i Conf. Level ENIST E98 ( %) E238 ( %) i Conf. Level ENIST E98 ( %) E238 ( %)

1 2s2 1S0 0. 0. ( 0) 0. ( 0) 50 2s 4p 3Po
1

− 2504724. ( −) 2500556. ( −)

2 2s 2p 3Po
0

155148. 155722. ( 0.4) 155539. ( 0.3) 51 2s 4p 3Po
2

− 2505125. ( −) 2500975. ( −)

3 2s 2p 3Po
1

156798. 157487. ( 0.4) 157404. ( 0.4) 52 2s 4p 1Po
1

− 2508073. ( −) 2503514. ( −)

4 2s 2p 3Po
2

160429. 161146. ( 0.4) 161278. ( 0.5) 53 2s 4d 3D1 − 2520502. ( −) 2516248. ( −)

5 2s 2p 1Po
1

300490. 309273. ( 2.9) 307209. ( 2.2) 54 2s 4d 3D2 − 2520573. ( −) 2516321. ( −)

6 2p2 3P0 404574. 408026. ( 0.9) 407826. ( 0.8) 55 2s 4d 3D3 − 2520682. ( −) 2516434. ( −)

7 2p2 3P1 406517. 409969. ( 0.8) 409888. ( 0.8) 56 2s 4d 1D2 2527560. 2530218. (0.1) 2525880. (−0.1)

8 2p2 3P2 409690. 413420. ( 0.9) 413526. ( 0.9) 57 2s 4f 3Fo
2

2528570. 2530774. (0.1) 2526258. (−0.1)

9 2p2 1D2 449732. 458157. ( 1.9) 457831. ( 1.8) 58 2s 4f 3Fo
3

2528570. 2530815. (0.1) 2526299. (−0.1)

10 2p2 1S0 553783. 567794. ( 2.5) 567267. ( 2.4) 59 2s 4f 3Fo
4

2528570. 2530871. (0.1) 2526355. (−0.1)

11 2s 3s 3S1 1855760. 1856089. ( 0.0) 1852844. (−0.2) 60 2s 4f 1Fo
3

− 2533730. ( −) 2528991. ( −)

12 2s 3s 1S0 1884420. 1886214. ( 0.1) 1882216. (−0.1) 61 2p 4s 3Po
0

− 2661563. ( −) 2655681. ( −)

13 2s 3p 1Po
1

1923850. 1925826. ( 0.1) 1922358. (−0.1) 62 2p 4s 3Po
1

− 2662724. ( −) 2656820. ( −)

14 2s 3p 3Po
0

− 1928630. ( −) 1925009. ( −) 63 2p 4s 3Po
2

− 2666840. ( −) 2661460. ( −)

15 2s 3p 3Po
1

− 1929220. ( −) 1925611. ( −) 64 2p 4s 1Po
1

− 2673641. ( −) 2666939. ( −)

16 2s 3p 3Po
2

− 1930059. ( −) 1926462. ( −) 65 2p 4p 1P1 − 2681281. ( −) 2675347. ( −)

17 2s 3d 3D1 1965860. 1967770. ( 0.1) 1964163. (−0.1) 66 2p 4p 3D1 − 2684513. ( −) 2678722. ( −)

18 2s 3d 3D2 1966080. 1967980. ( 0.1) 1964378. (−0.1) 67 2p 4p 3D2 − 2684938. ( −) 2679129. ( −)

19 2s 3d 3D3 1966300. 1968296. ( 0.1) 1964701. (−0.1) 68 2p 4p 3D3 − 2688348. ( −) 2682876. ( −)

20 2s 3d 1D2 1992340. 1997586. ( 0.3) 1993399. ( 0.1) 69 2p 4p 3S1 − 2691166. ( −) 2684805. ( −)

21 2p 3s 3Po
0

2057140. 2055664. (−0.1) 2050249. (−0.3) 70 2p 4p 3P0 − 2691420. ( −) 2685788. ( −)

22 2p 3s 3Po
1

2057140. 2057249. ( 0.0) 2051958. (−0.3) 71 2p 4p 3P1 − 2694295. ( −) 2688609. ( −)

23 2p 3s 3Po
2

2057140. 2060910. ( 0.2) 2055983. (−0.1) 72 2p 4p 3P2 − 2694733. ( −) 2689496. ( −)

24 2p 3s 1Po
1

2091870. 2090063. (−0.1) 2084057. (−0.4) 73 2p 4d 3Fo
2

− 2697404. ( −) 2691501. ( −)

25 2p 3p 1P1 2094820. 2097317. ( 0.1) 2093229. (−0.1) 74 2p 4d 3Fo
3

− 2699888. ( −) 2694096. ( −)

26 2p 3p 3D1 2102330. 2105510. ( 0.2) 2101249. (−0.1) 75 2p 4d 1Do
2

− 2700756. ( −) 2695172. ( −)

27 2p 3p 3D2 2103900. 2107151. ( 0.2) 2102917. (−0.0) 76 2p 4p 1D2 2696850. 2702087. (0.2) 2696558. (−0.0)

28 2p 3p 3D3 2107390. 2110622. ( 0.2) 2106614. (−0.0) 77 2p 4d 3Fo
4

− 2702915. ( −) 2697461. ( −)

29 2p 3p 3S1 2119690. 2123472. ( 0.2) 2118706. (−0.0) 78 2p 4d 3Do
1

− 2705726. ( −) 2700008. ( −)

30 2p 3p 3P0 − 2132252. ( −) 2126478. ( −) 79 2p 4d 3Do
2

− 2706671. ( −) 2701074. ( −)

31 2p 3p 3P1 2128680. 2133785. ( 0.2) 2128247. (−0.0) 80 2p 4f 1F3 − 2707963. ( −) 2701789. ( −)

32 2p 3p 3P2 2130410. 2135720. ( 0.2) 2130292. (−0.0) 81 2p 4f 3F3 − 2708388. ( −) 2702400. ( −)

33 2p 3d 3Fo
2

− 2139901. ( −) 2135677. ( −) 82 2p 4d 3Do
3

− 2708430. ( −) 2703108. ( −)

34 2p 3d 3Fo
3

− 2142598. ( −) 2138636. ( −) 83 2p 4f 3F2 − 2708468. ( −) 2702641. ( −)

35 2p 3d 1Do
2

2141580. 2144437. ( 0.1) 2140459. (−0.1) 84 2p 4f 3F4 − 2708819. ( −) 2702505. ( −)

36 2p 3d 3Fo
4

− 2145366. ( −) 2141681. ( −) 85 2p 4d 3Po
2

− 2710818. ( −) 2705109. ( −)

37 2p 3p 1D2 2148410. 2157057. ( 0.4) 2150745. ( 0.1) 86 2p 4d 3Po
1

− 2711544. ( −) 2705747. ( −)

38 2p 3d 3Do
1

2160650. 2165232. ( 0.2) 2159945. (−0.0) 87 2p 4d 3Po
0

− 2711943. ( −) 2706094. ( −)

39 2p 3d 3Do
2

2161960. 2165961. ( 0.2) 2160762. (−0.1) 88 2p 4f 3P3 − 2712961. ( −) 2706897. ( −)

40 2p 3d 3Do
3

2163340. 2167469. ( 0.2) 2162400. (−0.0) 89 2p 4f 3P4 − 2713531. ( −) 2707350. ( −)

41 2p 3d 3Po
2

2170190. 2174402. ( 0.2) 2169739. (−0.0) 90 2p 4f 3P5 − 2715225. ( −) 2708632. ( −)

42 2p 3d 3Po
1

2171680. 2175473. ( 0.2) 2170906. (−0.0) 91 2p 4f 3D3 − 2716473. ( −) 2710743. ( −)

43 2p 3d 3Po
0

− 2176019. ( −) 2171512. ( −) 92 2p 4f 1D4 − 2717105. ( −) 2710218. ( −)

44 2p 3p 1S0 − 2193603. ( −) 2186094. ( −) 93 2p 4f 3D2 − 2717141. ( −) 2711361. ( −)

45 2p 3d 1Fo
3

2192860. 2203326. ( 0.5) 2195894. ( 0.1) 94 2p 4p 1S0 − 2717922. ( −) 2706869. ( −)

46 2p 3d 1Po
1

− 2208387. ( −) 2201414. ( −) 95 2p 4f 3D1 − 2718397. ( −) 2712736. ( −)

47 2s 4s 3S1 − 2477026. ( −) 2472580. ( −) 96 2p 4f 1D2 − 2719895. ( −) 2713991. ( −)

48 2s 4s 1S0 − 2488107. ( −) 2483578. ( −) 97 2p 4d 1Fo
3

− 2722212. ( −) 2715080. ( −)

49 2s 4p 3Po
0

− 2504555. ( −) 2500383. ( −) 98 2p 4d 1Po
1

− 2723448. ( −) 2716711. ( −)

4.1 Peak abundance temperature

In Fig. 2 we compare our 98-level CC ICFT and Breit–Pauli R-

matrix Maxwellian effective collision strengths, Υ, for all inelastic

transitions in Al 9+ at the temperature of peak abundance, 106 K, in

an electron collisional plasma. We recall that both calculations use

the exact same (98-level CI) structure. We note excellent agreement

between the two scattering methods, as illustrated by the points ly-

ing on the diagonal, only 82 points out of 4753 have a difference

larger than 10%. This is to be contrasted with the spread of points

shown in Fig. 1 which results from our two different atomic struc-

tures.

Only two points differ from the diagonal more than 50%, at

around Υ = 10−1, they correspond to the transitions 67 − 75:

2p4p 3D2 − 2p4d 1Do
2

and 83 − 98: 2p4f 3F2 − 2p4d 1Po
1
. Both are

dipole allowed through spin–orbit mixing only. It is likely that in-

cluding the spin–orbit interaction in the collision calculation causes

c© 2015 RAS, MNRAS 000, 1–11
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Figure 2. A comparison of effective collision strengths from 98-level CI/CC

ICFT versus Breit–Pauli R-matrix calculations for all inelastic transitions

amongst the 98 levels of Al 9+ at Te = 106 K. ◦: transitions with upper level

n = 2; �: transitions with upper level n = 3; ⋄: transitions with upper level

n = 4; dashed lines: 20% fractional difference.
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Figure 3. A comparison of effective collision strengths from 98- vs 238-

level CI/CC ICFT R-matrix calculations for all inelastic transitions amongst

the 98 lowest common levels of Al 9+ at Te = 106 K. ◦: transitions with

upper level n = 2; �: transitions with upper level n = 3; ⋄: transitions with

upper level n = 4; dashed lines: 20% fractional difference.

the difference, providing additional mixing via the (N + 1)-electron

Hamiltonian diagonalization.

Next, in Fig. 3 we compare our 98- versus 238-level CI/CC

ICFT effective collision strengths as a whole. In contrast to Fig. 2,

we see a much wider spread of points, i.e. the agreement between

different scattering methods is much (much) better than that ob-

tained using different confi guration interaction basis sets. Like the

comparison of line strengths and ΩPWB
∞

shown in Fig. 1, we note

the excellent and very good agreement between the two sets of re-

sults for transitions up to n = 2 and n = 3, respectively, while

there is a much wider spread in the comparison for transitions up

to n = 4. However, unlike the atomic structure comparison, there

is a systematic shift above the diagonal. The 238-level CC results

are systematically larger than the 98-level ones. Thus, we conclude

that this is not due to the differences in atomic structure, which were

evenly distributed above and below the diagonal, rather that this is a

measure of the lack of convergence of the close-coupling expansion

Table 3. Number of transitions in Figs 1 – 3 which differ by more than a

certain relative error δ = |Υ98 − Υ238 |/Υ238 (or Υ→ y∞), as a percentage.

Fig. 1: y∞ Fig. 2: 98 CI/CC Υ Fig. 3: ICFT Υ

Rel. error (%) 98 vs 238 CI BP vs ICFT 98 vs 238 CI/CC

1 3778 1336 4579

2 3600 803 4400

3 3416 500 4243

4 3266 350 4077

5 3141 260 3928

6 3022 206 3798

7 2914 158 3676

8 2804 127 3569

9 2722 106 3460

10 2644 82 3357

20 2068 22 2582

30 1643 9 2090

40 1356 4 1725

50 1163 2 1449

75 846 2 1113

100 707 2 901

150 538 1 647

200 443 0 505

300 336 0 320

1000 187 0 88

Total 4035 4753 4753

in the 98-level CC calculation for the transitions involving n = 4

levels. This mirrors the lack of convergence of the 98-level confi g-

uration interaction expansion for n = 4 levels. We note that there

are still more than one hundred levels which lie above the n = 4

levels in the 238-level CI/CC case.

Specifi cally, one half of the transitions in Fig.3 differ by more

than 30%. The number of transitions differing by more than 20%

(lines indicated in the plot) correspond to 1 for n = 2 (out of 45),

256 for n = 3 (out of 990) and 2331 for n = 4 (out of 3718). Note

also that the 3 transitions which were circled in Fig. 1 are again

circled in Fig. 3. The strong transitions 75 − 80 and 73 − 81 do

illustrate how outliers in the atomic structure comparison (factor 20

and 30 difference) show-up as outliers in the collision comparison

(factor 10 and 20 difference). For the weaker transition 31 − 41

the resonances in the collision calculation “dampen” the difference

in atomic structure, it being “just” a factor of 1.6 now. In Table 3

we give the exact number of transitions which have a difference

δ = |Υ98 − Υ238|/Υ238 larger than a given percentage for the y∞
for the 98- vs 238-level CI atomic structures as well as the Υ at

T = 106 K for the 98-level CC ICFT vs Breit–Pauli and the 98- vs

238-level CC ICFT comparisons.

We can confi rm further that the systematic increase of the

effective collision strengths to n = 4 in the 238-level CC cal-

culation over those of the 98-level CC calculation is due to the

lack of convergence of the close-coupling expansion in the latter.

Like the convergence of the CI expansion, the convergence of the

close-coupling expansion is essentially independent of the coupling

scheme, i.e. the specifi c R-matrix method used, be it LS, ICFT,

Breit–Pauli or DARC. We illustrate this in Fig. 4 where we make

a similar comparison of 54- vs 130-term CC LS -coupling R-matrix

effective collision strengths. We see the same systematic increase

for transitions to n = 4 as in the comparison of ICFT R-matrix

effective collision strengths.

The plots we have shown so far are useful in the respect that
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Figure 4. A comparison of effective collision strengths from 54- vs 130-

term CI/CC LS -coupling R-matrix calculations for all inelastic transitions

amongst the 54 lowest common terms of Al 9+ at Te = 106 K. ◦: transitions

with upper term n = 2; �: transitions with upper term n = 3; ⋄: transitions

with upper term n = 4; dashed lines: 20% fractional difference.

they allow us to make comparisons as a function of the strength of

a transition — larger differences are acceptable for weaker transi-

tions. On the other hand, because of the wide range of strengths,

it is necessary for such plots to be logarithmic. If we plot the ra-

tio of results from two different calculations we can make a linear

comparison. We do this in Fig. 5 for the same comparison as we

made in Fig. 3, and with respect to the lower level of the transition

(5(a)) or the upper one (5(b)). Fig. 5(a) shows that the transitions

with the largest scatter are those from 2s 3l (lower level index 11–

20) and 2s 4l (lower level index 47–60) up to n = 4, and where we

have highlighted by symbol / colour all upper levels with the same

n-value. It bears a very strong resemblance to the same comparison

(fi gure 2) made byAggarwal & Keenan (2015a) to compare the 98-

level CI/CC DARC effective collision strengths with the 238-level

CI/CC ICFT ones, except that they did not differentiate (highlight)

the different n-values of the upper levels. In contrast, 5(b) clari-

fi es that the differences in the effective collision strengths become

increasingly larger as the upper levels excited move closer to the

last one included in the 98-level CC calculation. This in turn means

that the effective collision strengths to the uppermost levels of the

238-level CC calculation of Fernández-Menchero et al. (2014a) are

increasingly unconverged with respect to the close-coupling expan-

sion. However, based on the present convergence study to n = 2 and

n = 3 we can expect that their results for transitions up to n = 4 to

be well converged, but those to n = 5 less so since only a partial set

of n = 6, 7 levels (to l = 2) were included in their close-coupling

expansion.

While all of the plots shown so far are visually appealing, es-

pecially Fig. 5, none of them give any indication of the number

of transitions whose quantities differ by any given amount — we

cannot tell the density of points close to the diagonal (Figs 1–4) or

sitting at unity (Fig. 5). We must be wary of such plots misleading

us as to the level of agreement, as opposed to disagreement. Only a

table like Table 3 gives such an answer.

Thus, these comparisons demonstrate that the observation by

Aggarwal & Keenan (2015a), that the 238-level CC effective colli-

sions strengths of Fernández-Menchero et al. (2014a) are system-

atically and increasingly larger with higher excitations than the 98-

level CC results of Aggarwal & Keenan (2014c) over a wide range
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Figure 5. The ratio of effective collision strengths from 98- vs 238-level

CI/CC ICFT R-matrix calculations vs (a) lower level and (b) upper level

index, for all inelastic transitions amongst the 98 lowest common levels of

Al 9+ at Te = 106 K. Positive values indicate Υ98 > Υ238 and negative

values Υ238 > Υ98. ◦: transitions with upper level n = 2; �: transitions with

upper level n = 3; ⋄: transitions with upper level n = 4.

of temperatures is correct, but it is due to the lack of convergence of

the CC expansion of the 98-level CC results of Aggarwal & Keenan

(2014c), particularly with respect to the n = 4 levels.

Finally, there is in fact is good accord between comparable

calculations, viz. 98-level CI/CC, we make such a comparison of

ICFT vs DARC in Fig. 6. The increasing difference seen as one

progresses to higher levels is a reflection of the increasing lack of

convergence in the atomic structure. While both use the same CI ex-

pansion, there is no reason for both to give the same unconverged

result. It is interesting to note that the weakest transitions, mostly

forbidden ones, show better agreement than some of the stronger

allowed ones. Aggarwal & Keenan (2015a) have already made

a detailed comparison of 98-level CI/CC DARC and 238-CI/CC

ICFT effective collisions strengths for transitions from the ground

state. They highlighted several transitions to n = 4 which were

discrepant, particularly at high temperatures. We consider them in

detail in Sec. 4.3
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Figure 6. A comparison of effective collision strengths from 98-level CI/CC

ICFT versus Dirac R-matrix (Aggarwal & Keenan 2014c) calculations for

all inelastic transitions amongst the 98 levels of Al 9+ at Te = 106 K. ◦:

transitions with upper level n = 2; �: transitions with upper level n = 3; ⋄:

transitions with upper level n = 4; dashed lines: 20% fractional difference.

4.2 Low temperature

The effective collision strengths that we have presented so far have

been relevant to the temperature of peak abundance (of Al 9+) in

an electron collisional plasma, such as found in the solar atmo-

sphere and magnetic fusion devices. In photoionized plasmas the

same charge state exists at much lower temperatures. The role of

resonances becomes more important at low temperatures both with

respect to their magnitude, resolution and, in particular, their po-

sition. Fernández-Menchero et al. (2014a) carried-out an exhaus-

tive analysis of the convergence of the effective collision strengths

with respect to the energy step used to map-out the resonances.

They calculated the effective collision strengths Υ by convolution

of the ordinary collision strengths Ω with a Maxwellian electron

energy distribution. Then they reduced the energy step by a factor

one half and re-calculated Υ. After repeatedly reducing the energy

step down to a factor one eighth from the original one, the worst

case transition from the ground state, the 1 − 78, only changed by

10% relative to the previous value of Υ, at the lowest temperature

calculated of 2 × 104 K, and by 1% at 106 K.

We note that Aggarwal & Keenan (2015a) incorrectly re-

ported the energy step used in the resonance region by Fernández-

Menchero et al. (2014a). As they stated, Fernández-Menchero et al.

(2014a) used an energy step in the resonance region that scales as

∼ z in the ion charge, not z2, along the sequence. In particular the

step length used was 6.94 × 10−6z2 Ry for Al 9+, 4.89 × 10−6z2 Ry

for Cl13+, 4.09 × 10−6z2 Ry for K15+, 3.30 × 10−6z2 Ry for Ti18+,

and 2.02 × 10−6z2 Ry for Ge28+. These steps are comparable to the

ones used by Aggarwal & Keenan (2012, 2014a,c), being slightly

fi ner for Al9+, and slightly coarser for Ge28+. Fernández-Menchero

et al. (2014a) used this fi ne mesh only over 2J = 1 − 23, which

corresponds to their exchange calculation. They used their coarse

energy mesh across the resonance region as well for 2J = 25 − 89.

Such J-values can only give rise to high-n resonances, which by

defi nition are narrow. A simple calculation with  re-

veals that the strongest resonances have widths < 10−5 Ryd. Thus,

the results provided by Fernández-Menchero et al. (2014a) are con-

verged with respect to the collision energy step and all signifi cant

resonances are well resolved. Differences in low temperature effec-

tive collision strengths between Aggarwal & Keenan (2014c) and
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Figure 7. A comparison of effective collision strengths from 98- vs 238-

level CI/CC ICFT R-matrix calculations for all inelastic transitions amongst

the 98 lowest common levels of Al 9+ at Te = 2 × 104 K. ◦: transitions with

upper level n = 2; �: transitions with upper level n = 3; ⋄: transitions with

upper level n = 4; dashed lines: 20% fractional difference.

Fernández-Menchero et al. (2014a) can not be ascribed to the reso-

lution of the resonances.

The largest source of error in the low temperature effective

collision strengths arises from the inaccuracy in the positioning of

resonances which lie just above threshold when the temperature (in

energy units) starts to become comparable in magnitude with the

uncertainty in position of these resonances. To a fi rst approxima-

tion, this uncertainty in position is given by the difference between

the calculated and observed values for the energy level to which

the resonance is attached. In general, the specifi c level is not know,

without detailed resonance analysis. Energy level accuracy can be

improved theoretically via the use of pseudostates or purely ‘ex-

perimentally’ through the use of observed energies or by a com-

bination of theory and observation using term energy corrections.

Each has its limitations: the use of pseudostates can lead to pseu-

doresonances at higher energies while not all levels may be known

observationally. Storey et al. (2014) discuss the various considera-

tions that need to be made in order to calculate accurate data at very

low temperatures for planetary nebulae, for example.

Fig. 7 shows a comparison of 98- and 238-level CC ICFT ef-

fective collision strengths for transitions between the lowest com-

mon 98 levels of Al 9+ at a photoionized plasma temperature of

2 × 104 K (Kallman & Bautista 2001). The same energy grid was

used in both cases in the resonance region. Differences are much

larger than the ones seen at the temperature of peak abundance

in an electron collisional plasma, even for transitions between the

low-lying levels (n = 2). The increased differences in the effective

collision strengths is likely due to the position of the resonances,

especially where the 238-level CC effective collision strengths are

smaller than the 98-level ones. In addition, the systematic enhance-

ment of the effective collision strengths to n = 4 levels due to res-

onances attached to n > 4 is increased due to the greater relative

contribution from resonances; i.e. the lack of convergence of the

close-coupling expansion for these levels in the 98-level calcula-

tion becomes even more signifi cant. However, at low temperatures,

most modelling applications involve transitions from the ground

state, and perhaps a metastable. The factor exp(−∆E/kT ) arising in

the excitation rate coefficient means that only the lowest few ex-

cited levels are of interest, i.e. transitions within n = 2.

c© 2015 RAS, MNRAS 000, 1–11



8 L. F. Menchero et al

The inaccuracy in the position of the resonances makes ef-

fective collision strengths from both Fernández-Menchero et al.

(2014a) and Aggarwal & Keenan (2012, 2014a,c) increasingly un-

reliable at low temperatures. For example, if we shift all resonances

down in energy by 0.002 Ryd (comparable with the accuracy of

some energy levels) then the effective collision strength for the

1 − 4 : 2s2 1S0 − 2s2p 3Po
2

transition changes by a factor of 2 at

2 × 104 K, although this is reduced to a 20% effect by 2 × 105 K.

Nevertheless, such results can be used for estimation purposes.

4.3 High temperature

We calculate effective collision strengths over a wide range of tem-

peratures, as defi ned by the OPEN-ADAS adf04 fi le format viz.

2 × 102 − 2 × 106 (z + 1)2 K, to cover all possible applications

to electron-collisional plasmas. Higher temperature effective col-

lision strengths require ordinary collision strengths to higher en-

ergies, which in turn require the contribution from higher partial

waves, and this needs to be handled efficiently and accurately by

R-matrix calculations.

Aggarwal & Keenan (2015a) highlighted several transitions

(1−64, 1−70 and 1−80) for which they observed large differences

between the 238-level CI/CC ICFT results of Fernández-Menchero

et al. (2014a) and the 98-level CI/CC DARC ones of Aggarwal &

Keenan (2014c), particularly at high temperatures. They suggested

that the use of the Burgess & Tully (1992) formulae at high energy

was perhaps a major source of error, i.e. that the ICFT calcula-

tions did not go high enough in energy for the collision strengths to

have reached their asymptotic form. Aggarwal & Keenan (2015a)

also commented-on the neglect of electron exchange by Fernández-

Menchero et al. (2014a) at high-J.

The ‘top-up’ procedure used for angular momentum is

described in Fernández-Menchero et al. (2014a). In addition,

Fernández-Menchero et al. (2014a) included electron exchange for

angular momenta up to 2J = 23, and then used a non-exchange

calculation for the rest of the angular momenta calculated: 2J =

25− 89. (Aggarwal & Keenan (2014c) included exchange for all of

the angular momenta calculated, up to 2J = 91.) The method used

by Fernández-Menchero et al. (2014a) is not a source of signifi cant

inaccuracy. By 2J = 25 the smallest exchange multipole is larger

than 10. Neglect of higher exchange multipoles causes a small un-

derestimate at the highest temperatures for a few very weak highly

forbidden transitions, i.e. ones that not only have no target mix-

ing with allowed transitions (i.e. zero limit points) but also are not

strongly enhanced by coupling. By extending the inclusion of ex-

change to 2J = 51 we fi nd no transition differing by more than 5%

up to 2 × 107 K, rising to 10% at 2 × 108 K, for Al 9+.

With regards to energy, Fernández-Menchero et al. (2014a)

extended the outer region R-matrix calculation up to three times the

ionization potential, 88 Ry in the case of Al 9+. They then carried-

out a linear interpolation of the reduced collision strength, y, as a

function of the reduced scattering energy, x ∈ [0, 1], for dipole and

Born allowed transitions (while forbidden transitions were extrap-

olated) as follows.

For a given excitation, let E denote the fi nal scattered energy

(with ∆E the excitation energy still) and defi ne

ε =
E

∆E
. (5)

Then, at threshold (E = 0) ε = 0. Following Burgess & Tully

(1992), we divide all transitions into one of three cases to represent

0 0.2 0.4 0.6 0.8 1
Reduced energy

0

1×10
-2

2×10
-2

3×10
-2

4×10
-2

R
ed

u
ce

d
 c

o
ll

is
io

n
 s

tr
en

g
th

(a) 1 − 52 : 2s2 1S0 − 2s4p 1Po
1

0 0.2 0.4 0.6 0.8 1
Reduced energy

0

1×10
-4

2×10
-4

3×10
-4

4×10
-4

R
ed

u
ce

d
 c

o
ll

is
io

n
 s

tr
en

g
th

(b) 1 − 64 : 2s2 1S0 − 2p4s 1Po
1
;

0 0.2 0.4 0.6 0.8 1
Reduced energy

0

1×10
-5

2×10
-5

3×10
-5

4×10
-5

C
o

ll
is

io
n

 s
tr

en
g

th

(c) 1 − 70 : 2s2 1S0 − 2p4p 3P0

0 0.2 0.4 0.6 0.8 1
Reduced energy

0

1×10
-4

2×10
-4

R
ed

u
ce

d
 c

o
ll

is
io

n
 s

tr
en

g
th

(d) 1 − 80 : 2s2 1S0 − 2p4f 1F3

Figure 8. Reduced collision strengths versus energy from 238-level CI/CC

ICFT R-matrix calculations for selected transitions of Al 9+. ◦: denotes the

last finite calculated and infinite energy points; dashed line: indicates ex-

trapolation for a forbidden transition. (C = 2.)

(x, y), based-on their infi nite energy values y∞, or lack thereof, as

described in sec. 3.

• Dipole transitions

x = 1 −
lnC

ln (ε + C)

y =
Ω

ln (ε + e)
(6)

• Born transitions

x =
ε

ε + C

y = Ω (7)

• Forbidden transitions

x =
ε

ε + C

y = (ε + 1)α Ω (8)

where C is an arbitrary visual scaling parameter. In the last case,

formally, α = 2 in the infi nite energy limit. At high but fi nite en-

ergies, a more accurate approach is to determine α from two rea-

sonably well-separated high-energy points so as to take account

of enhancement or depletion of these weak high-energy collision

strengths by continuum coupling. This is carried-out automatically,

but restricted to the range α = 1− 3, i.e. within reasonable physical

bounds.

Fig. 8 shows the reduced collision strength in a Burgess–

Tully (x, y) plot from the 238-level CI/CC ICFT calculation for

Al 9+ by Fernández-Menchero et al. (2014a). Fig. 8(a) is for a

strong dipole transition 1 − 52 : 2s2 1S0 − 2s4p 1Po
1
, Fig. 8(b) the

dipole transition 1 − 64 : 2s2 1S0 − 2p4s 1Po
1

which takes place

through confi guration mixing, Fig. 8(c) the Born-allowed transi-

tion 1−70 : 2s2 1S0 − 2p4p 3P0 which also takes place only through

confi guration mixing, and Fig.8(d) is for the forbidden transition

1−80 : 2s2 1S0 − 2p4f 1F3 which is a very weak two-electron jump.

An automatically determined value of α = 1 for this transition was

used to extrapolate the reduced collision strength as a function of

reduced energy — see equation 8. Fig. 8 shows that all of the tran-
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sitions have reached the assumed asymptotic form. What then is

the source of the differences in high temperature effective collision

strengths noted by Aggarwal & Keenan (2015a)? The answer lies

in the atomic structure.

In Table 4 we compare effective collision strengths from the

98- and 238-level CI/CC ICFT calculations with the 98-level CI/CC

DARC ones (Aggarwal & Keenan 2014c). We note fi rst that results

for the strong dipole transition 1 − 21 are independent of atomic

structure (98- vs 238-level CI y∞ = 4S/3) and close-coupling ex-

pansion (98- vs 238-level CC Υ). However, if we consider the weak

dipole transition 1 − 64 we see that the limit value (y∞) is a fac-

tor 6.2 larger for the 98- vs 238-level CI (Breit–Pauli) case and

this leads to a factor of 2.08 in the corresponding ICFT effective

collision strengths at 2 × 107 K. Indeed, the difference in effective

collision strengths would likely be larger were it not for the fact

that the 238-level CI/CC is (much) larger at (much) lower tempera-

tures due to additional resonances and coupling. The DARC struc-

ture limit point reported by Aggarwal & Keenan (2015a) is similar

to the 98-level CI Breit–Pauli one. Correspondingly, the 98-level

CI/CC DARC and ICFT effective collision strengths agree to within

∼ 20% over the entire temperature range shown in Table 4.

For the case of the (weak) Born-allowed transition 1 − 70 we

see a similar trend in the comparisons, viz. differences in structure

(y∞) leading to corresponding differences in high temperature ef-

fective collision strengths, strong resonance enhancement at lower

temperature for the 238- vs 98-level CI/CC results and agreement

to within 30% between the DARC and ICFT 98-level CI/CC re-

sults. (Aggarwal & Keenan (2015a) do not report Born limits for

this transition, but clearly the sensitivity to atomic structure we see

reflected in the two Breit–Pauli Born limits accounts for the remain-

ing difference.) Finally, for the weak forbidden 1 − 80 transition

we note a very similar set of comparisons as for the 1 − 70 tran-

sition, indeed, the DARC and ICFT 98-level CI/CC results agree

more closely (20%). The 238-level CI/CC ICFT result is increas-

ingly enhanced by resonances over the 98-level CI/CC one at low

temperatures, by a factor 15 at 2 × 104 K. We note that including

higher-J exchange multipoles does not change the effective colli-

sion strength to 3 s.f. even at the highest temperature considered.

There are several equally forbidden transitions (1 − 61, 68, 69, not

shown) for which the pattern of dis/agreement is very similar to that

for the 1 − 80, in all cases.

In summary, the results of the 98-level CI/CC DARC calcula-

tion of Aggarwal & Keenan (2014c) are in much closer agreement

(indeed, no signifi cant differences) with the present 98-level CI/CC

ICFT results than the 238-level CI/CC ones across a wide range

of temperatures for all of the transitions highlighted by Aggarwal

& Keenan (2015a). However, the results of the calculations ob-

tained using the 238-level CI target have a better converged atomic

structure and, correspondingly, give more accurate effective colli-

sion strengths, especially at high temperatures, while the much bet-

ter convergence of the 238-level close-coupling expansion provides

more accurate results across a wide range of temperatures.

5 CONCLUSIONS

Reliable and accurate electron-impact excitation data are key to the

successful spectroscopic diagnostic modelling of non-LTE plas-

mas. We have compared and contrasted differences in such data

for the benchmark Be-like Al 9+ ion which we have calculated us-

ing the R-matrix method. Such differences arise through: 1) differ-

ing approximations of relativistic effects, 2) uncertainties in atomic

structure and 3) errors due to the lack of convergence of the close-

coupling expansion. Error 3) is quantifi able and can be reduced sys-

tematically and reliably — we illustrated this by comparing new

98-level and previous 238-level CC ICFT R-matrix calculations.

We fi nd that effective collision strengths to n = 4 levels are sig-

nifi cantly enhanced over a wide range of temperatures by coupling

to n > 4 levels. Uncertainty 2) is quantifi able but is more difficult

to reduce and constrain as an error — we compared 98-level and

238-level confi guration interaction expansion calculations of line

strengths and infi nite energy plane-wave Born collision strengths

to illustrate this point. Again, transitions to n = 4 levels are most

susceptible to lack of convergence but now of the confi guration in-

teraction expansion. Differences 1) between ICFT and Breit-Pauli

R-matrix treatments of relativistic effects are small, and negligible

relative to 2) and 3), as is to be expected for an element which

lies below Zn. We illustrated this by a comparison of new 98-level

CI/CC ICFT and Breit–Pauli R-matrix effective collision strengths

which use the exact same atomic structure. We also fi nd good ac-

cord between our 98-level CI/CC results and previous ones from a

98-level CI/CC Dirac–Coulomb R-matrix calculation, particularly

for transitions from the ground-level.

However, based-upon the study of effects 1), 2) and 3), we

conclude that the original 238-level CI/CC ICFT R-matrix results

are the most complete to-date with respect to convergence of both

the confi guration interaction and close-coupling expansions and a

reliable treatment of relativistic effects. Or to put it more simply,

the earlier 238-level CI/CC ICFT work (Fernández-Menchero et al.

2014a) has a superior target to the 98-level CI/CC DARC one (Ag-

garwal & Keenan 2014c) and provides more accurate atomic data.

Thus, we fi nd to be false the recent conjecture by Aggarwal

& Keenan (2015a) that the ICFT approach may not be completely

robust. Their conjecture was based upon a comparison of 98-level

CI/CC Dirac R-matrix effective collision strengths (Aggarwal &

Keenan 2014c) with those from 238-level CI/CC ICFT R-matrix

calculations (Fernández-Menchero et al. 2014a). Rather, Aggarwal

& Keenan (2015a) have failed to appreciate the size of the effect

which the lack of convergence, in both the close-coupling and con-

fi guration interaction expansions, has on transitions to the higher-

lying states (n = 4 in the case of a 98-level CI/CC expansion for

Al 9+). This can only be quantifi ed by extending the expansions.

There is nothing special about Al 9+ with regards to the conver-

gence of the close-coupling expansion. Except perhaps at the low-

est charge states, as they discussed, the effective collision strengths

for all ions in the Be-like sequence, from B+ to Kr32+ calculated

by Fernández-Menchero et al. (2014a)4 using the 238 level CI/CC

expansion are the most complete and reliable to-date. The use of a

98 level CI/CC expansion for Al 9+ (Aggarwal & Keenan 2014c),

Cl13+, K15+, Ge28+ (Aggarwal & Keenan 2014a) and Ti18+ (Aggar-

wal & Keenan 2012) means that these effective collision strengths

for transitions up to n = 4 are increasingly an underestimate over

4 Fig. 5 of the paper of Fern´andez-Menchero et al.(2014a) compared their

effective collision strengths for the transition 2s2 1S0 − 2s2p 3P1 of P11+

with the corresponding interpolated results from Keenan (1988). The fit-

ting coefficients of Keenan (1988) were taken in numerical form from CHI-

ANTI v7.1 rather than being transcribed from the original paper. However,

one of the coefficients was missing a sign, as pointed out by Aggarwal &

Keenan (2015a). This will be corrected in the next release of CHIANTI.

The calculated results of Fern´andez-Menchero et al.(2014a) for this transi-

tion are now only 50% larger than the interpolated ones (Keenan 1988) at

the temperature of peak abundance (1.8 × 106 K), for example.

c© 2015 RAS, MNRAS 000, 1–11



10 L. F. Menchero et al

Table 4. Comparison of effective collision strengths, Υ, at selected finite temperatures, and the reduced quantity y∞ at infinite temperature. See Table 2 for

the transition indices i, j.

DARC ICFT

i– j 98-level CI/CC 98-level CI/CC 238-level CI/CC

T (K) 2 × 104 106 2 × 107 2 × 104 106 2 × 107 ∞ 2 × 104 106 2 × 107 ∞

1–52 1.09 (−2) 1.01 (−2) 3.01 (−2) 1.14 (−2) 1.02 (−2) 3.20 (−2) 2.40 (−2) 1.53 (−2) 9.68 (−3) 3.22 (−2) 2.64 (−2)

1–64 5.49 (−4) 1.78 (−4) 1.70 (−4) 5.80 (−4) 1.80 (−4) 1.96 (−4) 1.01 (−4) 3.12 (−3) 2.94 (−4) 9.40 (−5) 1.63 (−5)

1–70 2.68 (−5) 1.26 (−5) 5.29 (−6) 3.48 (−5) 1.11 (−5) 4.24 (−6) 2.68 (−6) 6.99 (−5) 3.10 (−5) 2.18 (−5) 2.18 (−5)

1–80 4.52 (−5) 2.51 (−5) 8.45 (−6) 4.63 (−5) 2.47 (−5) 7.05 (−6) − 7.04 (−4) 8.66 (−5) 1.09 (−5) −

Notes. DARC: Aggarwal & Keenan (2014c); 98-level ICFT: present work; 238-level ICFT: Fern´andez-Menchero et al.(2014a). A (B) denotes A × 10B.

a wide range of temperatures, including the temperature of peak

abundance.

There is nothing special about Be-like ions. The 136-level CC

DARC calculations of Aggarwal & Keenan (2014b) for Fe13+ are

shown to be a systematic underestimate compared to the 197-level

CC ICFT calculations of Liang et al. (2010) (in addition, Liang et

al. used a much larger CI expansion 2985 vs 136 levels) — see Del

Zanna et al (MNRAS to be submitted) for another detailed anal-

ysis similar to the present paper’s. The convergence of the close-

coupling expansion increasingly affects the accuracy of collision

data to the highest-lying states in all R-matrix calculations. Like-

wise, the accuracy of the atomic structure becomes more uncertain

for the most highly-excited states of the confi guration interaction

expansion.

In general, care must be exercised when comparing collision

data calculated using different atomic structures and / or close-

coupling expansions lest one draws false conclusions. Finally,

given Figs 1 and 3 and Table 3, we suggest that it is fanciful to

assign a single accuracy rating of 20%, say, to an entire collision

data set.
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NOTE IN ADDED PROOF

Subsequent to the submission of the original manuscript, an-

other paper by Aggarwal & Keenan (2015b) has appeared, this

time on Be-like C2+, making much the same claims that have

just been refuted, quite generally, above. Aggarwal & Keenan

(2015b) have extended their CI/CC expansion up to n = 5 this

time, but this 166-level expansion still falls short of the 238-

level expansion up to nl = 7d of Fernández-Menchero et al.

(2014a). This may reduce the systematic differences (understi-

mates) of their results up to n = 4 somewhat compared to those

of Fernández-Menchero et al. (2014a) but the low-charge state

means that the errors and uncertainties due to the difference

between the two atomic structures will be much larger than for

Al9+. Arguably, a Breit–Pauli R-matrix with pseudo-states cal-

culation is required for C2+ to give a definitive representation

of the CI/CC expansion for all level-resolved transitions.
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