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ON THE a AND g FAMILIES OF ORBITS IN THE HILL PROBLEM WITH SOLAR 

RADIATION PRESSURE AND THEIR APPLICATION TO ASTEROIDS 

D. García Yárnoz,1 D. J. Scheeres2 and C. R. McInnes3 

ABSTRACT 

The focus of this paper is on the exploration of the a and g-g’ families of planar symmetric periodic 

orbits around minor bodies under the effect of solar radiation pressure. An extended Hill problem with 

solar radiation pressure (SRP) allows the study of spacecraft trajectories in the vicinity of asteroids 

orbiting the Sun. The evolution of the a and g-g’ families is presented with SRP increasing from the 

classical Hill problem to levels characteristic of current and future planned missions to minor bodies, 

as well as one extreme case with very large SRP for a small asteroid. In addition, the implications of 

considering a spherical body are analysed, in terms of trajectories colliding with the asteroid and 

eclipses, which limits the feasibility of various family branches. Finally, the influence of SRP on the 

linear stability of feasible orbits is calculated.  

Keywords: Asteroids dynamics; Hill problem; Solar Radiation Pressure 

1 Introduction 

The influence of a large solar radiation pressure perturbation (SRP) on spacecraft dynamics is of great 

importance for asteroid exploration missions. For very small bodies SRP is arguably the largest 

perturbing force for spacecraft with typical effective area and mass. In the course of a previous study 

(García Yárnoz, Sanchez Cuartielles et al. 2013), the authors encountered and briefly presented a 

series of periodic solutions propagated with a numerical integrator considering the gravitational 

attraction of a small asteroid and the Sun, and including SRP and eclipses (see Figure 1). The 

objective of the study was to propose orbits or other strategies providing complementary coverage to 

terminator orbits and associated families. That is, trajectories were sought that remain in the vicinity 

of the asteroid and provide coverage on a plane perpendicular to the terminator, in particular of the 

sub-solar and anti-solar point regions. The planar periodic solutions in Figure 1, which remain in the 

orbital plane of the asteroid, are attractive candidates for this purpose and as such they are the focus of 

this paper and will be analysed in detail. These orbits are symmetric with respect to the x-axis in a 

synodic frame co-rotating with the asteroid around the Sun (and thus they have two crossings 

perpendicular to this axis). They have two or more inversions of the orbit direction, that take place 

when they reach the zero-velocity curves for their particular energy level, alternating between 

prograde and retrograde sections of the orbit from the point of view of the body. Of particular interest 

for operations around asteroids would be orbits with retrograde sections close to the asteroid, and 

prograde ones far from it (e.g. second plot in Figure 1), as retrograde orbits are less affected by the 

highly non-spherical gravity fields of minor bodies, assuming a prograde rotation of the asteroid, that 

is, in the same direction as the orbital motion. 
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Figure 1: Families of solutions in a co-rotating synodic frame 

The first two classes of orbits were identified as members of the a and g’ families described by Hénon 

(1969). These families of orbits are a well-known set of solutions of Hill problem, one of the limiting 

cases of the Circular Restricted Three Body Problem (CR3BP). In particular, the top branch of 

Hénon’s g’ family greatly resembles the type of orbits with one loop and two inversions that were 

found in the numerical propagation analysis. The following sections present the evolution of these 

families when solar radiation pressure is introduced and study the applicability of these orbits for 

minor bodies. They could represent an alternative to more traditional strategies around very small 

minor bodies, such as hovering (Broschart and Scheeres 2005; 2007) and pseudo-hovering solutions 

(Scheeres 2012a), multiple low-velocity flybys (Takahashi and Scheeres 2011), or the well-known 

terminator orbits (Dankowicz 1993; Scheeres 2007; Byram and Scheeres 2008). 

1.1 Families of planar symmetric periodic orbits in the CR3BP and the Hill problem 

In his 1969 paper, Hénon explored families of symmetric periodic orbits in the planar case of the 

CR3BP for a very small secondary (limiting case of Hill). Hénon concentrated on simple-periodic 

cases (orbits with only two crossings of the x-axis), although the aforementioned branch of the g’ 
family has 4 crossings and is thus double-periodic according to Hénon’s own definition. N-periodic 

orbits, or orbits of multiplicity N, are defined as orbits with 2N crossings of the x-axis. With this 

definition, the type of trajectories presented in Figure 1 are simple-periodic, double periodic, 5-

periodic, and 8-periodic (2, 4, 10 and 16 crossings of the x-axis respectively). Hénon systematically 

mapped the planar problem, studied the in-plane stability, and cross-checked the validity of previous 

solutions reported by Hill himself, Lord Kelvin, Jackson and the outputs of the more thorough 

searches by Matukuma (1930; 1932; 1933). 

These families have been extensively studied but are still of great interest. Besides the references used 

by Hénon in his classical series of papers, other authors came across orbits of the a, g and g’ family, 

albeit for different mass ratios. Darwin (1897) generated an incomplete map of various classes of 

orbits for a mass ratio of 1/11 (a fictitious Sun-Jupiter case with a much larger mass for Jupiter), 

which corresponds to sections of the g-g’ family. Broucke (1968) presented results for orbit families 

in the Earth-Moon system. Szebehely and Nacozy (1967) worked on these same sets of periodic obits. 

Szebehely’s book Theory of Orbits (Szebehely 1967) indeed remains to date a classic reference with 

an extensive study on different families in the CR3BP, mostly for equal masses (the so-called 

Copenhagen problem), but also reviewing and completing Darwin’s and Broucke’s work. Hénon also 

studied, prior to Hill problem, planar symmetric families in the Copenhagen problem as the other 

limiting case of the CR3BP (Hénon 1965). In fact, the naming convention assigning letters for the 

orbit families actually spawns from the nomenclature Strömgren introduced for families of solutions 

for the Copenhagen problem decades before (Strömgren 1922).  



Hénon continued studying the vertical stability in the equal masses case (Hénon 1973a) and the Hill 

problem (Hénon 1973b). Michalodimitrakis (1980) extended this work by studying some 3-

dimensional families of orbits branching off from the vertical critical orbits in the planar case. Perko 

(1982) established the existence of the families a, c, f, g, g’, g”… mapped by Hénon (1969) for the 

case of small mass ratio ȝ>0. He overlaps his families over Hénon’s, showing their similarity. An 
additional paper of Hénon (2003), in which he came back to the same problem after over 30 years, 

expanded his search to orbits of higher multiplicity. A few years later, Hénon (2005) revisited once 

more the Hill problem to study asymmetric periodic solutions.  

Finally, Lara and Russell (2006) performed a comprehensive review of the g family for different mass 

ratios (explaining and comparing, among others, Darwin’s (1897) results for the fictitious Sun-Jupiter 

case or Broucke’s (1968) for the Earth-Moon system), and analysed applications of planar and three-

dimensional periodic orbits for a Jupiter-Europa mission (Russell 2006; Lara, Russell et al. 2007). 

Very recently, two papers by Batkhin (2013a; 2013b) presented an algorithm with regularised 

coordinates to systematically obtain all families of orbits reported by Hénon for the Hill problem and 

a set of additional families including multiple collisions with the secondary body. Through private 

conversation with Verrier (2013) to discuss the branching and connections between two-dimensional 

and three-dimensional families, she reported that she was studying families of period-doubling 

bifurcations from halo orbits for the Earth-Moon mass ratio (which she denotes U1 and U2), that 

resemble planar g’ orbits. She reports a connection with the g’ family and has proved the existence of 

this connection also in the Hill problem. 

1.2 Extending the Hill problem for the case of a radiating primary 

Hill’s limiting case of the CR3BP is particularly suited to the study of asteroids, as the mass of the 

asteroid can be considered negligible with respect to the Sun, leading to very low mass ratios. 

However, SRP plays an important role around these minor bodies. Its effect on the well-known 

symmetric periodic orbit solutions of the CR3BP has not been studied in such great detail. 

Approaching the often called classical photo-gravitational CR3BP (Chernikov 1970; Simmons, 

McDonald et al. 1985), Papadakis (1996) studied the evolution of planar symmetric families in the 

equal masses case (Copenhagen problem) with two radiating bodies. This approximation has 

interesting applications in the study of accretion disks around binary stars. Markellos et al. (2000) 

studied the limiting case of Hill for different configurations of the radiating bodies, and later analysed 

the evolution of families of periodic orbits up to high multiplicity (16-periodic) and their stability 

(Kanavos, Markellos et al. 2002). A more comprehensive analysis using regularised coordinates and 

covering symmetric periodic orbits up to multiplicity 81 can be found in Papadakis (2006). These 

studies limit themselves though to modest solar radiation pressure, applicable to a star-planet case, but 

falling short for the case of asteroids. Recently, the families of Lyapunov and halo orbits were 

analysed for a case with modest solar radiation pressure by Katherine and Villac (2010), and Farres 

and Jorba (2012) concentrated on these families around the L2 region for the case of a solar sail at 

asteroid Vesta. 

2 The Hill problem with solar radiation pressure 

The equations of motion (EOM) of the Hill problem with solar radiation pressure in a synodic rotating 

frame centred in the secondary take the well-known form: 
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where distances are normalized by d  and scaled by 
1/3 , and time is normalized by 1/ , with the 

mass parameter ratio  , and mean motion   given by:

 

3

/ ( )

( ) /

A A S

A S d

   

 

 

  
      

(2)
 

The Sun or more massive radiating body is assumed on the left (contrary to the convention used in 

Szebehely 1967), d  is the radius of the circular orbit of the asteroid around the Sun, and
A and 

S
are the gravitational constants of the asteroid and the Sun, respectively. These are equivalent to the 

EOM defined in Byram and Scheeres (2008) or Broschart et al. (2013). The so-called lightness 

number  (McInnes 1999) in Eq. (1) represents the ratio of the solar radiation pressure and the 

gravitation of the Sun, scaled as well with 
1/3 : 
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where L is the solar luminosity, Q the solar radiation pressure coefficient, which depends on the 

material properties, c is the speed of light, and A/m is the area to mass ratio of the spacecraft. The 

solar radiation pressure force is modelled with the traditional cannon-ball approach, assuming the 

spacecraft has a constant effective area always perpendicular to the Sun-spacecraft line, with the only 

component of the force in the radial direction. Eclipses are neglected at this stage. 

These equations allow an integral of motion  , equivalent to Hénon’s modified Jacobi constant: 
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and are invariant under the following symmetries (Villac 2003; Miele 2010): 
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All symmetries with respect to the  -axis are lost. From the last two symmetries, which comprise a 

time inversion, if a trajectory satisfies either of the two following conditions at two different times, 

the resulting orbit will be periodic: 

( , , ) 0

( , , ) 0

  
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

       (6) 

The first condition translates into finding two perpendicular crossings of the   plane, and 

corresponds to three-dimensional periodic families that are out of the scope of this paper, but are 

presented and studied in Giancotti et al. (2014).  

Assuming a planar trajectory ( 0  ), the second condition implies finding two perpendicular 

( 0  ) crossings of the  -axis. This property is used to find periodic orbits in the extended Hill 



problem with SRP. Initial conditions are selected as a perpendicular crossing point of the -axis with 

positive
0 0  . Trajectories are integrated with a Runge-Kutta solver of order 4-5 (Dormand and 

Prince 1980) and the initial value of 
0  is optimised with a Sequential Quadratic Programming 

optimisation algorithm (Nocedal and Wright 2006) as implemented in MATLAB’s internal functions 
ode45 and fmincon. The stopping conditions are selected as a second perpendicular  -axis crossing, 

with tolerance in solving the perpendicularity boundary constraint 0   of 10
-9

. In order to avoid 

orbits with N-multiplicity higher that 2, trajectories with more than one  -axis crossing before 

reaching the stopping condition are discarded. 

2.1 The a and g-g’ families in the original Hill problem 

The former equations of motion reduce to the set studied by Hénon (1969) when equating the 

lightness number to zero. This set of equations does not depend then on any additional parameter. The 

same planar periodic families of orbits symmetric with respect to the  -axis were reproduced using 

Hénon’s reported values as initial guesses.  

The families in the vicinity of the L2 region are of particular interest due to their possible application 

to small asteroid exploration. With the introduction of SRP, this region is reduced in size and is closer 

to the secondary, while the L1 point migrates far away in the direction of the radiating primary and its 

associated families of orbits are thus of less interest for close observations of an asteroid. Only 

simple-periodic families (and a double-periodic branch) were considered as in the original paper by 

Hénon. Figure 2 represents for reference the traditional Hill problem solution map in the 0  space, 

with 0  
representing the initial position along the  -axis. The shaded patches represent the forbidden 

region, given by 
2

0 0 0
3 2 2      . An orbit in these regions would require negative kinetic 

energy. 

Figure 3 presents example orbits for the three families analysed: family a (more commonly referred to 

in literature as planar Lyapunov orbits, top left), originating from L2; family g (Figure 3 top right, also 

termed Distant Prograde Orbits or DPOs) evolving from large ribbon-type orbits to circular orbits of 

decreasing size around the secondary; and subfamily g’, emanating from a bifurcation point (black dot 

marker) and including oval-shaped orbits near the bifurcation (Figure 3 bottom right) and double 

periodic orbits (with 4 intersections with the horizontal axis, Figure 3 bottom left) after a collision 

with the secondary (black + marker). This section follows closely the a family in the 0  space. 

Below the bifurcation point the g’ oval orbits continue extending towards the left until their shape 

starts deforming with ribbon-like loops again until a second collision point with the secondary at 

0 0  . The g’ family branch shown in the negative
 0  

quadrant corresponds to the second crossing 

of the double periodic g’ orbits.  

Families f and c have been included in Figure 2 for completeness. They consist of the sometimes 

referred to as Distant Retrograde Orbits (DROs) (Ocampo and Rosborough 1993) and planar 

Lyapunov orbits around L1 (the symmetric equivalent to family a for L2). They will not be the focus 

of this paper thought as their distance to the secondary increases rapidly with lightness number, and 

thus their usefulness is limited for asteroid observation. A brief description of the evolution and shape 

of these families with SRP can be found in Appendix A. From this point on, only the positive 0 plane 

is plotted in the main body of the paper. 



Some of the orbits would intersect the secondary if it is not considered a point mass. The asteroid 

radius (assumed a spherical body) in scaled coordinates, independent of the minor body size, is fixed 

for a given density  and distance between bodies d : 

3
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where G  is the gravitational constant. Family g’ orbits intersecting the secondary body surface for an 

average asteroid density of 2.6 g/cm
3
 (Chesley, Chodas et al. 2002) and a heliocentric distance of 

1 AU are indicated with a dashed blue line in Figure 2. It is not surprising that these regions contain 

the collision points. 

 
Figure 2: Solution map of the symmetric planar periodic families in the original Hill problem 

 

 

 

 
Figure 3: Families a (top left), g (top right) and g’ (bottom, split in two) in the Hill problem with no SRP. A black x 

marker indicates the position of the L2 point. 



2.2 Evolution with lightness number 

By means of a continuation method, the value of  is increased up to lightness numbers characteristic 

of asteroid missions. For currently flying and planned minor body orbiters the lightness number is 

usually of the order of 20-30 (Scheeres 2012c). An extreme case with a   value of approximately 

684 is also considered (corresponding to a small 50 m radius asteroid at 1 AU, average asteroid 

density of 2.6 g/cm
3
, 100 kg spacecraft mass and 8 m

2
 effective area). 

Figure 4 shows the evolution of the families with positive 
0  with increasing .  Dashed sections of 

the families correspond to orbits intersecting the secondary body surface for average NEO asteroid 

and distance of 1 AU. The horizontal grey dashed line indicates the scaled radius of the secondary. As 

the lightness number increases, the L2 point position on the -axis decreases, while its Jacobi constant 

increases. The bifurcation point of the g-g’ families disappears immediately for small lightness 

numbers resulting in two unconnected families (in the plane, there could still be connections through 

intermediate three-dimensional families). This bifurcation disappears as well in the CR3BP for the 

case of very small  , as reported by Perko (1982) and shown for the case of the Jupiter-Europa 

system by Russell (2006). However, the connection of the branches of the families in the case of small 


 
is exactly the opposite of the case here presented. 

Arbitrarily, the g family was assumed now to contain the branch of the original g family left of the 

bifurcation point, and the branch of the original g’ family to the bottom of the bifurcation point (see 

Figure 4). The g’ family now contains the top branch of the original g’, which includes the collision 

point and the double-periodic section, and the right branch of the original g family including 

decreasingly smaller orbits around the secondary. The new g family reduces its size and the maximum 

  
crossing decreases rapidly. It then disappears for large lightness numbers. The right branch of the 

new g’ family on the other hand quickly tends to skirt the border of the forbidden region, tending to 

linear degenerate orbits along the  -axis. Meanwhile, the collision point that separates the simple and 

double periodic portions of the new g’ family migrates towards the L2 point. 

This behaviour is similar to the one observed in the study of radiating equal masses (Papadakis 1996), 

and continues the results obtained in Kanavos et al. (2002) for small lightness numbers up to 0.33. 

The following sections show the changes in the shape of the orbits with SRP. 

2.2.1 Family a 

Figure 5 shows the evolution of the a family from bean-shaped to boomerang-like orbits. To easily 

display possible intersections with the surface of the secondary, dashed grey circles represent the 

asteroid surface for densities of 1, 2 and 3 g/cm
3
 (circles of decreasing size as the density grows), 

assuming again a heliocentric distance of 1 AU. They are mostly noticeable for the extreme case with 

high SRP. 

 



 
Figure 4: Solution map evolution with increasing lightness number  . The dashed horizontal line shows the radius of 

the secondary assuming average NEO density and 1 AU distance from the Sun. 



 
Figure 5: Family a evolution with increasing lightness number. Dashed black circles indicate the asteroid surface for 

densities of 1, 2 and 3 g/cm3 and 1 AU distance from the Sun. 

2.2.2 Family g-g’ 

Figure 6 plots orbits of the left branch of the g’ family up to the maximum value of    
crossing for 

various Jacobi constants. This includes the double periodic branch left of the collision point along 

with several oval-shaped simple periodic orbits. 

Figure 7 plots orbits of the right branch of the g’ family from the maximum value of    
crossing for 

various Jacobi constants. In the case of no SRP (see Figure 3 bottom right), family g’ continued with 

oval-shaped orbits oriented towards the left until the collision point at 0 =0. In Figure 7, the branch 

now includes the former part of the g family which consisted of direct orbits around the secondary of 

reducing size. With increasing lightness number, this branch tends towards degenerate linear orbits 

along the  axis. 

 
Figure 6: Family g’ (left branch) evolution with increasing lightness number. Dashed black circles indicate the 

asteroid surface for densities of 1, 2 and 3 g/cm3 and 1 AU distance from the Sun. 



 
Figure 7: Family g’ (right branch) evolution with increasing lightness number. Dashed black circles indicate the 

asteroid surface for densities of 1, 2 and 3 g/cm3 and 1 AU distance from the Sun. 

 
Figure 8: Family g evolution with increasing lightness number 

Figure 8 plots orbits of the g family from the maximum value of    
crossing for various Jacobi 

constants. Family g now transitions from the ribbon-type orbits in the original g family to the left-

extending oval-shape orbits in the original g’. For a lightness number of 1 the orbits transition 

between the two ribbon-type orbits without an oval-shape phase. 

3 Application to small asteroids 

The above results are an extension of the generic Hill problem with solar radiation pressure, of 

interest by itself as a dynamical system, and applicable to a variety of problems. When used to model 

the dynamics of a spacecraft around a small minor body or asteroid, some of the families cease to 

exist or are significantly modified when the asteroid is not considered as a point mass, due to 

intersections with the asteroid surface or eclipses. The influence of considering a spherical asteroid is 

more relevant for higher lightness numbers. 

3.1 Feasibility considering intersections with a spherical asteroid 

The feasibility of some branches of the reported families is questionable when physical constraints 

such as the body radius are considered. The right section of the new g’ family appears to always 

intersect the asteroid surface for any realistic density at high lightness numbers (see dashed circles in 

Figure 7). It is particularly noticeable for the bottom right plot. 



In Figure 9 the maximum pericentre height for the right branch of the new g’ family and the 

maximum
0 crossing of the g family have been plotted as a function of the lightness number. 

Horizontal lines indicate radius of the secondary for different densities ranging from 1 to 7 g/cm
3
, this 

last density much larger than the expected values for minor bodies. The distance between the asteroid 

and the Sun is assumed again to be 1 AU. For lightness numbers higher than 8 the whole right branch 

of the g’ family intersects the surface. The lightness number for a few representative asteroid missions 

are also indicated, showing that only for missions to very large asteroids such as Eros, where low 

lightness numbers are realistic, is this right branch feasible. The maximum crossing of the g family 

decreases even more rapidly, falling below the asteroid surface already for values as low as 2. This 

would render both these family sections unusable for the small bodies that are targeted by future 

missions such as Hayabusa 2 or OSIRIS-REx. 

 

Figure 9: Maximum pericentre height of the simple-periodic g’ branch and maximum 
0 crossing of the g family. For 

large 
 
they fall below the body surface. Horizontal lines indicate radius of the secondary for different densities 

ranging from 1 to 7 g/cm3. 

3.2 Effect of eclipses 

The consideration of the secondary as a spherical asteroid instead of a point mass has an additional 

implication on the dynamics due to eclipses. All trajectories of the a and g-g’ family have portions of 

the orbit in eclipse, and the eclipses are longer the larger the lightness number (see Figures 6 and 7). 

After modifying the solar radiation pressure term assuming a simple cylindrical shadow: 
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the a and g’ families were recalculated for high lightness numbers. A distance of 1 AU and an average 

asteroid density of 2.6 g/cm
3
 are again assumed to fix the size of the asteroid.  

This modification of the SRP term conserves the symmetries in the model, and as such the method to 

obtain periodic orbits is still valid. However, it introduces a discontinuity in the dynamics, which 

modifies the solution space. The solution map is plotted in Figure 10 for the cases with high lightness 

number 30 and ~684. Both families extend beyond the theoretical L2 point without eclipses, skirting 

the forbidden region, and the shape of the orbits dramatically changes for the cases spending a 

considerable time in eclipse (see Figs. 11 and 12). 



 

Figure 10: Solution map for the numerical propagation with eclipses. The dashed horizontal line shows the radius of 

the secondary assuming average NEO density and 1 AU distance from the Sun. 

 
Figure 11: Families a, g’ left branch and right branch with eclipses. Lightness number 30  .  

 
Figure 12: Families a and g’ left branch with eclipses. Extreme case of 684 . 

4 Stability of g’ family of periodic orbits 

In previous sections, some orbit family branches have been shown to be unfeasible or non-existent for 

large lightness numbers. On the other hand, for the feasible branches and families, the stability of the 

periodic orbits needs to be taken into consideration to have usable and practical orbits for asteroid 

exploration. According to Hénon (1969), in the original Hill problem without SRP all a orbits and all 

g’ double periodic are unstable, with two small sections of stable orbits in the simple-periodic branch.  

In order to calculate the linear stability using Floquet theory, the state transition matrix is integrated 

together with the state vector along the trajectory for one orbital period (Scheeres 2012b). The 

monodromy matrix M  is then obtained by mapping the transition matrix after one revolution to the 

selected surface of section. The symmetries of the problem and the choice in initial conditions (a 

perpendicular crossing point of the  -axis with positive 0 ) implicitly select 0   
as a surface of 



section. This results in a reduced state vector * ( , , , )      in which the  
and   coordinates 

have been eliminated.

 For the problem at hand the monodromy matrix results in a sparse 4x4 matrix, where the in-plane and 

out-of-plane dynamics are decoupled. It can then be split into two 2x2 matrixes and the stability for 

each type of movement studied separately. The simplified condition for linear stability is then given 

by  ,2 2 2M xTr    (Scheeres 2012d). 

With this stability criteria, family a remains always highly unstable, as was the case when solar 

radiation pressure was not introduced. The stability index (trace of the 2x2 monodromy matrix) is 

over two orders of magnitude larger than 2. 

Orbits in family g’ present more interesting properties, with sections of in-plane and out-of-plane 

stability. Figures 13 and 15 present the stability index for family g’ as a function of the   crossing 

scaled with the   position of point L2. Orbits are stable for stability index between -2 and 2. For the 

left branch of family g’, including the double-periodic section, orbits are mostly in-plane unstable for 

low lightness number, but become stable as the lightness number increases towards minor body 

realistic values close to 30 (see Figure 13 left), with the extreme case of large lightness numbers 

tending towards stability index equal to 2. Conversely, when considering out-of plane stability (see 

Figure 13 right), the family displays a somewhat opposite behaviour: the family presents regions of 

stability for low lightness numbers for certain ranges of  -axis crossings. It becomes unstable though 

as the lightness number increases, and the extreme case tends again to a stability index equal to 2. 

Figure 14 presents a magnified plot of the out-of-plane stability index close to 2. The crossing points 

of vertical critical stability represent bifurcations of three-dimensional families that may be of interest. 

            
Figure 13: Stability of family g’ left branch, in-plane (left) and out-of-plane (right) 

 
Figure 14: Detail on out-of-plane stability for family g’ left branch 



On the other hand, the right branch of family g’, which is always simple-periodic, seems stable for 

most of the range when the lightness number is not zero, both in-plane and out-of plane (see Figure 

15). That is also the case in the original Hill problem, and it is not surprising as it is comprised of 

quasi-circular orbits of reduced size around the secondary. Regrettably, these orbits intersect the 

surface of the secondary for large lightness numbers, questioning their applicability for asteroid 

exploration. Note also that the behaviour of this branch in the case of no SRP is intrinsically different 

for low   crossings, as it includes a different section of the g-g’ family.  

       
Figure 15: Stability of family g’ right branch, in-plane (left) and out-of-plane (right) 

The region of stability around the g-g’ family is nonetheless very narrow in the Hill problem, as 

shown in the Poincaré section in Simó and Stuchi (2000). This behaviour is unfortunately unaffected 

with the introduction of SRP, and the stable regions are surrounded by a chaotic region which 

includes escape trajectories. 

5 Discussion and model limitations 

The analysis presented uses simplified dynamics to study a particular set of planar periodic orbit 

families in the extended Hill problem with solar radiation pressure. These families of orbits are of 

particular interest for the exploration of small minor bodies, as the mass ratio is consistent with the 

Hill approximation and the lightness numbers involved are higher than in usual missions around 

planets or other larger bodies. They provide alternatives to the current orbit and hovering strategies 

around asteroids. 

The best well-known stable orbits in the vicinity of such small asteroids, i.e., terminator orbits 

(Dankowicz 1993; Scheeres 2007; Byram and Scheeres 2008), have the drawback of a reduced 

coverage of the sun-lit side of the asteroid. Associated quasi-terminator orbits (Broschart, Lantoine et 

al. 2013) have been studied to circumvent this problem. Nevertheless, their coverage of the asteroid 

close to the sub-solar point is still far from optimal. This limited availability of other stable orbits 

could make attractive solutions such as the g’ orbits presented in this paper, which present only a mild 

instability but cover the asteroid in the XY plane perpendicular to the terminator. Even if regular 

small corrections would be required to avoid escape or impact, the orbit maintenance costs and 

frequency of manoeuvres would be significantly reduced when compared to classical hovering or 

pseudo-hovering strategies such as the one proposed in Scheeres (2012a). Another benefit with 

respect to hovering is a faster characterisation of the gravity field and mass distribution of the asteroid, 

as the spacecraft is effectively in orbit. Other strategies such as multiple low-velocity flybys 

(Takahashi and Scheeres 2011) allow gravity field characterisation but would be slower and less 

efficient than an orbiting solution. Given the instability of the presented orbits, often resulting in 

escape solutions after a small number of revolutions, a strategy that combines hold-off points away 



from the asteroid with approach to and escape from the g’ orbits through their associated manifolds 

would allow for a combination of distant and close-up observations.  

The analysis in this paper limits itself to the set of simple-periodic or double-periodic families studied 

by Hénon (1969). In the course of the study, various exotic and complex orbits were found belonging 

to higher order periodicity families, still in the planar case (see Figure 16 for a sample of the 

trajectories found, mostly for low lightness numbers), which have been the subject of a few papers. 

The higher multiplicity exploration of the Hill problem by Hénon (2003) led to a series of new 

families, labelled Ha to Hg, some of them stable, albeit without the inclusion of solar radiation 

pressure. Families up to multiplicity 81 with solar radiation pressure were already reported and 

studied in literature (Papadakis 2006). The family evolution, feasibility and stability analysis in this 

paper could be extended to these set of N-periodic families. Despite the beauty of the wide range of 

solutions, their prospective usefulness is questionable, due to frequent passes close to the asteroid, 

which could compromise the safety of a spacecraft when additional perturbations are taken into 

consideration. An additional possible set of families of interest are three-dimensional periodic orbit 

families bifurcating from the planar ones or from known three-dimensional families such as halo 

orbits (Katherine and Villac 2010). Other three-dimensional families do exist and can represent 

alternative orbits for asteroid exploration. The identified vertical critical orbits on the double periodic 

section of the g’ family on Figure 14 are branching points for these additional families. The crossings 

on the right-hand side of the figure corresponds to the branching of three-dimensional families studied 

by Verrier (2013), which connect to halo orbits at a double-period bifurcation. When solar radiation 

pressure increases, this point, together with the collision point, moves rapidly towards the L2 point. 

The left-hand side branching point has not been studied in literature to the authors knowledge, but is 

also rapidly moves towards the collision point at 0 0  . 

 
Figure 16: Higher multiplicity family examples: 3-periodic, 5-periodic and 10-periodic. 

Perhaps the biggest objection to the applicability of these families to asteroid exploration is that the 

simple dynamical model used may not effectively represent the range of feasible orbits in a more 

realistic and complete model. The most obvious extension to this problem is the Elliptic Restricted 

Three Body Problem (Broucke 1969), or its limiting case the elliptic Hill problem, with the addition 

of SRP, to account for a more representative case of an asteroid in an elliptical orbit around the Sun. 

The existence of the a and g’ family in the elliptic Hill problem has been demonstrated in literature 

(Ichtiaroglou 1980; 1981). Voyatzis et al. (2012) perform a more detailed analysis of the elliptic Hill 

problem, extending by continuation to eccentric orbits planar families including stable branches of the 

higher multiplicity families reported by Hénon (2003). Most orbits are unstable but regions of regular 

motion can be found around certain families. These orbits could be extended to the case with solar 

radiation pressure, and their stability properties checked. 



However stable the presented symmetric solutions are, this behaviour can quickly change with the 

introduction of additional perturbations in higher fidelity models. Of particular concern is the non-

sphericity perturbation, due to highly irregular shape and mass distribution of asteroids. García 

Yárnoz et al. (2013) shows that orbits of the double periodic g’ branch could be found that require 

limited controllability, for a particular case with a rotating tri-axial ellipsoid. These orbits comprise a 

retrograde section close to the asteroid, which is least affected by the rotation of the ellipsoid, 

assuming this rotation is also prograde. A variable area or reflectivity controller is proposed to 

maintain such an orbit when higher order gravitational harmonics are introduced. Resonant orbits with 

the asteroid rotation would reduce the required control. Given the uncertainty in the mass, shape and 

associated gravity field of most asteroids, adjustable area or reflectivity would be a desired feature for 

orbiters that intend to benefit of SRP enabled exotic orbits. The variations in effective area required 

for the case presented are small and easily achievable by a variable reflectivity device such as the ones 

demonstrated on the Ikaros solar sail (Funase, Mori et al. 2010).  

Altogether, double-periodic g’ orbits are perhaps the best candidates for temporary orbiters in the 

equatorial plane. They provide a good coverage of the sub-solar point and the whole XY plane, 

without very close approaches to the asteroid surface that could compromise the safety of the 

spacecraft. For the range of lightness numbers associated to small asteroid spacecraft (20-30), they are 

stable in the planar motion but present instability in the out-of-plane motion. Furthermore, their orbits 

are more robust against the introduction of non-sphericity perturbation due to the retrograde motion 

close to the asteroid (and prograde away from it), assuming again that the asteroid rotational motion is 

prograde. The associated unstable manifolds can be of use providing access or escape trajectories to 

and from a hypothetical stand-off point at a safe distance from the asteroid. The eccentricity of the 

asteroid orbit has not been considered, but similar orbits have been shown to exist. However, if only a 

few orbits are considered (due to the intrinsic instability and additional perturbations), the effect of the 

variation of the distance to the Sun in that timeframe is also limited. 

6  Conclusions 

The Hill problem with solar radiation pressure is a useful dynamical system to study the motion of 

spacecraft in the vicinity of asteroids orbiting the Sun. This paper has mapped the evolution of the a 

and g-g’ families of planar symmetric periodic orbits with the introduction of solar radiation pressure 

from the original Hill problem to an extreme case with very high lightness number representative of 

asteroid missions. The structure of the solution space deviates from the original solution map in the 

original Hill problem, with the g-g’ family breaking apart into two unconnected families, one of 

which disappears for high lightness numbers. 

Regarding applications for small asteroid exploration, the single periodic branch of the g’ family has 

been shown to be unfeasible for realistic asteroid densities and the lightness numbers characteristics 

of small bodies. For high lightness numbers, eclipses need to be taken into account, as they modify 

the structure and connections of the families and shape of the orbits, particularly when close to the L2 

point. 

The in-plane and out-of-plane stability of the feasible a and g’ families is also presented. Family a 

remains unstable as in the traditional Hill problem for all cases, while family g’ has certain regions of 

in-plane or out-of-plane stability. However, the most stable branch of this family corresponds to the 

unfeasible section that intersects the asteroid. The double periodic g’ branch presents the best 

characteristics for temporary orbits around a hypothetical small asteroid.  
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APPENDIX A The L1 point region and additional families c and f  

The main body of this paper deals with Hill problem a and g-g’ planar families of orbits. These 

families either originate from the L2 point or are constraint in their excursions away from the asteroid 

by the zero velocity curves at energies similar to that of L2. This feature can be practical for minor 

body observations, as the L2 point is drawn towards the secondary with increasing solar radiation 

pressure (see Figure A-1 left), and the associated region of the phase space shrinks, allowing close 

observations.  

 
Figure A-1: L2 and L1 position with lightness number, assuming an asteroid density of 2.6 g/cm3. 

The L1 point on the other hand is displaced sunward as the lightness number   
increases and quickly 

escapes the close vicinity of the secondary, as shown in Figure A-1 right. For example, for a lightness 

number of 30, representative of current and planned missions to asteroids, the L2 point would be 

situated at a distance of about 48 radii of the secondary (compared to 183 radii for the case of no SRP), 

while the L1 distance is over 2600 radii away from the secondary. In the extreme case of ~ 684 , the 

L2 point stands at merely 10 asteroid radii, while L1 is over 60000 radii away. Note that the vertical 

scale of the L1 plot is given in thousands of radii. The region of the phase space around L1, together 

with families originating from it or constraint to this region, is expected to display much larger 

distances to the secondary. This was already advanced by Farres and Jorba (2012) when they studied 

the use of a solar sail around asteroid Vesta. 

To illustrate this fact, the phase space for negative 0 crossings has been mapped in Figure A-2 for a 

particular relatively small lightness number of 10  , which is still below most minor body missions 

SRP levels. It is important to note the complete loss of symmetry in the positions and energies of the 

two libration points, and the associated forbidden regions. The upper right corner of Figure A-2 

corresponds to the 10   
plot of Figure 4. 

 
Figure A-2: Solution map including L1 vicinity for lightness number 10  . 



When comparing this map to the original Hill problem map in Figure 2, it is possible to observe that 

both families c and f are drawn towards the border of the forbidden region, which consists of 

degenerate ‘linear’ orbits along the horizontal axis. This is particularly noticeable for the region of 

family f with closer 
0 crossings, resulting in orbits that intersect the body of the secondary. Sections 

of the orbit families that have a minimum distance to the secondary of less than one radius have been 

indicated in Figure A-2 with a discontinuous line, assuming an asteroid density of 2.6 g/cm
3
. 

Figure A-3 plots a few example members of families c (left) and f (right) for this particular SRP level. 

The planar Lyapunov orbits of the c family have an almost elliptical shape centred on L1, with only 

orbits at very low Jacobi constant starting to display the bean-shape deformations typical of the planar 

Lyapunov family. This was observed to a lesser extent by Katherine and Villac (2010) for a lower 

lightness number 2.515  . Orbits of the f family (plotted on Figure A-3 right) have lost their typical 

quasi-elliptical shape in the traditional Hill case and have a more tear-like shape, with a very close 

approach to the secondary over the antisolar point. Figure A-4 left shows a detail of this close 

approach, where the asteroid or secondary surface is represented with dashed concentric circles for 

three different densities (1, 2 and 3 g/cm
3
).  As evidenced in Figure A-4 right, family f orbits with 0

crossings lower than 390 secondary radii all intersect the secondary (dashed line). For this SRP level 

this is about half the distance to the L1 point. It can be observed that the close approach still takes 

place for orbits at much larger distances (close approaches as low as 35 secondary radii for orbits of 

sizes about twice the L1 distance). 

For higher levels of SRP characteristic of asteroids and comets, the distances to L1 would increase, the 

size and periods of the c and f orbits would also grow, and larger portions of the f family would 

intersect the secondary. All these facts work against the feasibility of realistically using these orbits 

for close minor body observations, in spite of their attractiveness. 

 
Figure A-3: Families c (left) and f (right) for a lightness number 10  . The x marker indicates the L1 point position.  

          
Figure A-4: Detail on family f for a lightness number 10  . Orbits with high Jacobi constant intersect the asteroid. 


