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Abstract. We present analytical and simulation studies of the nonlinear

instability and dynamics of an electron–hole/anti-electron (hereafter referred to as

polaritons) system, which are common in ultra-small devices (semiconductors and

micromechanical systems) as well as in dense astrophysical environments and the

next generation intense laser–matter interaction experiments. Starting with three

coupled nonlinear equations (two Schrödinger equations for interacting polaritons

at quantum scales and the Poisson equation determining the electrostatic

interactions and the associated charge separation effect), we demonstrate novel

modulational instabilities and nonlinear polaritonic structures. It is suggested that

the latter can transport information at quantum scales in high-density, ultracold

quantum systems.

Phenomena occurring at quantum scales are of paramount importance in diverse areas of physics,

and have potential applications in ultra-small devices (e.g. semiconductors and micromechanical

systems [1]–[3]), in dense astrophysical environments [4], in intense laser–matter interaction

experiments [5], in quantum dots and nanowires [6], in biophotonics [7] and in cool vibes [8].

Quantum mechanical effects (e.g. tunnelling) become important when the de Broglie length

is comparable to inter-particle distances in the quantum system. In such a situation, strong

correlations among electrons or holes/anti-electrons (hereafter referred to as polaritons) in

dense matter produce wavefunction dispersion at quantum scales. In dense quantum systems,

the dynamics of polaritons is governed by the Wigner–Poisson (W–P) system that includes the

dispersive effects. It turns out that theW–P equations can be represented in the form of generalized

quantum hydrodynamic (GQH) equations, which somewhat resemble those describing the

dynamics of Bose–Einstein condensates (BECs) in ultracold matter [9]. In quantum systems,
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the polaritons obey Fermi–Dirac statistics and their dynamics is, in turn, governed by the

nonlinear Schrödinger and Poisson equations. The latter are naturally deduced from the GQH

equations within the framework of an eikonal representation [10].

Since the polaritons are building blocks of many physical systems as described above, it

is timely to present some novel collective interactions involving nonlinear interactions among

electrons and holes/anti-electrons in quantum mechanical systems. Specifically, in this paper we

present analytical and simulation studies of nonlinearly interacting polaritons and demonstrate

the possibility of a new class of modulational instabilities and localized nonlinear structures

(bright and dark envelope excitations and quantum vortex pairs). The latter may be exploited to

transport information at quantum scales in semiconductors and micromechanical systems.

Let us first present the mathematical model which governs the dynamics of a polariton

system. The collective motion of the particles is in this model described by effective Schrödinger

equations [10] for the electrons and holes/anti-electrons (denoted by the subscript ‘e’ and ‘h’,

respectively), coupled with the Poisson equation,

ih̄
∂ψe

∂t
+

h̄2

2me

∇2ψe + eφψe − Weψe = 0, (1)

ih̄
∂ψh

∂t
+

h̄2

2mh

∇2ψh − eφψh − Whψh = 0, (2)

∇2φ = 4πe(|ψe|
2 − |ψh|

2), (3)

where We = mev
2
Fe|ψe|

4/D/2n
2/D

0 and Wh = mhv
2
Fh|ψh|

4/D/2n
2/D

0 are the pressure terms due

to the Fermi temperature of the electrons and holes/anti-electrons, respectively. Furthermore,

vFe = (TFe/me)
1/2 and vFh = (TFh/mh)

1/2 are the Fermi speeds and TFe ∼ h̄2n
2/3

0 /me and TFh ∼

h̄2n
2/3

0 /mh are the Fermi temperatures of the electrons and holes, and D is the number of spatial

dimensions, me (mh) is the effective mass of the electron (hole), and n0 is the equilibrium electron

and hole number density. Hence, we have |ψe| = |ψh| = n
1/2

0 at equilibrium.

The system of equations (1)–(3) conserves the number of electrons and holes,

Ne =
∫

|ψe|
2 d3x and Nh =

∫
|ψh|

2 d3x, respectively, the total momentum P = −ih̄
∫
(ψ∗

e∇ψe +

ψ∗
h∇ψh) d3x, the total angular momentum L = −ih̄

∫
(ψ∗

e r × ∇ψe + ψ∗
hr × ∇ψh) d3x, and

the total energy E =
∫

[− h̄2ψ∗
e∇

2ψe/2me − h̄2ψ∗
h∇

2ψh/2mh + |∇φ|2/8π + D(We|ψe|
2 +

Wh|ψh|
2)/(2 + D)] d3x. The total energy has been obtained from equations (1) and (2) by using

the identity ∂∇φ/∂t = 2πieh̄[(ψh∇ψ∗
h − ψ∗

h∇ψh)/mh − (ψe∇ψ∗
e − ψ∗

e∇ψe)/me], which is

equivalent to the Poisson equation (3).

For the numerical analysis, it is convenient to introduce normalized variables so that a

set of key parameters can be identified. Hence, normalizing the wavefunctions ψe and ψh

by n
1/2

0 , the potential φ by TFe/e, the time t by the Fermi time tF = h̄/TFe, and the space

r by the Fermi radius λF = (TFe/4πn0e
2)1/2, one obtains from (1)–(3) the normalized set

of equations i∂ψe/∂t + Ae∇
2ψe + φψe − |ψe|

4/Dψe = 0, i∂ψh/∂t + (me/mh)Ae∇
2ψh − φψh −

(me/mh)|ψh|
4/D = 0, and ∇2φ = |ψe|

2 − |ψh|
2, where we identify the parameters mh/me and the

quantum coupling constant Ae = 2πe2me/h̄
2n

1/3

0 . These parameters are given in the numerical

treatment below.
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We next consider the stability of the system (1)–(3). Using the Fourier decomposition

ψe = [ψe0 + ψe+ exp(iK · r − i�t) + ψe− exp(−iK · r + i�t)] exp(iKe0 · r − iωe0t), (4)

ψh = [ψh0 + ψh+ exp(iK · r − i�t) + ψh− exp(−iK · r + i�t)] exp(iKh0 · r − iωh0t), (5)

φ = φ̂ exp(iK · r − i�t) + φ̂∗ exp(−iK · r + i�t), (6)

in (1)–(3), whereψe0 andψh0 are the envelopes of the equilibrium electron and hole wavefunctions

and ψe±, ψh± (|ψe±|, |ψh±| ≪ |ψe0|, |ψh0|) and φ̂ are the envelopes of the small-amplitude

perturbations of the wavefunctions and potential, respectively, and sorting the equations by

different Fourier components, we have the dispersion relations for the electron and hole zeroth

order wavefunctions h̄ωe0 − h̄2k2
e0/2me − mev

2
Fe|ψe0|

4/D/2n
2/D

0 = 0 and h̄ωh0 − h̄2k2
h0/2mh −

mhv
2
Fh|ψh0|

4/D/2n
2/D

0 = 0. We note from equation (3) that |ψe0| = |ψh0| (= n
1/2

0 ). The nonlinear

dispersion relation for the small-amplitude density modulations is

(De+De− − γ2
e |ψe0|

4)(Dh+Dh− − γ2
h |ψh0|

4) − β2|ψe0|
2|ψh0|

2

×(De+ + De− + 2γe|ψe0|
2)(Dh+ + Dh− + 2γh|ψh0|

2) = 0, (7)

where we have denoted β = 4πe2/K2, γe = β + 2αe|ψe0|
4/D−2/D, γh = β + 2αh|ψh0|

4/D−2/D,

αe = mev
2
Fe/2n

2/D

0 and αh = mhv
2
Fh/2n

2/D

0 . Here the nonlinear wave modes are characterized by

De± = ±

(
h̄� +

h̄2

me

Ke0 · K

)
−

h̄2K2

2me

− β|ψe0|
2 −

2αe|ψe0|
4/D

D
, (8)

Dh± = ±

(
h̄� +

h̄2

mh

Kh0 · K

)
−

h̄2K2

2mh

− β|ψh0|
2 −

2αh|ψh0|
4/D

D
. (9)

We have solved the dispersion relation (7) numerically and have presented the growth rate

(the imaginary part γ of �) in figure 1. We have taken the coupling constant Ae = 5 and have

assumed a two-dimensional (D = 2) geometry in the x–y-plane. The used mass ratio mh/me = 1

is typical for light holes while mh/me = 5 is typical for heavy holes [11]. We have taken the

wavevectors Ke0 and Kh0 with opposite signs and directed along the x-axis, Ke0 = x̂ke0 and

Kh0 = x̂kh0, where x̂ is the unit vector in the x-direction. Hence, the electrons and holes are

counter-streaming, and this gives rise to a streaming instability, as can be seen in figure 1. For

the smaller wavenumber |ke0| = |kh0| = 0.5 λ−1
F , the growth rate is smaller than for the larger

wavenumber |ke0| = |kh0| = 1.0 λ−1
F . Comparing the panels (a) and (b) with panels (c) and (d)

of figure 1, we also see that the wave modes for the larger |ke0| and |kh0| have a wider spectrum

of growing waves in oblique directions to the x-axis, while the wave modes for the smaller

wavenumbers have growing wave modes primarily in the x-direction. When ke0 and kh0 are taken

to be equal to each other, then the system is stable, i.e. the dispersion relation (7) has only real-

valued roots in this case. In order to study the nonlinear saturation of the streaming instability, we

have solved the time-dependent system of equations (1)–(3) numerically, and have presented the

results in figure 2. As initial conditions we used ψe = n
1/2

0 exp(ike0x) and ψh = n
1/2

0 exp(ikh0x),
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Figure 1. The growth rate γ (in units of t−1
F ) as a function of the wavenumbers

Kx and Ky, for (a): mh/me = 1, ke0 = 0.5 λ−1
F and kh0 = −0.5 λ−1

F , (b):

mh/me = 5, ke0 = 0.5 λ−1
F and kh0 = −0.5 λ−1

F , (c): mh/me = 1, ke0 = 1.0 λ−1
F

and kh0 = −1.0 λ−1
F , and (d): mh/me = 5, ke0 = 1.0 λ−1

F and kh0 = −1.0 λ−1
F .

We used Ae = 5 in all cases.

where we added a low amplitude noise (random numbers) of order 10−3 n
1/2

0 to give a seed for

any instability. We used the parameters in panel (d) of figure 1, i.e. the mass ratio mh/me = 5

and wavenumbers ke0 = 1.0 λ−1
F and kh0 = −1.0 λ−1

F . We see in figure 2 that density waves grow

primarily in the x-direction, with a wavelength of λ = 12 λF, corresponding to the wavenumber

Kx ≈ 0.5 λ−1
F of the fastest growing wave in the upper right panel of figure 1. In the nonlinear

stage, at t = 12 tF, very narrow density humps are formed at which both the electrons and holes

are accumulated.At the later stage t = 14 tF, these density maxima break up into a chaotic pattern

of very localized density patches. We see that the density maxima at all times are associated with

a positive potential.

We next investigate the existence of two-dimensional (D = 2) vortex structures in our

electron–hole system. Assuming that the electron and hole wavefunctions are in the form

ψe = �e(r) exp(iMeθ − i�et) and ψh = �h(r) exp(iMhθ − i�ht), where �e and �h are real-

valued functions, r and θ are the polar coordinates defined by x = r cos θ and y = r sin θ, �e

and �h are constant frequency shifts and Me = 0, ±1, ±2, . . . and Mh = 0, ±1, ±2, . . . are

the different excited states (charge states) of the vortices, the system of equations (1)–(3) takes

the form

h̄2

2me

(
d2

dr2
+

1

r

d

dr
−

M2
e

r2

)
�e + (h̄�e + eφ − We)�e = 0, (10)

h̄2

2mh

(
d2

dr2
+

1

r

d

dr
−

M2
h

r2

)
�h + (h̄�h − eφ − Wh)�h = 0, (11)
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Figure 2. The electron number density (left column), hole number density

(middle column) and potential (right column) at times t = 0 tF, 6 tF, 12 rF and

14 tF for mh/me = 5, ke0 = 1.0 λ−1
F , kh0 = −1.0 λ−1

F and Ae = 5. The number

densities are normalized by n0 and the potential φ by TFe/e.

(
d2

dr2
+

1

r

d

dr

)
φ = 4πe(|�e|

2 − |�h|
2). (12)

For a localized structure, we have d/dr = 0, φ = 0, |�e| = |�h0| = n
1/2

0 at r = ∞, and it follows

that the frequency shifts take the forms �e = mev
2
Fe/2h̄ and �h = mhv

2
Fh/2h̄. At r = 0, we

have the boundary conditions d�e/dr = d�h/dr = dφ/dr = 0, and it follows that �e = 0 when

Me �= 0 and �h = 0 when Mh �= 0. The numerical solutions of the system (10)–(12) are presented

in figure 3 for a few sets of parameters. We see that the electron vortices with Mx = 1 show a

complete depletion of the electrons in the centre of the vortex, while the hole vortices with

Mh = 1 are associated with a complete depletion of the holes. For a vortex with Me = 1 and

Mh = 0, we have a positive potential, while one with Me = 0 and Mh = 1 has a negative potential.

Finally, a vortex with equal charge states Me = Mh = 1 has a zero potential, and in this case
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Figure 3. The electron number density (upper panel), hole number density

(middle panel) and the potential (lower panel) for a two-dimensional vortex with

the charge states Me = 1 and Mh = 0 (solid lines), Me = 0 and Mh = 1 (dashed

lines) and Me = Mh = 1 (dash-dotted lines). We used the parameters Ae = 5 and

mh/me = 5.

the system decouples completely into systems similar to those used to model BECs. In order

to assess the dynamics and interaction between vortices, we have solved the time-dependent

system (1)–(3) numerically, and as initial conditions we have used electron density perturbations

in the form of vortex-like structures. The results are presented in figures 4 and 5. In figure 4, we

used the initial condition ψe = n
1/2

0 f1f2f3f4, where fj = tanh(
√

(x − xj)2 + (y − yj)2) exp [+

iMj arg(x − xj, y − yj)]. Here (x1, y1) = (−4, 10), (x2, y2) = (2, 10), (x3, y3) = (−8, −10),

and (x4, y4) = (2, −10), and the charge states M1 = +1, M2 = −1, M3 = −1 and M4 = +1.

The function arg(x, y) denotes the angle between the x-axis and the point (x, y), and it takes

values between −π and π. For the hole wavefunction we used the initial condition ψh = 1

everywhere. The initial condition for the electrons is such that the vortices are organized in two

vortex pairs where the vortices in the vortex pair have opposite rotation polarities. Here the

rotation polarities of the vortices are such that the two vortex pairs move in the direction against

each other and collide, as seen at t = 12 tF in figure 4. In the complicated interaction, the electron

vortices dissolve and disappear, while there are instead two vortex pairs created in the hole fluid,
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Figure 4. The electron number density (left column), hole number density

(middle column) and the potential (right column) for two interacting vortex

pairs at times t = 0 tF, 12 tF, 24 tF and 30 tF. We used the parameters Ae = 5

and mh/me = 5. The same normalization of variables as in figure 2 is used.

seen at y ≈ ±15 λF and x ≈ 0 λF at time t = 24 tF in figure 4. These hole vortex pairs have moved

further to y ≈ ±20 λF at time t = 30 tF and are associated with a negative potential due to the

sharp depletion of the hole density associated with the vortex pairs. In figure 5, we used the

initial condition ψe = n
1/2

0 f1f2, with (x1, y1) = (−3, −20)λF and (x2, y2) = (3, −20)λF, and

the charge states M1 = −1 and M2 = +1; see the top row of panels. Here, we see the formation

of a quickly moving (in comparison with the hole vortex pairs in figure 4) electron vortex pair

which moves towards positive y at x = 0. This vortex pair, which is located at y = 20 λF at

t = 81 tF, is associated with a localized positive potential. We could also see the formation of a

long-lived and slowly moving vortex pair in the hole fluid, seen at y ≈ −10 λF (and x = 0 λF)

at t = 8.1 tF, which is associated with a negative potential.
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Figure 5. The electron number density (left column), hole number density

(middle column) and the potential (right column) associated with a vortex pair

at times t = 0 tF, 2.7 tF, 5.4 tF and 8.1 tF. We used the parameters Ae = 5 and

mh/me = 5. The same normalization of variables as in figure 2 is used.

In conclusion, we have reported a new class of modulational instability and the formation

of nonlinear structures in a polaritonic system. Our numerical analysis revealed the formation of

electron and hole density humps (bright solitary waves) as possible nonlinear saturation of the

modulational/streaming instability, while long-lived vortex pairs (dark solitons) can be excited

in the electron–hole system via nonlinear interactions. Quantum vortices could be exploited to

transport information at quantum scales in semiconductors and micromechanical devices, as well

as in metal clusters [12].
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