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 Abstract—In the conversion process from primary arc to 

secondary arc, there exists stochasticness phenomenon of the 

initial positions of secondary arc. However, the present simulation 
results of the arcing time with the arc chain model are constant, 

which is not consistent with the test results. In reaction to the 

above phenomenon, the stochastic simulation model was first 

established to calculate the relationship between the conductivity 

of the air and the temperature. Furthermore, the conductivity 

along the radius direction of the primary arc was acquired, and 

then the stochastic initial length of the secondary arc with 
different primary current was also obtained. Results showed that 

with the increase of primary current, the average value and 

dispersion of the initial secondary arc length also increased. 

Finally, the stochastic model of secondary arc with different initial 

positions was applied into the arc chain model to calculate the 

arcing time with dispersion, and the simulation results were 
compared with the experimental results. Results showed that the 

simulation results of the arcing time are consistent with the test 

results, and the relative errors are within 10%, which shows that 

the stochastic model is effective and reliable. 

 
Index Terms—Primary arc; Secondary arc; Initial position; 

Stochastic model; Arcing time 

 

I. INTRODUCTION 

HE previous field operation experience of power transmission 

lines have shown that over 90% of the ground fault is the 
single-phase ground fault [1]. Thus the timely extinction of 

secondary arc caused by the single-phase ground fault is important 

to the success of single-phase reclosing, and it is crucial to the 

transmission capacity and reliability of the power system [2-4]. To 
ensure the safe operation of the UHV transmission lines and 

enhance the stability of the power system, the self-extinction of 

secondary arc is of the key issues need to be solved.  
A large number of tests have been done on the self-extinction of 

secondary arc both at home and abroad [5-10]. The studies have 

shown that the arcing time of secondary arc is non-deterministic, 

with great stochasticness. The experimental test can provide the 
most direct and effective means to study on the characteristics and 

physical nature of the secondary arc, and accumulate a large 

number of reliable basic data. However, it is slightly less flexibility 
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and difficult to analyze the intrinsic physical mechanism of the 

secondary arc. With the development of digital computing 
technologies, the modeling and simulation method has become an 

important way to study on the self-extinction characteristics of 

secondary arc. Some experts have been using the simulation 

method to calculate the arcing time [11-13]. In reference [11], an 
arc chain model was established and the arcing time was 
calculated, which showed good consistency with the test results. 

An electric arc model was further developed in reference [12], 
which can be used to calculate the arcing time. However, the 

arcing time obtained from the simulation model would be constant, 

which is not always consistent with the test data with sensible 

dispersions. In response to the critical issue, it is necessary to 
further deepen the simulation arc model studies, which can 

simulate the arcing time with dispersion. 

In this paper, the physical mechanism of the conversion 

process from primary arc to secondary arc was analyzed, and 

then the stochastic model of secondary arc with different initial 

positions was established. The initial position refers to the 

whole secondary arc tunnel after reformation, including the arc 

roots and the arc column. After that the relationship between 

the conductivity of the air and the temperature was acquired, 

and the conductivity along the radius direction of the primary 

arc was obtained. Then the stochastic initial length of the 

secondary arc with different primary current was obtained. 

Finally, the stochastic model of secondary arc with the initial 

positions was added into the arc chain model to simulate the 

dispersive arcing time, and the simulation results were 

compared with the experimental results. 

II. MODELING AND SIMULATION 

A. Generation mechanism of secondary arc 

When there is single-phase ground fault occurred on the 

power transmission lines, due to the operation delay of the relay 

protection device and the circuit breaker, the circuit breaker on 
both sides could not be disconnected immediately. Thus there 

would be short circuit arc between the failure phase and the 

ground point, which is called primary arc. Then after dozens of 
milliseconds, with the action of the relay protection device and 

the circuit breaker, the failure phase would be cut off. However, 

due to the capacitance and mutual inductance coupling between 

the fault phase and non-fault phase, there would still be current 
flowing through the fault point, which is called secondary arc. 

The diameter of the arc is closely related to the current. On 

the UHV power transmission lines, the primary current can be 

up to tens of kilo-amperes, which is much larger than the 
secondary current, and the diameter of primary arc is also much 

larger than the diameter of secondary arc. There should 
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normally be a natural transition from the primary arc to the 

secondary arc in term of the arc shape, since they are burning in 

the same arc channel. However, some unique difference still 

exists between the initial shapes of the primary and secondary 
arcs especially after the controlled line interruption. Due to 

higher current and temperature of the primary arc, there would 
be even larger number of highly ionized particles to form air 

plasma in the primary arc channel. Just after extinction of the 
primary arc by deliberated line interruption, the secondary arc 

would be initialized and develop along the primary arc channel, 

whose developing direction is normally uncertain and can be 
calculated based on conductivity distribution. In addition, as 

the motion behaviour of the primary arc renders randomness, 

the final shape of the primary arc before extinction is stochastic, 

hence, the initial shape of the secondary arc turns to be 
stochastic as well. In other words, the initial positions of 

secondary arc are stochastic, as shown is Figure 1, in which the 

dotted lines indicate the possible positions of secondary arc. 

Secondary arc

(1)

(2)
(3)

R
x

y
z

Primary arc

 
Fig. 1.  The stochastic initial positions of secondary arc. 

 

The arc jet from the arc horns of the insulator assemblies 

may execute impacts on the primary arc motions. However, as 

the arc jet phenomenon mostly occurs in the arc root area and 
the outstretched length of the arc column is much longer than 

that of the arc root for a long gap arc discharge, the randomness 

of the two arc roots can be neglected during the simulation 
process. Also, previous studies by other researchers have also 

shown that, especially in terms of spatial shape and motions of 
an open air discharge, the dynamics of “long length” and “high 

current” arcs can be equivalently simulated to some extent by 
“short length” and “low current” arcs. Hence, in simulating the 

extinction time of the secondary arcs, low primary arc current is 

adopted as also to conveniently compare with the experimental 
results. Moreover, the long gap arcs must meet the mandatory 

conditions that the arc root are attached to the electrode, thus it 

can be supposed that the secondary arcs develop from the 

central location of cathode arc root to the anode arc root along 
the path of previous primary arc.  

B. Conductivity calculation of primary arc 

The developing direction of the arc in air is stochastic, and 

the stochasticness is related to the air conductivity. The larger 
the conductivity, the more likely formation of a new arc 

breakdown. To obtain the conductivity distribution of the arc, 

some hypotheses are simplified as follows: 
(1) The arc column is supposed to be cylindrically symmetric, 

constant cross section and infinite length; 

(2) There is no macroscopic medium flowing between the 

inside and outside of the arc column; 

(3) Within a simulation time step, the conductivity and 

current density at a certain point inside the arc column is 
constant. 

The diameter of the arc is closely related to the arc current. 
For the arc burning freely in the air, the diameter d is 

proportional to the square root of the current I according to the 
experimental data 

Id
21026.0 −×=                              (1) 

where the unit of d is m, and the unit of I is A. I is the root 

mean square (RMS) value. 

According to the above hypotheses, it can be obtained by the 
Ohm's law j = σE with integrating in the entire channel cross 

section that 
( )1

2 2

0 0
2 ( ) ( ) ( )( )

A

W

R T I

T

x
I E T rdr R E x dx R E T dT

T
π σ π σ π σ

∂
= = = −

∂∫ ∫ ∫    (2) 

where I is the primary current and the unit is A, E is the electric 

field strength of the arc column and the unit is V/m, σ(T) is the 

conductivity which is the function of temperature and the unit is
1 1m− −Ω ⋅ , R=d/2 is the radius of the primary arc, r is the radial 

distance from the center line of the primary arc and the unit is m, 

x=(r/R)
2
 , TA is the temperature at the center line of the primary 

arc, TW is the temperature of the outside surface of  the primary 

arc and the unit is K. 

The relationship between the conductivity and the 

temperature can be obtained by the empirical equations through 
a lot of experimental statistics [14-16] that 

/
=

b c T
aT eσ − −                                    (3) 

where the constant a, b and c can be obtained through the least 

squares fitting method with sets of the E and I meet equation (2). 

The volt-ampere characteristics E(I) and the radial temperature 
distribution T(r) are from the field data. The unit of variable σ is 

1 1
m

− −Ω ⋅  and the unit of variable T is K. 

In the moment of the conversion process from the primary to 
secondary arc, due to the thermal inertia of gas, the arc 

temperature does not decrease immediately and is still 

maintaining a very high value. Thus it can be supposed that the 
temperature of the primary and the secondary arc is consistent 

in the conversion moment. 

In order to acquire the initial positions of the secondary arc 
with the above model, the relationship between the 
conductivity and the temperature of the primary arc need to be 

got first, namely the parameters a, b, c in equation (3). Four 

methods were provided in reference [14] and the first method 

was adopted in this paper. In method 1, the parameters x and T 
are with approximately linear relationship and x(T, I) can be 

expressed as 

( ) ( )x I T Iα β= +                               (4) 

where α(I) β(I) are constants related with current, and the unit 

of variable T is K. 
With the relationship between the potential gradient E and 

the arc current I in reference [18] and the relationship between 

the arc temperature T and the arc current I in references [19-20], 
also with the simultaneous equations (2), (3), (4), the 

parameters a, b, c can be obtained. The relationship between the 

conductivity and the temperature can be expressed as 
4

16 3 8.23 10 /=4.77 10 TT eσ − − ×× × ×              (5) 
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where the unit of variable σ is 1 1
m cm

− −Ω ⋅  and the unit of variable 

T is K. 

To verify the accuracy of the calculation, the present results 

are compared with results in the literature [21], as shown in 
Figure 2. As can be seen from the figure, the overall trend of the 

two calculation results is consistent and the deviation is small, 

which indicate the calculation method is accurate and reliable. 
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Fig. 2.  The relationship between arc conductivity and temperature. 

 

As can be seen from Figure 2, with the increase of 

temperature, the conductivity is being flat first, afterwards 
increasing fast and at last being flat again. It is because that in 

the low temperature stage, the ionization degree of air and the 

electron density is low, thus the conductivity does not increase 
obviously. Then with the increase of temperature, the 
ionization degree of air and the electron density increase 

correspondingly, thus the conductivity increases too. At last in 

the high temperature stage, the ionization degree of air and the 
electron density are very high, the conductivity does not 

increase even more. 

With the relationship between the arc temperature T and the 

arc current I in references [19], the center temperature of the arc 
can be obtained with primary current of 1 kA and 25 kA. If the 

surface of the arc was set to 2000 K, and with the simultaneous 

equations of (1), (4), (5), the conductivity distribution along the 
radial direction of primary arc can be acquired, as shown in 
Figure 3. 
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Fig. 3.  The conductivity distribution of primary arc along the radial 

direction. 

 

C. Developing direction of secondary arc 

As the electron flow of the arc is mostly emitted by the 
cathode itself, the particle density is the largest and the motion 

speed of the electrons is the highest, therefore the entire course 

of the cathode is the most significant to the whole conversion 

process of the arc. Previous studies have found that the 

temperature of the cathode arc root is the highest, then comes 

the temperature of the arc column, and finally the anode arc 
root. [17, 20] Therefore in the model, the secondary arc is 

supposed to develop from the cathode arc root to the anode arc 
root. The initial position is supposed to be at the center position 

of the primary cathode arc root and the developing direction 
was the whole half sphere, as shown in Figure 4. β is the 

included angle between the developing direction of the 

secondary arc and the positive direction of z-axis, α is the angle 
between the projection of the secondary arc on xy plane and the 

positive direction of x-axis. The range of α is 0~360!and the 

range of β is 0~90!. 

 
(a) The possible breakdown point of next step 

 
(b) The coordinates of the pre-breakdown point 

Fig. 4.  The stochasticness in the development of the secondary arc. 

 

The coordinates of the breakdown point and pre-breakdown 
point can be expressed as 

( 1) ( ) sin cos

( 1) ( ) sin sin

( 1) ( ) cos

s s s

s s s

s s s

x i x i r

y i y i r

z i z i r

β α

β α

β

+ = + ⋅ ⋅


+ = + ⋅ ⋅
 + = + ⋅

                 (6) 

in which xs(i) ys(i) zs(i) is the coordinates of the breakdown 

point, xs(i+1) ys(i+1) zs(i+1) is the coordinates of the 

pre-breakdown point, rs is the calculation step length. Here the 
unit of xs(i), ys(i), zs(i) and rs is m. 

The conductivity of each position can be obtained through 

the equations (1)-(6). As the temperature distribution is not 

uniform along the radial direction, the possibility of the arc 
developing directions is not same. Therefore, in this model, the 

conductivity of each developing direction is accumulated as the 

possible coefficients of each developing direction, and the 
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probability of each developing directions can be expressed as 

( , ) ( , ) / ( , )P i j i j i jσ σ= ∑ ∑                     
(7) 

where σ(i,j) is the conductivity of each developing direction, 

P(i,j) is the probability of each developing direction. 

When the distance between the developing position of arc 
and the anode is less than a critical length, there would be short 

circuit between them, which can be expressed as 

( ) ( ) ( )2 2 2

s s s s
x x y y z z l− + − + − ≤            (8) 

where xs, ys, zs is the position coordinates of arc, x, y, z is the 

coordinates of anode, ls is the critial length. In simulation, it can 
be set that ls=R. 

D. The simulation flowchart 

With the establishment of the above model, the simulation 

flowchart can be represented as follows. 

 
Fig. 5.  The simulation process of the secondary arc initial positions. 

III. INITIAL LENGTH STOCHASTICNESS OF SECONDARY ARC 

The test results of long gap arcs have shown that, the arc 

length changes greatly during the arcing process, which may 
produce great influence on the self-extinction characteristics 

[22-23]. The arc length is an important parameter during the arc 

motion process. As the stochasticness of secondary arc can be 
reflected by the initial length in a certain extent, thus the initial 

length was used in this paper to study on the stochasticness of 

secondary arc. 

The primary arc was supposed to be standard cylindrical, and 
its diameter was determined by the primary current. The initial 

position of secondary arc can be obtained by the established 

model with different primary currents. For ease of calculation, 
the gap length of the insulator assemblies was set to be 1m. 

The initial position of secondary arc when the primary 

current is 1 kA is shown in figure 6(a) while the initial position 

of secondary arc when the primary current is 25 kA is shown in 

figure 6(b). And they are compared in figure 6(c). 

 
(a) Secondary arc position with primary current 1kA 

(b) Secondary arc position with primary current 25kA 

 
(c) Comparison with different primary current 

Fig. 6. The initial position of secondary arc with different primary current. 

 

Due to the influence of primary arc, the initial position of 

secondary arc is stochastic. As can be seen from Figure 6(a) and 

Figure 6(b), the initial position of secondary is stochastic, and 
they are developing within the primary arc path. It can be seen 

from Figure 6(c) that with the increase of primary current, the 

stochasticness of initial position of primary arc also increases 

and the arc motion is more complex. 
In order to analyze the influence of different primary current 

on the initial position of secondary arc, the initial length of 
secondary arc are calculated with different primary current. 
Each set has 25 valid data, as shown in Table I. Here, the gap 
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length of the insulator assemblies is set to be 1m, and the 

secondary arc value is set to be 30A. 

 
TABLE I 

THE INITIAL SECONDARY ARC LENGTH WITH DIFFERENT PRIMARY CURRENT 

Primary 

current/kA 

Average arc 

length/m 
Maximum/m Minimum/m 

Standard 

Deviation 

1 1.343 1.43 1.24 0.0531 

5 1.389 1.47 1.26 0.0540 

10 1.44 1.51 1.28 0.0543 

15 1.423 1.54 1.30 0.0639 

20 1.465 1.57 1.31 0.0725 

25 1.476 1.63 1.31 0.0976 

 

As can be seen from Table I, with the increase of primary 
current, the initial length and dispersion of secondary arc 

increase too. This is due to that with the increase of primary 
current, the diameter of primary arc increases correspondingly. 

Theoretically, the secondary arc can develop anywhere along 

the path of primary arc, thus the initial length and dispersion of 

secondary arc increases with the increasing of primary current. 
It can be also seen from the table that, with the increase of 

primary arc current, the maximum value of the initial length of 

the secondary arc increases correspondingly while there is little 
change of the minimum length. It was because that the 

secondary arc developed along the path of primary arc and 
theoretically the initial length is equal to the primary arc length. 

As long as the sample is large enough, the rule can be 
discovered. 

IV. ARCING TIME STOCHASTICNESS OF SECONDARY ARC 

The actual shape of arc is complex and constantly varying 

over time, thus it cannot be simplified into a single cylinder. 
Therefore the arc chain model which can reflect the actual 

shape changes of long gap arc was adopted [13,24], as shown in 
Figure 7(a). The secondary arc was suffering the combined 

action of electromagnetic force, thermal buoyancy force, wind 
load and air resistance during the motion process. With the arc 

chain model, the force of secondary arc can be transformed into 

each current element, as shown in Figure 7(b).  

       

Fti

Fmi

Fwi
Fri

I

z

x

y
B

 
(a)                                                 (b) 

Fig. 7.   Cascade chain model for secondary arcs. 

 

The magnetic force of each current element i can be 

expressed as 

                               (9) 

where lai is the length of the ith current element, Iai is the current 

vector of the ith current element. Iai is the root mean square 

(RMS) value. The unit of Fmi is N, the unit of lai is m, the unit of 

Iai is A, and the unit of Bi is T.  

The current element will be subjected to the vertical thermal 

buoyancy which can be derived according to buoyancy 
equation as 

aiaiti
lrgF 2

0
)( πρρ ⋅−=                         (10) 

where ρ0 is the air density under standard atmospheric pressure 

and temperature with a typical value of 1.293kg/m
3
. With 

consideration of the primary arc, ρ denotes the air density in the 
hot zone around the arc column with a value of 0.0221kg/m3, rai 

is the radius of the arc and 0.0013
ai

r I= , and g=9.8m/s
2
 is 

the gravity acceleration. The unit of Fti is N and the unit of rai is 

m. 
The wind load Fwi acting on the ith current element can be 

expressed as the following expression 

                      (11) 

where vw is the wind speed. The unit of Fwi is N and the unit of 

vw is m/s. 
During the motion of the secondary arc, the wind direction 

and its speed can be supposed to remain the same as the arc 

motion time is very short. As shown in Fig. 7(b), the x-axis 
direction is the axial direction of the transmission wires, the 

z-axis is the direction along the insulator string, α is the angle 

between the projection of wind in xy plane and positive y-axis, 
β is the angle between the wind and positive z-axis, therefore 
the projection of wind load in the x, y, and z axis can be 

described as 

                     (12) 

According to the aerodynamic theory, the air resistance force 

applied to the ith current element can be expressed as 

 
                            (13) 

where Cr is the air resistance coefficient with a value of 1.18. vi 

is the motion speed of current element. The unit of Fwi is N and 
the unit of vi is m/s. 

The current element is under the combined action of the 

electromagnetic force, the thermal buoyancy, the wind loads 

and the air resistance. The mass density of the current element 
is far less than that of the air, so its quality and acceleration 

process can be neglected, the movement velocity is determined 

by these four forces as 

                 (14) 

Thus, the secondary arc speed can be acquired from equation 
(9)~(14) 
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where vai_x vai_y  vai_z is the speed of the ith current element 

in x, y, z direction, Fmi_x Fmi_y  Fmi_z respectively denote the x, 

y, z directional components of the magnetic force, and  

mi ai ai il= ×F I B

20.72wi ai ai wr l ρ= ⋅ ⋅F v
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sin sin
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fr=0.72/Cr. 

With the arc chain model, the motion trajectory of the 

secondary arc can be calculated and the arc length is also 

obtained. The arc length l is used as the self-extinction criterion 
of the secondary arc, which is derived from statistics of a lot of 

experimental data. The expression of the critical self-extinction 
length lmax is given by 

0.25 4

max
0.7 10

am am
l I U −= ×                       (16)

 

where Iam and Uam are the peak values of the secondary current 
and the supply voltage. The unit of lmax is m, the unit of Iam is A, 

and the unit of Uam is V. 

Based on the stochastic initial length of secondary arc, the 
stochastic model was applied into the arc chain model to 
simulate the arcing time of secondary arc. The simulation 

process can be categorized into three steps: a) The arc chain 

model is used to calculate the motion process of primary arc. b) 
The established stochasitc model is used to calculate the initial 

positions of secondary arc. c) The arc chain model is used to 

calculate the motion process of secondary arc. In this paper, the 
physical simulation test of secondary arc on transmission lines 

was taken as the research object. The primary arc is set to 1 kA, 

the secondary arc current is 30A, and the length of the 

insulation string is 0.68m. Figure 8(a) shows five typical results 
of the stochastic initial positions of the secondary arcs based on 

simulation analysis. Different initial positions of the secondary 
arcs will result in different motion trajectories of the secondary 

arcs. Figure 8(b) gives the secondary arc trajectories before the 
extinction instant regarding the five typical cases. 

 
(a) Typical stochastic initial positions of the secondary arc 

 
(b) Typical trajectories of the secondary arc before the extinction instant 

Fig. 8.  Stochastic initial positions and trajectories of the secondary arc 

before the extinction instant. 

 
As can be seen from Figure 8(a), with consideration of the 

stochastic model in the arc chain simulation, the initial 
positions of the secondary arc are different, which result in 

different motion trajectories of the secondary arcs. As can be 

seen from Figure 8(b), the secondary arc trajectories vary 
greatly before its extinction, reflecting the impacts of different 

initial positions on the motion trajectories. 

An experimental platform is established to study the arcing 

time of the secondary arc discharge, as is shown in Figure 9(a) 
and 9(b). The platform is mainly composed of a test circuitry 

together with a corresponding measurement system, including 

a 11.6kV AC power supply, group capacitors, copper 

electrodes, HV insulators and metal fuses to ignite the arc 

discharge. Here, L is used to denote the equivalent inductance 
of the transmission line, and C is used to simulate the 

equivalent coupling capacitance between the faulty phase and 
healthy phases. Here L=0.03688H, and different secondary arc 

currents are achieved by changing the values of the group 
capacitors C. The gap length of the insulator assemblies is 

0.68m. 

The operation procedure of the experiment is shown as 
follows. Firstly, the circuit breaker CB1 is closed to produce an 

inductive primary arc current, and the triggered arc wire will 

form an arc channel due to gasification effect of the primary 

current at about 1 kA. Secondly, the circuit breaker CB2 is 
closed after 0.1s and CB1 is quickly opened to ignite and 

simulate the secondary arc current. The arc trajectories are 

recorded by a high speed video camera, while the voltage and 
current of the secondary arcs are measured through voltage 

dividers, CTs and digital oscilloscopes. To avoid dispersion, 

fifteen data sets are obtained for each case of the test scheme. 

Figure 9(c) is the high speed arc images recorded by the high 
speed video camera.  

 
(a) The single-phase physical simulation circuitry 

 
(b) The field test configuration 

 
0          0.02s       0.04s       0.06s       0.08s        0.10s       0.12s       0.14s 

(c) The high speed arc image 

 Fig. 9.  The established experimental platform and high speed arc image. 

 
The experiment shows that in the arc transition moment, the 

initial positions of the secondary arc are all in the whole 
channel of the primary arc. As can be seen from Figure 9(c), at 

the time instant of 0.1s, the primary arc extinguished and the 
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secondary arc started. The secondary arc is completely burning 

in the inner part of the primary arc plasma. The different initial 

positions of secondary arc would result in dispersion of the 

arcing time. The arcing time is entitled to the time the 
secondary arc lasts before extinction. The arcing time was 

calculated with different secondary current and each set has 30 
valid data. The results are compared with the test results, as 

shown in Figure 10. The arcing time with different secondary 
current level is given in Table II, and the arc elongation with 

different secondary current level is shown in Table III. 
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Fig. 10.  The dispersion of arcing time between test and simulation data. 

 

TABLE II 

ARCING TIME OF SECONDARY ARC UNDER DIFFERENT SECONDARY CURRENT 

Secondary  

current/A 
Test time/s 

Average 

value/s 

Standard 

deviation 

Simulation 

time/s 

Average 

value/s 

Standard 

deviation 

10 
0.056~0.3

54 
0.152 0.0661 

0.054~0.2

82 
0.167 0.0653 

15 
0.094~0.3

68 
0.212 0.081 

0.084~0.3

06 
0.242 0.0556 

30 
0.096~0.6

25 
0.304 0.1245 

0.116~0.4

86 
0.307 0.1065 

45 
0.220~0.8

28 
0.435 0.1895 

0.244~0.7

02 
0.392 0.1144 

 

TABLE III 

ELONGATION OF SECONDARY ARC UNDER DIFFERENT SECONDARY CURRENT 

Secondary  

current/A 
l1/m l2/m l3/m  l1%  l2% 

10 0.98 0.86-2.10 2.23 128% 6%~159% 

15 0.98 0.84-2.22 2.46 151% 11%~193% 

30 0.98 0.90-2.34 2.93 199% 25%~226% 

45 0.98 0.89-2.30 3.24 231% 41%~264% 

l1 is the initial length of the secondary arc without stochasticness, l2 is the initial 

length of secondary arc with stochasticness, l3 is the arc length before the extinction 

instant.  l1% is the arc elongation of l1, and  l2% is the arc elongation of l2. 

 
It can be seen from Table II that the arcing time of secondary 

arc increases along with the rise of secondary current. It can be 

seen from Table III that, there exists a variation range of the arc 
elongation according to the adopted stochastic model. The 

overall trend of the simulation results is consistent with the 

experimental ones, indicating that the proposed model is 

effective and reliable. It can be also found that the dispersion of 
calculation time is less than the test time, which is due to that 

only the stochastic initial position of secondary arc is consider 

in the stochastic model while in the test, the stochasticness of 

external environment also has an impact on the arcing time. It 

can be also found in Table II that both in the simulation and test, 

with the increase of secondary current, the arcing time increase 

too. 

V. CONCLUSIONS 

1) The stochastic simulation model of secondary arc with 
different initial positions was established, which suppose that 

the initial position of secondary arc is stochastic and the 

stochasticness is related to the conductivity. 
2) With the stochastic simulation model, the relationship 

between the conductivity and temperature of primary arc was 

obtained and the conductivity along the radial direction of 

primary arc was further acquired. 
3) The stochastic initial positions of secondary arc with 

different primary current were simulated. Results showed that 
with the increase of primary current, the initial length and 

dispersion of secondary arc also increased. 
4) The stochastic simulation model was applied into the arc 

chain model to simulate the arcing time of secondary arc. The 

simulation results were compared with the test results. The 
overall trend between them is consistent and the relative error is 

within 10%, indicating the stochastic model is effective and 

reliable. 
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