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AAS 15-356

PERFORMANCE EVALUATION OF ARTIFICIAL NEURAL

NETWORK-BASED SHAPING ALGORITHM FOR PLANETARY

PINPOINT GUIDANCE

Jules Simo∗ and Roberto Furfaro † and Joel Mueting ‡

Computational intelligence techniques have been used in a wide range of applica-
tion areas. This paper proposes a new learning algorithm that dynamically shapes
the landing trajectories, based on potential function methods, in order to provide
computationally efficient on-board guidance and control. Extreme Learning Ma-
chine (ELM) devises a Single Layer Forward Network (SLFN) to learn the rela-
tionship between the current spacecraft position and the optimal velocity field. The
SLFN design is tested and validated on a set of data comprising data points belong-
ing to the training set on which the network has not been trained. Furthermore, the
proposed efficient algorithm is tested in typical simulation scenarios which include
a set of Monte Carlo simulation to evaluate the guidance performances.

INTRODUCTION

The science return of past robotic missions (e.g. Viking 1 and 2, Mars Pathfinder, Mars Explo-

ration Rovers, Phoenix Lander) have been severely limited by the landing accuracy provided by the

Entry, Descent, and Landing (EDL) system.1, 2 Thus, future unconstrained, science-driven, robotic

and human missions to Mars and other planetary bodies will require a high degree of landing ac-

curacy. Over the past decade, the Mars pinpoint landing problem, i.e. the ability to guide one or

more landers to a specified point on the Martian surface with accuracy less than 100 m, has been

steadily gaining importance.3, 4 Indeed, the sustained robotic exploration experienced by the red

planet, as well as the continued interest in conceiving and studying missions that may one day de-

liver humans to Mars contributed to generate the need for more precise delivery of cargo on to the

planets surface.1 Generating guidance algorithms for Mars landing has been the focus of many sci-

entists and engineers.5, 6, 7, 8, 9, 10 Current practice for Mars and Lunar landing employs a guidance

approach where the reference trajectory is generated on-board. The trajectory is computed as a time-

dependent polynomial whose coefficients are determined by solving a Two-Point Boundary Value

Problem (TPBVP). Although the method is originally devised to compute the reference trajectory

used by the Lunar Exploration Module,11, 12 it is currently employed to generate a feasible reference

trajectory comprising the three segments of the MSL powered descent phase. A fifth-order polyno-

mial in time satisfies the boundary conditions for each of the three position components (downrange,

crossrange and altitude). The required coefficients can be determined analytically as a function of

the pre-determined time-to-go. In recent years several authors have tried determine reference trajec-

tories (and guidance commands) that are fuel-optimal, i.e. minimum-fuel trajectories that satisfy the
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desired boundary conditions and possibly additional constraints. For such cases, analytical solutions

are possible only for the energy-optimal landing problem with unconstrained thrust.9 To the best

of our knowledge, closed-form, analytical solutions for the full three-dimensional, minimum-fuel,

soft landing problem with state and thrust constraints are not available. Thus, such trajectories can

be found only numerically using either direct or indirect methods.13, 14, 15, 16, 17 However, solutions

based on direct methods are generally obtained by converting the infinite-dimensional optimal con-

trol problem into a finite constrained Non-Linear Programming (NLP) problem.18, 19, 20, 21, 22, 23, 24

More recently, Acikmese et al.25 devised a convex optimization approach where the minimum-

fuel soft landing problem is cast as a Second Order Cone Programming (SOCP).26, 27 The authors

showed that the appropriate choice of a slack variable can convexify the problem.28 Therefore,

the resulting optimal problem can be solved in polynomial time using interior-point method al-

gorithms.29, 30 In the following and for a prescribed accuracy, convergence is guaranteed to the

global minimum within a finite number of iterations. In addition, the method is attractive for pos-

sible future on-board implementation. Moreover, the method has been extended to find solutions

where optimal trajectories to the target do not exist, i.e. the guidance algorithm finds trajectories

that are safe and closest to the desired target.31 This paper develops a novel guidance approach

based on a combination of trajectory shaping and neural network methodologies to devise an al-

gorithm capable of generating an acceleration command that guides the spacecraft to the desired

location on the planets surface with zero velocity (soft landing). In a previous study, McInnes32

developed a trajectory shaping approach for terminal lunar descent. The basic idea was to investi-

gate potential function methods,33 to generate families of trajectories that are globally convergent to

the target landing location. The method relies on Lyapunovs theorem for determining the stability

of non-linear systems, hinges on the definition of a scalar function which satisfies the properties

typically exhibited by a Lyapunov function. Under such conditions the landing target is attractive

and a descent path following the potential function gradient ensure convergence and safe landing.

Both velocity field and desired acceleration can be computed analytically. However, the feedback

trajectories derived via the potential methods are generally not fuel-efficient. The idea behind the

proposed guidance scheme is to approximate the potential field and more importantly its gradient

by using machine learning algorithm to learn the relationship between position and desired veloc-

ity. A fuel-efficient vector field that is attractive to the target point, can be numerically computed

using optimal control theory. The numerical data points can be employed to train a neural network

which is therefore employed to within a linear guidance scheme to determine the desired velocity

as function of the position. Among the possible plethora neural networks candidate for the work,

we selected a class of networks called Extreme Learning Machines (ELM).34, 35, 36, 37 Advantages

of using such techniques will be illustrated in the upcoming sections.

In this paper, the neural-based trajectory shaping guidance performance will be implemented and

evaluated in a full 3−D environment. Thus, the extension is fairly straightforward. For example one

will use the 2−D SLFN38 as reference and generate an axial-symmetric conical optimal vector field,

by rotating the current 2−D field around the vertical (z−axis). The proposed efficient algorithm is

also tested in typical simulation scenarios which include a set of Monte Carlo simulation to evaluate

the guidance performances.

PROBLEM STATEMENT

The planetary landing guidance problem that can be formulated as follows: given the current state

of the spacecraft, determine a real-time acceleration and attitude command program that reaches the
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target point on the surface with zero velocity.

EQUATIONS OF MOTION

The equations of motion of a spacecraft moving in the gravitational field of a planetary body can

be described using Newtons law. Assuming a mass variant system and a flat planetary surface, the

equations of motion is given by

ṙ = v, (1)

v̇ = −g(r) +
T

mL

+ aP , (2)

ṁL = −
||T ||

Ispg0
, (3)

where r = [x, y, z]T and v = [vx, vy, vz]
T are the position and velocity of the lander with respect

to a coordinate system with origin on the planets surface, g(r) is the gravity vector, T is the thrust

vector, mL is the mass of the spacecraft, Isp is the specific impulse of the landers propulsion system,

g0 is the reference gravity, and aP is a vector that accounts for unmodeled forces (e.g. thrust

misalignment, effect of higher order gravitational harmonics, atmospheric drag, etc.).

The equations of motion can be explicitly written in their scalar form as

ẋ = vx, (4)

ẏ = vy, (5)

ż = vz, (6)

v̇x = −gx(r) +

(

T

mL

)

x

+ apx, (7)

v̇y = −gy(r) +

(

T

mL

)

y

+ apy, (8)

v̇z = −gz(r) +

(

T

mL

)

z

+ apz. (9)

The mathematical model described in Eqs. (1-9) is employed to simulate the spacecraft descent

dynamics by the proposed guidance law. In order to ensure a successful soft landing, the lander will

stay above the planetary surface all the time during the powered descent phase.

GUIDANCE ALGORITHM DEVELOPMENT

The Trajectory Shaping Guidance (TSG) algorithm is based on the idea that the spacecraft path

defining the closed-loop descent trajectory toward a planetary surface can be shaped to follow a path

that is attractive (i.e. ensure convergence toward the target) and safe (i.e. avoid obstacles).32, 33 The

guidance reference frame is shown in Figure 1. Although vehicle path and velocity-altitude profile

can be defined a-priori, this will result in lack of flexibility and potential degradation in robustness.

TSG relies on methodologies based on potential functions to establish a class of trajectories that are

globally stable to the selected target location. As shown by McInnes,32, 33 potential functions can

be selected to enable landing the spacecraft in regions of complex terrain, i.e. shape the landing

trajectories to reduce the probability of failure and/or avoid hazards.
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Figure 1 Guidance reference frame and free-body force diagram for a planetary
lander during the powered descent to the designated target.

Potential functions methods are rooted in the Lyapunov stability theory for non-linear systems.

Such methods are applied by defining a scalar potential function that may represent the topography

of the landing location. To ensure the definition of a class of descent paths that globally converges

to the selected target location, one must develop a class of guidance algorithms that ensure that the

derivative of the potential function (gradient) along the trajectory is always negative. Following

the standard Lyapunov definition of a potential function, and defining r as the current spacecraft

position and rd the desired position on the planets surface, we have

φ(rd) = 0

φ(r > 0, ∀r 6= rd

φ̇(r < 0, ∀r 6= rd (10)

φ(r) → 0, as ||r|| → ∞

According to the second Lyapunovs theorem, it can be shown that the desired point rd is globally

attractive and all trajectories converge toward it. On this basis, McInnes32 used the potential function

method to generate families of descent path toward the lunar surface as follows:

• The magnitude of the spacecraft velocity is shaped by specifying a pre-defined velocity profile

as function of the altitude
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• The direction of the velocity vector, which in turn define the trajectory path, is shaped using a

potential function containing geometric information about the terrain surrounding the landing

location. As a result, one can find an acceleration command that forces the vehicle to follow

the negative of the gradient potential, which ensure global convergence to the desired location.

For a given potential function φ(r) that satisfies Eq.(10), one can define a velocity field as follows

v = −v(h)
∇φ(r)

||∇φ(r)||
, (11)

where v(h) is a pre-defined velocity-altitude profile (velocity magnitude shape). If the potential

function has an analytical expression, one can easily find the acceleration command required to

follow the prescribed path as defined by the potential function and the initial conditions. Indeed, the

acceleration command is found as follows

ac = Λv − g (12)

v̇ = Λv, Λ =

{

∂v

∂r

}

3×3

, (13)

where Λ is the 3 × 3 matrix of partial derivatives of the velocity components and g is the gravity

vector. Whereas this method has been previously studied, here we propose and evolution of the

potential function-based methodology by a) numerically approximating the gradient of the potential

function that yield a set of shaped path that are fuel-efficient and enforce specific trajectory con-

straints and b) define a guidance algorithm that tracks the optimal velocity field as function of the

position.

EXTREME LEARNING MACHINES

Computational intelligence techniques have been successfully used in learning functional rela-

tionships that are only described by a limited about of data points. Most of such techniques (e.g.

Neural Networks (NN), Support Vector Machines (SVM)) are faced with many challenges includ-

ing, slow learning speed, poor computational scalability as well as requirement of ad-hoc human

intervention. Extreme Learning Machines have been recently established as an emergent technol-

ogy that may overcome some of the abovementioned challenges providing better generalization,

faster learning speed and minimum human intervention. ELMs work with the ‘generalized‘ Single

Layer Forward Networks (see Figure 2). SLFN are computationally designed to have a single hid-

den layer (which can be either Radial Basis Function (RBF) or other activation functions) couple to

a linear output layer. The key point is that the hidden neurons need not to be tuned and their weights

(training parameters) can be sampled from a random distribution. Theoretical studies39 show that

feed-forward networks with minimum output weights tend to achieve better generalization. EML

tend to reach a) the minimum training error and b) the smallest norm of output weights with conse-

quent improved generalization. Importantly, since the hidden nodes can be selected and fixed, the

output weights can be determined via least-square methodologies.

Consider a SLFN with L hidden nodes, as shown in Figure 2. The output function can be repre-

sented as follows
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Figure 2 Typical architecture of a Single Layer Forward Network (SLFN) which is
the most fundamental EML.

fL(x) =
L

∑

i=1

βigi(x) =
L

∑

i=1

βiG(ai, bi, x) (14)

with x ∈ R
d,βi ∈ R

m.

For additive nodes with activation function g

G(ai, bi, x) = g(aix + bi) (15)

with ai ∈ R
m, bi ∈ R.

For RBF nodes with activation function g

G(ai, bi,x) = g(bi||x − ai|| with ai ∈ R
m, bi ∈ R

+. (16)

Consider a training set comprising N distinct samples, [xi, ti] ∈ R
d × R

m. The mathematical

model describing SLFNs can be cast as follows

L
∑

i=1

βiG(ai, bi,x) = tj , for j ∈ 1, · · · , N. (17)

Compactly, we have

Hβ = T , (18)
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where the hidden layer output matrix H is formally written as

H =







h(x1)
...

h(xN )






=







G(a1, b1,x1) . . . G(aL, bL,xL)
...

G(a1, b1,xN ) . . . G(aL, bL, xN )







N×L

,

with

β =







βT
1
...

βT
L







L×m

,

T =







T T
1
...

T T
N







N×m

.

Huang et al.36 theoretically showed that SLFNs with randomly generated additive or RFB nodes

can universally approximate any desired (target) function over a compact subset of X ∈ R
d. Such

results can be generalized to any piecewise continuous activation function in the hidden node. The

following theorem holds true:

Theorem 1 Given any non-constant piecewise continuous function g : R → R, if span{G(a, b,x) :
(a, b) ∈ R

d × R} is dense in L
2, any continuous target function f and any function sequence

{gL(x) = G(aL, bL,x)} randomly generated based on any continuous sampling distribution,

limL→∞||f − fL|| holds with probability one if the output weights βi are determined by ordinary

least square to minimize ||f(x) −
∑L

i=1 βigi(x)||.

The basic ELM can be constructed as follows. After selecting a sufficiently high number of

hidden nodes (ELM architecture), the parameters (ai, bi) are randomly generated and remain fixed.

Training occurs by simply finding a least-square solution β of the system Hβ = T , i.e. find β̂ such

that

||Hβ̂ − T || = minβ||Hβ − T ||. (19)

FUEL-EFFICIENT VELOCITY FIELD COMPUTATION USING EXTREME LEARNING

MACHINES

The fundamental idea behind the guidance algorithm development is the ability to numerically

approximate the gradient of a fuel-optimal potential function. Such function φ(r, rd) depends on

the actual position and desired (target) final position. Moreover, the gradient of the optimal po-

tential function generates a velocity field v(r, rd) that generates families of trajectories that are a)

fuel-efficient and b) satisfy specific constraints (e.g. thrust direction and flight path angle) and c)

drive the spacecraft to the desired point with a zero terminal velocity. Optimal control theory can

be employed to appropriately define the optimal control problem and numerically determine fuel-

efficient trajectories that satisfy specified boundary conditions as well as path and thrust constraints.
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However, an explicit, closed-form representation of either φ(r, rd) and/or v(r, rd) is not generally

available. However, if sufficient samples representing the functional relationship between poten-

tial function and position, as well as velocity and position, are available, one can employ machine

learning techniques to numerically approximate the desired function. Over the past two decades,

Neural Networks (NN) have emerged as powerful computational devise capable of approximate any

piecewise continuous function to the desired degrees. Biologically inspired, NNs are comprised of

computational units called neurons that have the ability to learn the relationship between any desired

function (assuming that certain conditions are satisfied) from inputs-output example. Here the goal

is employ a class of neural networks called Extreme Learning Machines (ELM)35, 36 to approximate

the fuel-efficient velocity field.

NETWORK DESIGN AND TRAINING SET GENERATION USING PSEUDO-SPECTRAL

METHODS

At the core of the proposed methodology is the ability to approximate a fuel-optimal velocity

field that is representative of the gradient of a potential function. We employ ELM theory and we

design and train a SLFN capable of approximating v(r, rd). The development goes through the

following stages: 1) training set generation, 2) SLFN architecture design, 3) Training phase and 4)

testing and validation phase.

The minimum-fuel problem for planetary landing can be defined as follows: Find the thrust

program that minimizes the following cost function (negative of the lander final mass; equivalent to

minimizing the amount of propellant during descent)

maxtF ,T (.)mL(tF ) = mintF ,T (.)

∫ tF

0
||T ||dt, (20)

subject to

r̈L = −gL +
T

mL

, (21)

d

dt
mL = −

||T ||

Ispg0
, (22)

and the following boundary conditions

0 < Tmin < ||T || < Tmax (23)

rL(0) = rL0, vL(0) = ṙL(0) = vL0 (24)

rL(tF ) = rLF , vL(tF ) = ṙL(tF ) = vLF (25)

mL(0) = mLwet (26)

The thrust is limited to operate between a minimum value (Tmin) and a maximum value (Tmax).
An open-loop, fuel-optimal thrust program can be obtained by using optimal control software pack-

ages such as the General Pseudospectral Optimal Control Software (GPOPS).17 A set of open-loop

trajectories may be employed to describe the relationship between the current position and the veloc-

ity vector, i.e. vOPT = v(r, rd) that ensures a fuel-optimal path potentially subjected to flight-path

constraints. GPOPS has been employed to numerically simulate the powered descent phase over

Mars.
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(a) (b)

Figure 3. (a) Samples of fuel-efficient trajectoties; (b) Samples of fuel-efficient velocity vectors.

Figure 4. Root Mean Square Error (RMSE) as function of SLFN number of hidden nodes.

PARAMETER DESIGN

Samples from an optimal (continuous) vector field are generated by numerically computing a set

of fuel-efficient trajectories via proper application of the optimal control theory. A set of 2 − D
(vertical plane)38 fuel-optimal trajectories have been computed that are initiated at an altitude of

1500 meters, with a downrange comprised between −2000 meters and 0 meters (vertical descent).

For each case, the initial descent velocity has been kept constant (−75 m/sec) whereas the initial

lateral velocity has been varied linearly between 100 m/sec (at −2000 meters downrange) to 0
m/sec (at 0 meters downrange). The lander is assumed to be a small robotic vehicle, with six

throttlable engines, one pointing in each direction (Isp = 292 sec). For these simulations, the only

dynamical force included is the gravitational force of the moon.The lander has a weight of 1900
kg (wet mass) and is capable of a maximum (allowable) thrust of 13 kN as well as a minimum

(allowable) thrust of 5 kN . For each of the optimal trajectories, the position (ELM input) and

velocity (ELM output) has been recorded 161 along the trajectories. Note that the sampling has

been naturally established as an input to GPOPS to compute an accurate optimal solution. The total
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Figure 5 Test and validation regression plots: (a) Regression on lateral velocity; (b)
Regression on descent velocity.

traning set is comprised of N = 201 × 161 = 32361 training samples. Figure 3 shows trajectories

and velocity sampled from the training set.

ELM DESIGN: TRAINING AND TEST

The network is comprised of an input layer (three nodes describing the current position) and hid-

den layer (number of nodes defined by the designer) and an output layer (three nodes that output the

component of the optimal position). For a set of L hidden nodes and the above specified training set,

the following steps are taken to design the SLFN capable of approximating the vOPT = v(r, rd)

• randomly generate the parameters describing the hidden nodes (ai, bi) for i = 1, · · · , L

• Compute the hidden layer output matrix H

• Compute the output weight vector β by solving H+β = T

The matrix H+=HT (HHT )−1H+ or H+=(HTH)−1HT if HHT is singular) is called the

Moore-Penrose generalized inverse matrix. In computing the weights β, a positive value 1
λ

was

added to the diagonal of HTH to improve the stability. Importantly, the linear weights and the

ELM output function are computed as follows

β = HT

(

1

λ
+ HHT

)−1

T , (27)

vOPT (r, rd) = h(r)β = h(r)HT

(

1

λ
+ HHT

)−1

T . (28)

One critical aspect of the ELM implementation is the selection of the the hidden number of nodes

which is a typical network design parameter. The matrix has dimension N × L where N = 16180
(size of the training set) and therefore HHT has dimension L. The training occurs by computing

β (Eq. (27)). To select the optimal number of hidden nodes, the training phase has been repeated by
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systematically increasing the number of neurons and recording the training performances. Figure

4 shows the root square mean error as function of the number of hidden layers. As the number of

hidden nodes is increased, the root mean square error stabilizes. A value of L = 600 nodes has

been selected as optimal architecture.

The SLFN design is tested and validated on a set of data comprising data points belonging to the

training set on which the network has not been trained. Fifty percent of the overall training set is

devoted to test and validation. Indeed, after proper training, the SLFN is run on test and validation

input points and the output response predicted. A complete regression analysis is then illustrated

in Figure 5. The later shows that the designed network has generalized well, i.e. has learned the

vOPT = v(r, rd) functional relationship on points not included in the training set.

(a) (b)

(c) (d)

Figure 6 Single feedback trajectory simulation employing the neural-based trajec-
tory shaping scheme and comparison with a GPOPS open-loop optimal solution: (a)
Descent trajectory tracking the optimal velocity field; (b) History of the optimal and
commanded thrust; (c) History of the Altitude and downrange; (d) History of the
lateral and dexent velocity.
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(a) (b)

(c)

Figure 7. 3-D Monte Carlo trajectories and landing ellipses.

EVALUATION OF GUIDANCE ALGORITHM PERFORMANCE

Two-Dimensional Results

The neural-based, trajectory shaping guidance algorithm devised using a combination of ELM

theory for optimal velocity field approximation and closed-loop linear theory (tracking the velocity

field) has been tested in a simulation scenario implementing the equations of motion Eqs. (1-9).

A powered descent phase describing the terminal guidance for Mars landing is considered. The

spacecraft lander properties are the same as reported in the previous section. At this stage, the

motion is constrained to occur in a vertical plane. The first set of simulations consider one single

guided trajectory starting at r(0) = [1000, 1500] m with initial velocity v(0) = [50,−74]T m/s.

The guidance algorithms takes over immediately to guide the lander toward the desired point on

the Martian surface (set to be the origin of the reference system) with zero velocity. Note that such

conditions are not part of the training set employed to train and test the proposed ELM. The guidance

algorithm is activated with 10 Hz frequency. Figure 6 shows the simulation of a single feedback

trajectory using the neural-based trajectory shaping approach and the comparison with a GPOPS

open-loop optimal solution. Furthermore, the time history of position, velocity and thrust have

12



been compared with a newly generated numerical optimal solution generated via GPOPS that starts

with the same initial conditions as the guided trajectory. Performance are comparable although it is

worth noting that the neural-based trajectory shaping algorithm has not been designed to track the

GPOPS-generated optimal fueld solution, but tracks the velocity field as approximated by the ELM.

The open-loop, fuel efficient numerical solution achieve the desired target position with exactly zero

velocity. The guided trajectory will generate guidance residual errors and it is not expect to have

the same accuray of the open-loop ideal case. The magnitude of the thrust command oscillate as

function of time as shown in Figure 6. This is due to the LQR design that has been chosen for

the specific implementation. Importantly, in the last 10 seconds of the powered descent, the thrust

command is reduced, which is probably the major cause of residual guidance errors. As noted it

is not expected the guidance algorithm track exactly open-loop optimal trajectories. Indeed, as the

lander moves across the vector field, the position associated to the guided trajectory trigger ELM

outputs that approximate optimal velocity vectors associated to different fueld-optimal trajectories.

(a) (b)

(c)

Figure 8. Crossrange, Downrange and Altitude vs time.
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Three-Dimensional Results

In this section, the neural-based trajectory shaping guidance performance is implemented and

evaluated in a full 3 − D environment. is fairly straightforward. The 2 − D SLFN38 has been used

as reference and generate an axial-symmetric conical optimal vector field, by rotating the current

2−D field around the vertical (z−axis). To evaluate further the guidance algorithm performance,

a set of 1000 Monte Carlo simulations have been implemented as shown in Figure 7. A set of

randomly generated initial conditions have been generated by randomly perturbing the samples of

initial conditions taken from the training set. Initial altitude and downrange are perturbed by a

gaussian noise with zero mean and 10 meters standard deviation (1σ) (see Figure 8). Initial lateral

and descent velocities are perturbed by a gaussian noise with zero mean and 2 m/sec standard

deviation (1σ) as shown in Figure 9. Table 1 reports the landing statistics for the Monte Carlo

Simulations. Figures 10, 11 show the landing histograms for the 1000 Monte Carlo simulations.

The guidance algorithm is shown to perform well.

(a) (b)

(c)

Figure 9. Velocity variation components.
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Table 1. Landing Statistics for the Monte Carlo Simulations.

Mean Standard Deviation

Crossrange (m) 0.1125 2.8673

Downrange (m) -3.1229 1.9642

Crossrange Velocity (m/s) -0.0964 1.8498

Downrange Velocity (m/s) 2.4401 0.9434
Descent Velocity (m/s) -1.6466 0.0874

(a) (b)

Figure 10. Landing histograms: Positions.
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(a) (b)

(c)

Figure 11 Landing histograms for the 1000 Monte Carlo simulations: Velocity vari-
ation components.
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CONCLUSIONS

In this paper, the neural-based trajectory shaping guidance performance has been implemented

and evaluated in a full 3 − D environment. The proposed efficient algorithm is also tested in typ-

ical simulation scenarios which include a set of Monte Carlo simulation to evaluate the guidance

performances. An approach to feedback guidance for planetary landing that may represent the next

evolution of path shaping algorithms has also been illustrated. Conventional path shaping algo-

rithms, as investigated for lunar descent and landing, have been based on the idea of defining a

potential function that exhibits the typical properties of a Lyapunov function. In previous studies,

potential functions have been selected to be analytical (e.g. quadratic function or any of its linear

combination). Despite the convenience (e.g. vector field and acceleration command can be com-

puted analytically), the families of trajectories generated in this fashion in generally non-optimal.

The next evolution of trajectory shaping employs modern machine learning techniques to approxi-

mate a potential function as function of position that generates trajectories that are attractive to the

target and fuel efficient. Apparently, what is really needed is an algorithm that computes the optimal

velocity field as function of the spacecraft actual position. Fuel efficient trajectories and velocities

cannot be computed analytically, but numerical computation is required by using methods borrowed

from optimal control theory (e.g. pseudo-spectral methods). ELM can be designed and trained on

the output of open-loop, fuel-efficient trajectories generated via GPOPS. Such trajectories are shown

to be convergent to the target and can be easily generated off-line. EML have shown to be fast and

accurate in learning the desired functional relationship between the spacecraft position and the op-

timal velocity field. For real-time implementation, the guidance algorithm evaluate current position

and velocity, compute via ELM the actual desired velocity and employs a LQR to track the velocity

field. Guidance simulations have demonstrated the ability of the guidance algorithm to drive the

lander toward the desired position exhibiting low residual errors in both terminal downrange, lateral

velocity and impact velocity.
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[31] L. Blackmore, B. Açikmeşe, and D. P. Scharf, “Minimum-Landing-Error Powered-Descent Guidance
for Mars Landing using Convex Optimization,” Journal of Guidance, Control and Dynamics, Vol. 33,
No. 4, July-August 2010, pp. 1161–1171.

[32] C. R. McInnes, “Path Shaping Guidance for Terminal Lunar Descent,” Acta Astronautica, Vol. 36, No. 7,
1995, pp. 366–377.

[33] C. R. McInnes, “Potential Function Methods for Autonomous Spacecraft Guidance and Control,” In
AIAA/AAS Astrodynamics Specialist Conference, Halifax, Nova Scotia, Canada, August 1995. Paper
AAS 95-447.

18



[34] H. Guang-Bin, D. H. Wang, and Y. Lan, “Extreme Learning Machines: A Survey,” International Journal
of Machine Learning and Cybernetics, Vol. 2, 2011, pp. 107–122.

[35] H. Guang-Bin, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning Machines: Theory and Applications,”
Neurocomputing, Vol. 70, 2006, pp. 489–501.

[36] H. Guang-Bin, L. Chen, and C.-K. Siew, “Universal Approximation using Incremental Constructive
Feedforward Networks with Random Hidden Nodes,” IEEE Transactions on Neural Networks, Vol. 17,
No. 4, July 2006, pp. 879–892.

[37] H. Guang-Bin and Z. Qin-Yu, “Real-Time Learning Capability of Neural Networks,” IEEE Transactions
on Neural Networks, Vol. 17, No. 4, July 2006, pp. 863–878.

[38] R. Furfaro, J. Simo, B. Gaudet, and D. R. Wibben, “Neural-based Trajectory Shaping Approach for Ter-
minal Planetary Pinpoint Guidance,” In AAS/AIAA Astrodynamics Specialist Conference, Hilton Head,
South Carolina, August 11 - 15, 2013. AAS 13-875.

[39] P. L. Bartlett, “The Sample Complexity of Pattern Classification with Neural Networks: The Size of the
Weights is more Important than the Size of the Network,” IEEE Transactions on Information Theory,
Vol. 44, No. 2, 1998, pp. 525–536.

19


	Introduction
	Problem Statement
	Equations of Motion
	Guidance algorithm Development
	Extreme Learning Machines
	Fuel-Efficient Velocity Field Computation using Extreme Learning Machines
	Network Design and Training Set Generation using Pseudo-Spectral Methods
	Parameter Design
	ELM Design: Training and Test
	Evaluation of Guidance Algorithm Performance
	Two-Dimensional Results
	Three-Dimensional Results

	Conclusions

