
Strathprints Institutional Repository

Al Azwari, Sana and Wilson, John N. (2015) Consistent RDF updates with

correct dense deltas. In: Data Science. Springer, pp. 74-86. ISBN 978-3-

319-20423-9 , http://dx.doi.org/10.1007/978-3-319-20424-6_8

This version is available at http://strathprints.strath.ac.uk/53083/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/29183894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Consistent RDF Updates with Correct Dense Deltas

Sana Al Azwari and John N. Wilson

Department of Computer & Information Sciences, University of Strathclyde, Glasgow, UK,

{sana.al-azwari,john.n.wilson}@strath.ac.uk

Abstract. RDF is widely used in the Semantic Web for representing ontology

data. Many real world RDF collections are large and contain complex graph

relationships that represent knowledge in a particular domain. Such large RDF

collections evolve in consequence of their representation of the changing world.

Although this data may be distributed over the Internet, it needs to be managed

and updated in the face of such evolutionary changes. In view of the size of typ-

ical collections, it is important to derive efficient ways of propagating updates to

distributed data stores. The contribution of this paper is a detailed analysis of the

performance of RDF change detection techniques. In addition the work describes

a new approach to maintaining the consistency of RDF by using knowledge em-

bedded in the structure to generate efficient update transactions. The evaluation

of this approach indicates that it reduces the overall update size at the cost of

increasing the processing time needed to generate the transactions. . . .

Keywords: RDF updates·inferencing·pruning

·

1 Introduction

Resource Description Framework (RDF) is an annotation language that provides a

graph-based representation of information about Web resources in the Semantic Web.

Because RDF content (in triple form) is shared between different agents, a common

interpretation of the terms used in annotations is required. This interpretation is typ-

ically provided by an ontology expressed as RDF Schema (RDFS) or Web Ontology

Language (OWL). Both RDFS and OWL are expressed as RDF triples. The schema

provides additional semantics for the basic RDF model. In any particular data collec-

tion, changes in the domain that are reflected by evolution of the ontology may require

changes in the underlying RDF data. Due to the dynamic and evolving nature of typical

Semantic Web structures, RDF data may change on a regular basis, producing succes-

sive versions that are available for publication and distribution [4]. In the context of

such dynamic RDF data collections, which may be very large structures, it quickly be-

comes infeasible to store a historic sequence of updates in any accessible form as a

consequence of the significant storage space needed. An alternative solution to prop-

agation and storage of successively updated copies of a data collection is to compute

the differences between these copies and use these as a means of transforming the base

data structure into subsequent versions. These differences (the delta) show triple con-

tent that has been changed between two RDF models and can be used to transform

one RDF model into another. Rather than storing all versions of a data structure, it is

only necessary to store one version and retain the capability of restoring any version of

interest by executing the consecutive deltas.

The work presented in this paper addresses the problem of change detection in RDF

knowledge bases. An important requirement of change detection tools is their ability

to produce the smallest correct delta that will efficiently transform one RDF model to

another. This is a particularly important problem when RDF collections are large and

dynamic. In this context, propagation between server and client or between nodes in a

peer-to-peer system becomes challenging as a consequence of the potentially excessive

use of network bandwidth. In a scenario where RDF update is carried out by push-

based processes, the update itself needs to be minimised to restrict network bandwidth

costs. In addition, in pull-based scenarios, it is important to limit server processing so

that updates can be generated with maximum efficiency. The contribution of this work

is an approach for using the smallest deltas that will maintain the consistency of an

RDF knowledge base together with an evaluation of the performance challenges of

generating this structure.

2 Related Work

Managing the differences between RDF knowledge bases using deltas is an important

task in the ontology evolution process. because they allow the synchronization of on-

tology changes [2], the update of ontologies to newer versions, and the reduction of

storage overhead required to hold ontology versions [8]. Changes between ontologies

can be detected using change detection tools that report changes in low-level (RDF)

or high level (ontology) structures. High-level change detection techniques typically

focus on exploiting semantic variation between ontologies. Example of these tools in-

clude SemVersion [9] and PromptDiff [6]. High-level changes may involve adding or

generalising domains or renaming classes [7]. By contrast, low-level change detection

techniques focus on reporting ontology changes in terms of simple change operations

(i.e. add/delete triples). These tools differ in the level of semantic complexity repre-

sented by the ontology languages. Work in low-level change detection tools focuses on

the exploitation of useful properties for producing deltas (e.g. the delta size and the

level of execution semantics) that can be interpreted by both human and machine.

For example, Zeginis et al. [10] proposed three RDF/S differential delta functions

associated with the inferred knowledge from RDFS knowledge bases: dense (∆D);

dense & closure (∆DC) and explicit & dense (∆ED). These deltas vary in the appli-

cation of inference to reduce their size and are explained in greater detail in Section 3.

Results show that ∆D produced the smallest delta but was prone to ambiguity and

may potentially produce inconsistently updated RDF knowledge bases. In this paper,

we characterise ∆Dc, which is a correction method for ∆D that supports consistency

when updating an RDF knowledge base. We demonstrate the correctness of ∆Dc and

evaluate ∆Dc, ∆ED and ∆E in terms of delta size and the processing performance of

producing the deltas using different sizes of synthetic datasets.

M M
′

(Graduate subClassOf Person), (Head Teacher subClassOf Teacher),

(Student subClassOf Person), (Teacher subClassOf Staff),

(Head Teacher subClassOf Staff), (Staff subClassOf Person),

(Teacher subClassOf Staff), (Graduate subClassOf Student),

(Staff subClassOf Person), (Student subClassOf Person),

(John type Student). (Teacher subClassOf Person),

(Head Teacher subClassOf Person),

(John type Person).

Fig. 1. Sample data structure before and after update

∆E = {Del (Graduate subClassOf Person),

Del (Head Teacher subClassOf Staff),

Del (John type Student)}
∪ {Ins (Head Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student),

Ins (Teacher subClassOf Person),

Ins (Head Teacher subClassOf Person),

Ins (John type Person)}

Fig. 2. The explicit delta

∆ED = {Del (John type Student)}
∪ {Ins (Head Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student),

Ins (Teacher subClassOf Person),

Ins (Head Teacher subClassOf Person),

Ins (John type Person)}

Fig. 3. The explicit dense delta

3 RDF Change Detection Techniques

RDF updates allow low-level triple operations for insertion and deletion that were for-

malised by Zeginis et al [10]. In the context of the two example RDF models M and M ′

in Figure 1, the naı̈ve way of generating the delta involves computing the set-difference

between the two versions using the explicit sets of triples forming these versions. The

explicit delta (∆E) contains a set of triples to be deleted from and inserted into M in

order to transform it into M ′.

Definition 1 (Explicit delta). Given two RDF models M and M ′, let t denote a triple

in these models, Del denote triple deletion which is calculated by M − M ′, and Ins

denote triple insertion which is calculated by M ′ −M . The explicit delta is defined as:

∆E = {Del(t) | t ∈ M −M ′} ∪ {Ins(t) | t ∈ M ′ −M}

From the example in Figure 1, the delta obtained by applying the above change detec-

tion function is shown in Figure 2.

Executing these updates against M will correctly transform it to M ′. However, this

function handles only the syntactic level of RDF and does not exploit its semantics. In

the latter context, executing some of the updates in ∆E is not necessary as they can

still be inferred from other triples. For instance, we can observe from the example in

Figure 1 that deleting (Graduate subClassOf Person) from M , in order to transform it

into M ′, is not necessary as this triple can still be inferred from the triples (Graduate

subClassOf Student) and (Student subClassOf Person) in M ′. Since this update is not

necessary, it is useful to remove it from the delta. RDF data is rich in semantic content

and exploiting this in the process of updating RDF models can minimize the delta size

and therefore the storage space and the time to synchronize changes between models.

Unnecessary updates can be avoided by applying a differential function that sup-

ports reasoning over the closure of an RDF graph. In RDF inference, the closure can

be calculated in order to infer some conclusions from explicit triples. This process is

carried out by applying entailment rules against the RDF knowledge base. In this work,

we consider the RDFS entailment rules provided by the RDFS semantics specification

[3]. This specification contains 13 RDFS entailments rules, however only the rules that

have an effect on minimizing the delta size are used in the current approach for change

detection. These rules are shown in Table 1.

Definition 2 (Closure). Let t be a triple with subject, predicate, object (SPO). The

closure of M is defined as M extended by those triples that can be inferred from the

graph M. The closure of an RDF graph M is denoted by:

C(M) = M ∪ {t ∈ (SPO) | M |= t}

Example 1. Let M = {a subClassOf b, b subClassOf c} then the closure of M will

contain these triples and a further triple {a subClassOf c}.

The rules in Table 1 can be used in the explicit dense function (∆ED), which com-

bines both explicit and inference approaches for computing the delta. The inserted set

of triples is computed explicitly as in ∆E, while the delete set is computed based on

inference using the rule set.

Definition 3 (Explicit dense delta). Let M, M’, Del(t), Ins(t) be as stated in Definition

1. Additionally let C(M ′) denote the closure of M ′. ∆ED is defined as:

∆ED = {Del(t) | t ∈ M − C(M ′)} ∪ {Ins(t) | t ∈ M ′ −M}

Applying this function to the example in Figure 1 produces the delta shown in Figure 3.

The inserts in this delta are achieved by explicitly calculating the set difference M ′−M

to provide the set of triples that should be inserted to M in order to transform it into

M ′. On the other hand, the set of deleted triples is achieved by calculating the closure

of M ′ using the RDFS entailment rules to infer new triples and add them to M ′. From

the example, the inferred triples in M ′ are:
(Teacher subClassOf Person)

(Head Teacher subClassOf Person)

(Head Teacher subClassOf Staff)

(Graduate subClassOf Student)

These inferred triples are then added to M ′ to calculate the set difference M − C(M ′)
which results in only one triple to delete: (John type Student). The number of updates

produced by this delta is smaller than the one produced by the ∆E as a result of the

inference process.

The effect of the inference process in minimising ∆ED was limited to applying

the inference rules when computing the deleted set of triples only. Applying inference

If KB contains Then add to KB

rdfs1 s rdf:type x and x rdfs:subClassOf y s rdf:type y

rdfs2 x rdfs:subClassOf y and y rdfs:subClassOf z x rdfs:subClassOf z

rdfs3 p rdfs:subPropertyOf q and q rdfs:subPropertyOf r p rdfs:subPropertyOf r

Table 1. Relevant rules

Algorithm 1: Generation of the corrected dense delta ∆Dc

Data: M ,M ′

Result: ∆Dc

1 Del = M −M ′;

2 Ins = M ′ −M ;

3 for a ∈ Del do

4 if inferable(a, M ′) then

5 remove a from Del;

6 for b ∈ Ins do

7 if (inferable(b, M)) and (all antecedents of b /∈ Del) then

8 remove b from Ins;

9 ∆Dc = Del ∪ Ins;

rules for computing the inserted triples may further reduce the number of updates. For

example, inserting the three triples (Teacher subClassOf Person), (Head Teacher sub-

ClassOf Person) and (John type Person) into M may not be necessary because these

triples implicitly exist in M and can be inferred in M using the RDFS entailment rules.

In this example, applying rdfs1 to M would infer (John Type Person) while the other

two triples could be inferred using rdfs2. The application of inference over both the

insert and delete sets produces the dense delta (∆D).

Definition 4 (Dense delta). Let M, M’, Del(t), Ins(t) be as stated in Definition 1. The

dense delta is defined as:

∆D = {Del(t) | t ∈ M − C(M ′)} ∪ {Ins(t) | t ∈ M ′ − C(M)}

Figures 4(a) and 4(b) illustrate the distinction between ∆ED and ∆D. In the former

only the deletes that are not in C(M ′) need to be carried out. In this case, C(M) is not

checked to see whether all of the planned inserts need to be applied. In the case of ∆D,

deletes are handled in the same way as in ∆ED however inserts are only applied if they

are not in C(M). This results in minimising both delete and insert operations.

From the example in Figure 1, the updates generated by applying (∆D) are shown in

Figure 5. ∆D is smaller than either ∆E or ∆ED with only three updates to transform

M to M ′. However, in contrast to ∆E and ∆ED, ∆D does not always provide the

correct delta to carry out the transformation. In this case, applying ∆D to transform M

into M ′ will transform M as shown in Figure 7. This delta function does not correctly

update M to M ′ because when applying the updates, (John type Person) is not inserted

into M and cannot be inferred in M after the triple (John type Student) has been deleted.

4 Checking the Dense Delta

The contribution of this work is a solution to the correctness of ∆D.

∆ D(b)(a) ∆ED

C(M)

M
M’

C(M’)

D
el

et
es

U
n

ch
an

g
ed

In
se

rt
sA B

M
M’

C(M’)

D
el

et
es

U
n

ch
an

g
ed

In
se

rt
sA

A − deletes that are still in C(M’) once M’ has been generated

B − inserts that are already in C(M) before it is updated

Fig. 4. The distinction between ∆ED and ∆D.

∆D = {Del (John type Student)}
∪ {Ins (Head Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student) }

Fig. 5. The dense delta (∆D)

∆Dc = { Del (John type Student)}
∪ {Ins (Head Teacher subClassOf Teacher),

Ins (Graduate subClassOf Student),

Ins (John type Person)}

Fig. 6. The corrected dense delta ∆Dc

Definition 5 (Corrected dense delta). Let ∆E, C(M) and C(M ′) be as defined pre-

viously and additionally let s → t indicate that s is an antecedent of t. The corrected

dense delta ∆Dc is defined as

∆Dc = ∆E−({Del(t) | t ∈ C(M ′)}∪{Ins(t) | t ∈ C(M)∧{s → t | s 6∈ Del(t)}})

Under the semantics of the subset of RDFS rules in Table 1 all deltas are unique with

respect to the difference between C(M) and C(M ′). ∆Dc does not require M or M ′

to be closed and consequently it is not unique.

The corrected dense delta is produced by checking triples in both the insert and

delete sets of ∆E. Firstly, the delete set should be calculated before the insert set.

Secondly, all antecedents for each inferred triple must be checked to see whether they

exist in the delete set. If one or both antecedents exist in the delete set then this triple

cannot be inferred. To calculate the closure for M in order to compute the insert set, if

two triples in M point to a conclusion based on the rules, then these triples are checked

against the deleted set. The conclusion cannot be true if at least one of the two triples

exists in the delete set, otherwise, the conclusion is true and the triple can be inferred in

M . This process (Algorithm 1) produces the corrected dense delta ∆Dc.

Because the delete set is calculated first, the triple (John Type Person) will not be

inferred from (John Type Student) and (Student SubclassOf Person) given that the for-

mer is included in the delete set. The delta will result in the updates shown in Figure 6.

Applying these updates to M will result in the model in Figure 8. This model is iden-

tical to M ′, indicating the correctness of ∆Dc. The number of updates after fixing the

incorrectness problem is increased but it produces a correct delta. However, this num-

ber is smaller than the number of updates produced by ∆ED or equal to it in the worst

case. In such a worst case, none of the inserted triples in ∆Dc can be inferred in M

because either there are no triples that can be inferred or at least one of the antecedents

of every inferable triple is included in the delete set.

M

(Graduate subClassOf Person),

(Student subClassOf Person),

Original (Head Teacher subClassOf Staff),

triples (Teacher subClassOf Staff),

(Staff subClassOf Person),

(John Type Student).

Inserted (Head Teacher subClassOf Teacher),

triples (Graduate subClassOf Person).

Fig. 7. Incorrect updates

M

(Graduate subClassOf Person),

(Student subClassOf Person),

Original (Head Teacher subClassOf Staff),

triples (Teacher subClassOf Staff),

(Staff subClassOf Person),

(John Type Student).

Inserted (Head Teacher subClassOf Teacher),

triples (Graduate subClassOf Person).

(John Type Person)

Fig. 8. Correct updates

Both ∆ED and ∆Dc functions discussed above apply inference-then-difference

strategy. This implies that the full closure of the RDF models should be calculated and

all the possible conclusions under the RDFS entailment rules are stored in these models.

By contrast, a backward inference approach uses the difference-then-inference strategy.

That is, instead of computing the entire closure of M ′, in the case of ∆ED, this method

calculates first the set-differences M −M ′ and M ′ −M , and then checks every triple

in M −M ′ and removes it if it can be inferred in M ′. The operation becomes:

Remove t from (M −M ′) if t ∈ C(M ′)

Instead of pre-computing the full closure in advance, this method infers only triples

related to the result of M −M ′. This would be expected to improve the time and space

required in change detection by comparison with the forward inference approach.

In the example dataset shown in Figure 1, to calculate ∆ED using the backward

inference strategy, the sets of inserted and deleted triples are calculated using set-

difference operation in the same way as when calculating ∆E. After calculating the

changes at the syntactic level, each triple in the delete set is checked to see if it can

be inferred in M ′ using the RDFS entailment rules. For example, the triple (Graduate

subClassOf Person) in M − M ′ is checked to see if it can be derived in M ′. Using

the RDFS entailment rules this triple can be derived from the two triples (Graduate

subClassOf Student) and (Student subClassOf Person), therefore, this triple is removed

from M − M ′. Rather than checking all the triples in M ′, only the three triples in

M −M ′ are checked.

For applying the backward inference in ∆Dc, first the set of deleted triples in M −
M ′ is inferred as explained above, then the set of inserted triples in M ′ − M is also

checked to see if it can be derived in M . However, to guarantee the correctness of the

delta, before removing the inferable triples from the delta, antecedents of each inferable

triple in M ′−M are checked to see if at least one of them exists in M−M ′. If this is the

case, this triple cannot be removed from the delta. Algorithm 1 describes the generation

of ∆Dc by backward inference.

Both forward inference and backward inference produce the same delta, but the

latter applies the inference rules on only the necessary triples. However, although the

backward inference method is applied to infer only relevant triples, applying the in-

ference on some of these triples might be unnecessary allowing pruning to be applied

before backward inference [4]. The general rule for pruning is that if the subject or ob-

ject of a triple in M − M ′ or M ′ − M does not exist in M ′ or M , respectively, then

Reduction strength1

Versions M ∆E ∆ED ∆Dc ∆D ∆ED ∆Dc ∆D

(M − M1
′) 121374 48136 47270 44270 44212 1.8% 8.0% 8.2%

(M − M2
′) 127374 126710 125228 119228 119098 1.2% 5.9% 6.0%

(M − M3
′) 139374 230372 227334 215334 214926 1.3% 6.5% 6.7%

(M − M4
′) 157374 343594 338663 317662 317109 1.4% 7.5% 7.7%

(M − M5
′) 169374 412233 406129 379129 378482 1.5% 8.0% 8.2%

Table 2. Triple counts used in evaluation.

Abbr. delta

E explicit

EDFI explicit dense, forward inference

EDBI explicit dense, backward inference

EDPBI explicit dense, pruned,backward inf.

DcFI corrected dense,forward inference

DcBI corrected dense, backward inference

DcPBI corrected dense, pruned, backward inf.

Table 3. Change detection techniques.

this triple cannot be inferred, consequently the triple can be pruned before the inference

process begins. Although pruning may reduce the workload for inferencing, it carries a

potential performance penalty [1].

5 Results and Discussion

To evaluate the correction method described above in the context of ∆E and ∆ED, the

correctness, processing time and delta size of updates to enhanced RDF KBs of different

sizes are assessed. The objective of this evaluation is to compare the different delta

computation methods (i.e. ∆E, ∆ED, ∆Dc) and approaches (i.e. forward inference

(FI), backward inference (BI) and pruned backward inference (PBI)) by measuring and

comparing their delta computation times over synthetic datasets and by validating their

effect on the integrity of the resulting RDFS KBs.

The dataset contains both the Gene Ontology (GO) vocabulary and associations

between GO terms and gene products including the Uniprot Taxonomy. This data set

was chosen because it is frequently updated, with a new version being released every

month. The dataset includes five versions selected to show a range of values over the

period 2005 and 2014. Using this dataset, the oldest version (i.e. the 2005 version) was

transformed to five versions released between 2006 and 2014. This gradually increases

the delta size with a consequent effect on the performance of the different change detec-

tion methods. The real-world data was enhanced by synthetic data prepared by incor-

porating 20% additional triples representing subClass, subProperty and type properties.

Synthetic data was added to ensure that subProperty rule was exercised and to arrange

for the model to contain redundant triples (i.e. explicit data that can also be inferred

from antecedents). The level of enhancement was chosen to secure a measurable effect

without obscuring the structure of the original data.

Using the enhanced datasets, change detection techniques shown in Table 3 were

implemented. A triple store was constructed in MySQL to handle the RDF collections

and the deltas. Indexing was excluded to preserve the validity of the use-case. The

Jena framework was used to read the RDF dataset into the triple store and to validate

change detection techniques by comparing the updated RDF dataset with the target

RDF dataset. All experiment were performed on Intel Xeon CPU X3470 @ 2.93GHz -

1 cpu with 4 cores and hyperthreading, Ubuntu 12.04 LTS operating system and 16GB

memory. Garbage collection and JIT compilation were controlled.

1 Reduction strength is the percentage reduction achieved by inference i.e.
|∆E|−|∆ED|

|∆E|
or

|∆E|−|∆Dc|
|∆E|

Fig. 9. Inference time Fig. 10. Reasoning times

Fig. 11. Delta time Fig. 12. Delta size

Table 2 and Figure (9-12) report the delta sizes and the delta computation times,

respectively. From Table 1, the deltas produced by ∆E exceed those of ∆ED and ∆D.

These deltas are smaller than those produced by ∆E as a consequence of applying

inference on the delete set of triples (∆ED) and ∆Dc further reduces the deltas as a

result of inferring both the delete and insert set of triples when calculating the deltas.

∆D in turn may be smaller than ∆Dc but its application in the update process may lead

to an inconsistent result as noted in Figure 7.

In Figure 9 it can be seen that of the deltas evaluated in these experiments, EDBI

and the pruned version of the same approach can be generated with the lowest infer-

ence time. This is a consequence of both the efficiency of backward inference and the

application of inference only to the delete set. At the other end of the spectrum, forward

inference methods are slower, as a consequence of the time needed to produce the clo-

sure for both models. Forward inference is expensive but becomes useful where models

are being queried. However since the focus of this work is updating models, backward

inference is a more appropriate approach.

Pruning generally helps to further reduce the inference time however the process

adds further expense. Figure 10 shows the reasoning time (i.e the time taken up by

both inferencing and pruning). This indicates that for the data structure used, the time

Fig. 13. Comparison of delta approaches.

required to carry out pruning exceeds the inference time both for ∆Dc and ∆ED.

This is consistent with previous findings [1]. The overall delta time shown in Figure 11

indicates that taking account of set difference operations, inferencing and pruning, ap-

proaches that prune the delta set tend to require significantly more processing power

than non-pruning approaches. Overall, the ∆E is the fastest process since no pruning

or inferencing is carried out. The delta sizes shown in Figure 12 indicate that apply-

ing inference on this data set reduces the updates that need to be executed, particularly

when it is applied to both the insert and delete sets.

The relationship between Figures 11 and 12 is summarised in Figure 13, which is

based on the average delta size and average generation time for all the data models.

Figure 13 shows the interaction between the degree of inference (i.e. the delete set

and/or the insert set or no inference at all) and the approach to inferencing (i.e. inferring

all triples or only necessary triples) and their impact on the delta size and the delta

computation time. It can be seen that ∆Dc has the smallest delta size compared to

∆ED and ∆E. It can also be seen that the approach to inferencing affects the delta

computation time. Figure 13 indicates that ∆Bc is more efficient (i.e smaller delta size

and faster generation) than the other methods tested. Overall, Figure 12 shows that the

computation time increases in the sequence of explicit, backward inference, pruned

backward inference, forward inference whereas the delta size increases in the sequence

∆Dc, ∆ED, ∆E.

The consistency of M ′ after delta application was evaluated by comparing the in-

memory M ′ produced by applying the delta to M in the database with the original in-

memory M ′ using the Jena isIsomorphic method. Applying ∆Dc using the approach

described above was found to result in the same M ′ as that used to generate the delta.

By contrast, tests carried out to assess the consistency of applying the uncorrected ∆D

indicate that in all the models tested, this approach always failed to produce consistent

updates.

The overall effect of these results is to indicate that ∆Dc provides a viable route to

minimising the data that would need to be transferred from a server to a client in order

to update copies of an RDF data store. Pruning may assist this process but comes at a

cost of additional processing time, which may be unacceptable in a peer-to-peer context

or where updates need to be generated on demand.

By contrast with inference strength2 [10, p 14:20], reduction strength shown in Ta-

ble 2 indicates when the size of ∆E, ∆ED and ∆Dc are different i.e. when inference

is capable of making a difference to the size of the delta. When the inference strength

is zero, there are no inferences to be made and the model is closed. Under these cir-

cumstances, |∆E| = |∆Dc|. However, |∆E| may still be equal to |∆Dc| when the

inference strength is greater than zero. This occurs when, for example, none of the

triples in the delta are inferable in M .

Example 2. Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and

M ′ = {w subClassOf x, x subClassOf y, y subClassOf z, n subClassOf r}. Un-

der these circumstances, ∆E = {ins{n subClassOf r}} and since this triple can not

be inferred in M, ∆Dc = {ins{n subClassOf r}}. Using the expression in footnote 2,

the inference strength has a value of 1 but |∆E| = |∆Dc| i.e. the inference strength is

significantly different from zero but there are no inferred triples. This contrasts with the

definition provided by [10, p 14:20], which states that inference strength is proportional

to the count of inferable triples. Alternatively, the reduction strength in this example is

zero, thereby providing an effective guide to indicate when |∆E| = |∆Dc|, which is

not clearly shown by the inference strength.

Both inference strength and reduction strength also give an indication of the work

load of pruning. High values for these parameters indicate that a large number of triples

can be inferred. However, adding such inferable triples provides a large collection of

data that needs to be checked for possible pruning before inference can take place.

Example 3. Let M = {w subClassOf x, x subClassOf y, y subClassOf z} and M ′ =
{w subClassOf x, x subClassOf y, y subClassOf z, n subClassOf r, w subClassOf z,

w subClassOf y, x subClassOf z}. Here, ∆E = {ins{n subClassOf r}, ins{w subClassOf z},
ins{w subClassOf y}, ins{x subClassOf z}}. Pruning this list will involve check-

ing every entry to ensure that the subject or object does not occur in M in order to

prune that triple from the list to be entered into the inference process. Of the four

triples added in this example, all must be checked for pruning but only one triple

(ins{n subClassOf r}) will be removed before the remaining three triples will en-

ter the inference process.

In general terms, reduction strength appears to be a better indication of the dif-

ferences between ∆E and ∆Dc than inference strength. Similar arguments apply to

establishing the difference between ∆E and ∆ED

6 Conclusion and Future Work

This paper describes a correction method for dense deltas that results in consistent

update of RDF datasets. We have eliminated the need for conditions on the dataset

2 inference strength =

|C(M)|−|M|
|M|

by checking the antecedents of inferable triples in the insert set. If at least one such

antecedent is found in the delete set then the inferable triple in the insert set cannot be

removed from the delta. Otherwise, this triple can be safely removed from the delta to

minimize its size.

A summary of our results is shown in Figure 13, which characterises the interaction

between the degree of inference (i.e. the delete set and/or the insert set or no inference

at all) and the approach to inferencing (i.e. inferring all triples or only necessary triples)

and their combined impact on the delta size and computation time. It can be seen that

∆Dc has the smallest delta size compared to ∆ED and ∆E. It can also be seen that

the approach to inferencing affects the delta computation time. Figure 13 indicates that

backward inference is more efficient (i.e smaller delta size and faster generation) than

the other methods tested.

In this work we have investigated the effect of inference degree and inference ap-

proach on both the delta computation time and storage space over RDF datasets. Sim-

ilar methods can be applied to ontologies that are represented in OWL 2. Here the RL

rule set [5] is much richer than the rule set for RDFS with consequent potential for

benefits to delta generation performance and size. Also, it is worth exploring different

inference strengths to further evaluate the delta sizes and performance of the different

approaches to producing these deltas. In particular while backward inference may be

efficient, combining it with pruning may be expensive in terms of computation time

where data is characterised by large inference strengths. Exploiting the inferred triples

to infer new information may provide further improvements in update performance.

References

1. Al Azwari, S., Wilson, J.N.: The cost of reasoning with rdf updates. In: ICSC 2015. pp.

328–331. IEEE (2015)

2. Cloran, R., Irwin, B.: XML digital signature and RDF. Information Society South Africa

(ISSA 2005), July (2005)

3. Hayes, P., McBride, B.: RDF semantics. W3C recommendation. World Wide Web Consor-

tium (2004)

4. Im, D.H., Lee, S.W., Kim, H.J.: Backward inference and pruning for RDF change detection

using RDBMS. J. Info. Science 39(2), 238–255 (2013)

5. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web ontology

language profiles, W3C Recommendation 11 December 2012 (2013)

6. Noy, N., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology versions.

AAAI/IAAI 2002, 744–750 (2002)

7. Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: High-level

change detection in RDF(S) KBs. ACM Trans. Database Syst. 38, 1:1–1:42 (2013)

8. PaPavaSSiliou, S., PaPagianni, C., DiStefano, S.: M2M interactions paradigm via volunteer

computing and mobile crowdsensing. In: Misic, V., Misic, J. (eds.) Machine-to-Machine

Communications: Architectures, Technology, Standards, and Applications. pp. 295–309.

CRC Press (2014)

9. Völkel, M., Groza, T.: SemVersion: An RDF-based ontology versioning system. In: Nunes,

M., Isaas, P., Martnez, I. (eds.) Proc. IADIS Int. Conf. WWW/Internet. p. 44. IADIS (2006)

10. Zeginis, D., Tzitzikas, Y., Christophides, V.: On computing deltas of RDF/S knowledge

bases. ACM Trans on the Web (TWEB) 5(3), 14 (2011)

