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a b s t r a c t

Heterogeneous materials having constitutive behaviour described by more generalised continuum theo-

ries incorporating additional degrees of freedom such as couple stress, micropolar or micromorphic elas-

ticity are expected to exhibit size effects in which there is an apparent increase in stiffness as the size

scale reduces. Here we briefly demonstrate that for a simple heterogeneous material the size effect pre-

dicted when loaded in bending depends on the nature of the sample surface. Diverse size effects may thus

be exhibited by the same material. We then show by detailed finite element analysis of a more represen-

tative material with regular heterogeneity that this diversity of size effects might actually be observed in

practice thereby providing an explanation for the contradictory size effects that have sometimes been

reported for real materials.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Materials, when loaded, are usually assumed to deform in a

manner described by classical or Cauchy elasticity theory. Central

to this theory is the notion of size independence, when the defor-

mation induced is proportional to the loading, implying that the

stiffness of the material is constant, this stiffness will then be

maintained at any size scale. The almost universal acceptance of

this theory has arisen because many engineering materials have

repeatedly demonstrated such size independent behaviour across

those size scales of interest. However, certain materials are known

to exhibit size dependent behaviour when loaded. Examples

include fabricated materials such as foams (Lakes, 1983, 1986;

Anderson and Lakes, 1994) with either stochastic or regular void

distributions, aggregates such as concrete, biological tissues such

as bone (Yang and Lakes, 1982; Choi et al., 1990) and naturally

occurring minerals. A common feature of these materials is that

the size scale of their microstructure is sufficient to be able to

influence their macroscopic behaviour which can thus exhibit size

dependency. Even those materials that are conventionally regarded

as possessing size independent behaviour because they are essen-

tially homogeneous at the macro scale can exhibit size dependency

when the overall material scale is reduced to that of the underlying

microstructure (Fleck et al., 1994).

More generalised continuum theories capable of forecasting

size dependent behaviour do exist. Some of these are based upon

the notion of incorporating higher derivatives of the deformation

in the constitutive equations while others contain additional

degrees of freedom. The latter class includes in ascending order

of sophistication: couple stress, Cosserat or micropolar and micro-

morphic elasticity theories (Eringen, 1999). One common feature

of all of these theories is that they incorporate additional constitu-

tive parameters that must be identified either experimentally or

possibly by numerical simulation of virtual materials. The experi-

mental approach invariably involves testing material samples of

different sizes in loading modes such as torsion or bending that

induce a non uniform state of stress and thereby reveal any size

dependency (Lakes, 1995). The additional constitutive parameters

may then be derived from the observed size effect. The aforemen-

tioned theories all predict a size effect in which stiffness appar-

ently increases as size is reduced. Such behaviour has been

predicted in materials comprised of a lattice of periodically

arranged connectors (Bažant and Christensen, 1972) and identified

experimentally in polymeric foams (Lakes, 1983, 1986; Anderson

and Lakes, 1994) and other materials comprised of a regular array

of circular voids in a homogeneous two dimensional matrix

(Beveridge et al., 2013; Waseem et al., 2013; McGregor and

Wheel, 2014). However, in some materials, such as cortical bone,
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size effects involving both increasing and decreasing stiffness with

reducing size have been reported in the literature (Yang and Lakes,

1982; Choi et al., 1990). Such contradictory behaviour has been

attributed to surface damage induced in the sample during manu-

facture which may result in increased sample compliance and

thereby corrupt the observed size effect. The importance of careful

sample preparation has been emphasised as a requirement if the

effects of any such corruption are to be minimised (Anderson

and Lakes, 1994). While sample preparation may in part be respon-

sible an unanticipated size effect might also be attributed to the

inherent influence that the material heterogeneity itself has on

the surface behaviour. Insight into this influence might be gained

by augmenting the generalised continuum theory of the bulk

material with a surface elasticity model, as considered most

recently in Gao and Mahmoud (2014) for example, where size

effects in transversely loaded beams were shown to depend on

the combined behaviour of bulk and surface. However, a disadvan-

tage in this approach is that the incorporation of the surface elas-

ticity model introduces additional constitutive parameters that

must be identified.

In this paper we present a straightforward analysis demonstrat-

ing that a rich variety of size effects might be expected in beam

samples made of a simple heterogeneous material comprised of

just two constituents of differing moduli layered alternately.

Laminated materials of this type have previously been shown to

demonstrate behaviour consistent with the predictions of

Cosserat elasticity that includes the dispersion of propagating elas-

tic waves when loaded dynamically (Herrmann and Achenbach,

1968) and also a dependence of stiffness on size when loaded stat-

ically (Forest and Sab, 1998). We then show by detailed finite ele-

ment analysis that some of these size effects are actually exhibited

in samples of a material with regular, periodic heterogeneity

whose behaviour has previously been shown to be consistent with

Cosserat elasticity theory. Finally, we compare the size effects pre-

dicted for the laminate material with those reported elsewhere in

the literature for both virtual and real materials.

The key outcome of this paper is that we unambiguously iden-

tify the pertinent microstructural characteristics that affect the

nature of experimentally, or virtually, observed size effects in

heterogeneous media. It is also argued that in certain circum-

stances, bulk constitutive behaviour may be inferred even if the

observed behaviour does not align with a generalised continuum

theory.

2. A laminated beam model of a generalised continuum

Consider a slender beam composed of alternating layers or plies

of two different materials of Young’s moduli E1 and E2 respectively.

All layers of the first material are all of thickness t1 while all inter-

nal plies of the second material have thickness t2. The upper and

lower surface layers of the composite beam always consist of the

second material and each has a thickness of rt2 where 0 < r < 1. If

n is the number of plies of the first material then there will be n-

1 internal layers of the second material. The total number of layers

across an entire section of beam will therefore be 2n + 1. When n is

odd then the central layer of the beam will consist of the first

material while in the case when n is even the central ply will be

comprised of the second material. Both cases are illustrated in

Fig. 1. In each case the beam section is symmetric about the neutral

axis. The laminated material considered here thus bears some

resemblance to one comprised of multiple layers of a simple bipha-

sic constituent that was previously shown to exhibit size effects

(Dai and Zhang, 2008) though these were not interpreted in the

context of generalised continua. According to Bernoulli Euler beam

theory the flexural rigidity, D, of the composite beam section can

be obtained by deriving the products of the moduli and second

moments of area about the section neutral axis of the individual

plies and then summing these products. Thus in the case where

n is odd this summation can be represented thus:-

D ¼ 2

Z t1=2

0

E1by
2
dyþ

X

ðn�1Þ=2

i¼1

2

Z ðiþ1=2Þt1þit2

ði�1=2Þt1þit2

E1by
2
dy

þ
X

ðn�1Þ=2

i¼1

2

Z ði�1=2Þt1þit2

ði�1=2Þt1þði�1Þt2
E2by

2
dyþ 2

Z ðn=2Þt1þ½ðn�1þ2rÞ=2�t2

ðn=2Þt1þ½ðn�1Þ=2�t2
E2by

2
dy

while when n is even the summation is:-

D ¼ 2

Z t2=2

0

E2by
2
dyþ

X

n=2

i¼1

2

Z ðiþ1=2Þt1þit2
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2
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þ
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where b is the breadth of the beam and y the distance from the

neutral axis. The first integral in each case accounts for the central

layer of material while the summation terms are associated with

intermediate layers of each material and the final integrals account

for the surface layer comprised of the second material.

Interestingly, when each of these summations is evaluated the fol-

lowing single expression for the flexural rigidity:-

that applies in both cases is obtained. After expanding and col-

lecting similar terms this expression for D can be represented thus:-

D ¼ E1bnt1
12

nt1 þ n� 1þ 2rð Þt2½ �2
n

� 2t2 t1 þ t2 þ 2r2t2 � nt1 � nt2 � 2rt2 þ 2nrt1 þ 2nrt2
� �

o

þ E2b n� 1þ 2rð Þt2
12
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n
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� �

o

ð3Þ

The depth, d, of the beam is:-

d ¼ nt1 þ n� 1þ 2rð Þt2 ð4Þ

and if the length to depth aspect ratio of the beam is a then the

length, L, of the beam is given by

L ¼ a nt1 þ n� 1þ 2rð Þt2½ � ð5Þ

The stiffness, K, of the beamwhen loaded in three point bending is:-

D¼ 1
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K ¼ 4E1bnt1

a3 nt1 þ n� 1þ 2rð Þt2½ �3
nt1 þ n� 1þ 2rð Þt2½ �2

n
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� �

o
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n
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� �

o
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which can be rearranged thus:-

K ¼ 4b E1nt1 þ E2 n� 1þ 2rð Þt2½ �
a3 nt1 þ n� 1þ 2rð Þt2½ �3

nt1 þ n� 1þ 2rð Þt2½ �2
n o

þ 4b E2 n� 1þ 2rð Þt1t2 � E1nt1t2½ �
a3 nt1 þ n� 1þ 2rð Þt2½ �3

n

2 t1 þ t2 þ 2r2t2 � nt1 � nt2
�
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o

ð7Þ

The stiffness of the beam when loaded in other bending config-

urations could be derived similarly, our interest in three point

bending in particular is motivated by its simplicity which fre-

quently renders it the loading mode of choice in practice.

By the rule of mixtures the average modulus of the beam sec-

tion, E⁄, is:-

E� ¼ E1nt1 þ E2 n� 1þ 2rð Þt2
nt1 þ ðn� 1þ 2rÞt2

ð8Þ

The first term in (7) can thus be simplified to leave the expression

for the stiffness of the beam as:-

K ¼ 4E�b

a3
þ 4b E2 n� 1þ 2rð Þt1t2 � E1nt1t2½ �

a3 nt1 þ n� 1þ 2rð Þt2½ �3
2 t1 þ t2 þ 2r2t2
��

� nt1 � nt2 � 2rt2 þ 2nrt1 þ 2nrt2�g ð9Þ

The first term in (9) is simply the stiffness of a slender homoge-

neous beam of modulus E⁄ loaded in three point bending while

the second term quantifies the size effect associated with the

heterogeneous nature of the laminated beam. Eq. (9) thus bears

some similarity to the expression for the stiffness of a slender

micropolar beam:-

K ¼ 4E�b
d

L

� �3

1þ lc
d

� �2
" #

ð10Þ

which was derived by assuming that a linear variation in bend-

ing stress and a uniform state of couple stress acts on every cross

section of the beam (Beveridge et al., 2013) and that any deforma-

tions in the transverse direction across the breadth of the beam can

be ignored. Thus Eq. (10) represents a simplification of the more

general solution for the deformation quoted in earlier literature

(Lakes, 1995). The characteristic length, lc, is a constitutive param-

eter that quantifies the length scale associated with the couple

stresses. According to Eq. (10) the characteristic length can be

identified from any size dependent stiffening effect that may be

observed. The validity of Eq. (10) was confirmed by experimental

testing and detailed finite element analysis of slender beam sam-

ples of a heterogeneous material comprised of periodically dis-

tributed circular voids within a homogeneous matrix (Beveridge

et al., 2013). The breadth, b, was common to all samples. In accor-

dance with Eq. (10) beam stiffness was found to increase linearly

with the reciprocal of beam depth squared, 1/d2, for samples of

the same aspect ratio. Analogous behaviour was observed in simi-

lar slender ring samples loaded diametrically [Waseem et al.,

2013].

The key difference between Eqs. (9) and (10) is that in the latter

case the predicted size effect will always be positive; smaller sam-

ples will be stiffer than their larger counterparts whereas in the

former case the size effect may be more elaborate since the second

term depends on the relative magnitudes of the ply moduli, E1 and

E2, their thicknesses, t1 and t2, and the thickness of the surface lay-

ers as quantified by r.

Figs. 2–6 show how the predicted stiffness varies with sample

size for a variety of combinations of material moduli, internal ply

and surface layer thicknesses. In all of these figures the reciprocal

of depth squared, 1/d2, is used to quantify the sample size and

thereby facilitate a direct comparison of any predicted size effect

with that forecast by Eq. (10). In each of these figures the stiffness

t1

t
2

r.t
2

E
2

E
1 E

2

E
1

t
1

t
2

r.t
2

(n-3) layers 
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Fig. 1. Laminated beam model of heterogeneous material.
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has been normalised with respect to the leading term in Eq. (9),

this being the stiffness of a beam on modulus, E⁄, that exhibits

no size effect. This is equivalent to the stiffness of a beam of almost

infinite depth, that is, a beam for which n is very large and the sec-

ond term in Eq. (9) tends to zero. The size measure, 1/d2, has been

normalised with respect to this measure for the thinnest possible

beam, this being 1/(t1 + 2rt2)
2. In addition, the stiffness variations

shown in these figures assume a common sample breadth, b, of

unity and aspect ratio, a, of 10. In Fig. 2 the internal layers of each

material are assumed to be the same thickness while the thickness

of the surface layers is set to half that of their internal counterparts

by specifying r = 0.5. However, one of the materials is ten times

stiffer than the other. When the material constituting the surface

layers is the stiffer of the two a positive size effect is predicted,

stiffness increases as size reduces, whereas when the surface is

formed from the more compliant material a contrasting, negative

size effect is seen. Furthermore, the positive size effect is appar-

ently linear, as anticipated by Eq. (10), while the negative effect

behaves similarly. Interestingly, although these size effects are

opposite in character they seemingly have the same magnitude.

In Figs. 3 and 4 the material moduli and internal ply thicknesses

are maintained but the thickness of the surface layers is varied by

altering r. Fig. 3 depicts the size effects when r = 0.75. Evidently

there is some similarity to the size effects shown in Fig. 2; when

the surface layers are formed from the stiffer material the effect

is positive but if the surfaces are comprised of the more compliant

material the opposite effect is once again seen. However, there is a

distinct difference in that the stiffness is now seen to vary nonlin-

early with the sample size measure in both cases whereas previ-

ously each variation was linear. This nonlinearity in the size

effect begins to appear as r is increased above 0.5 and is main-

tained up to r = 1.0. Fig. 4 shows that for r = 0.25 the size effects

are noticeably different from those seen in Figs. 2 and 3. When

the stiffer material forms the surfaces the size effect is negative

at larger sample sizes but then changes to become positive as sam-

ple size reduces. The size effect exhibits the opposite behaviour

when the surfaces are formed of the more compliant material.

The inversion seen in both of these size effects appears progres-

sively as r begins to reduce below 0.5. It becomes more pronounced

as r is reduced further but then diminish and eventually begin to

Fig. 2. Variation in stiffness with beam size for cases where E1 = 0.1E2, t1 = t2, r = 0.5

and E1 = 10.0E2, t1 = t2, r = 0.5.

Fig. 3. Variation in stiffness with beam size for cases where E1 = 0.1E2, t1 = t2,

r = 0.75 and E1 = 10.0E2, t1 = t2, r = 0.75.

Fig. 4. Variation in stiffness with beam size for cases where E1 = 0.1E2, t1 = t2,

r = 0.25 and E1 = 10.0E2, t1 = t2, r = 0.25.

Fig. 5. Variation in stiffness with beam size for cases where E1 = 0.1E2, t1 = 0.1t2,

r = 0.5 and E1 = 10.0E2, t1 = 10t2, r = 0.5.

Fig. 6. Variation in stiffness with beam size for cases where E1 = 0.1E2, t1 = 10.0t2,

r = 0.5 and E1 = 10.0E2, t1 = 0.1t2, r = 0.5.
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disappear again as r approaches zero at which point the two effects

then resemble those seen when r = 1.0 as might be expected.

Figs. 5 and 6 show the effect of varying the ratio of the ply thick-

nesses when their moduli are maintained at the same ratio and the

thickness of the surfaces is half that of the equivalent internal lay-

ers. In Fig. 5 the stiff layers are 10 times thicker than the compliant

plies. The size effects resemble those in Fig. 2; stiff surfaces yield a

positive effect while compliant surfaces produce a negative effect

and these are linear in both cases. However, the size effects are

no longer equal in magnitude, the positive effect is smaller than

the negative one. In Fig. 6 the situation is reversed, the thickness

of stiff layers is 10 times less than that of the compliant plies.

The magnitude of the positive size effect is now greater than the

negative one as shown. Fig. 7 depicts how the magnitudes of both

positive and negative size effects change as the volume fraction of

compliant material, quantified by the ratio of the compliant layer

thickness to the combined thickness of two adjacent layers, varies.

When the volume fraction of compliant material is very low then

both size effects are negligible since the beam samples are pre-

dominantly comprised of the stiffer material. As the volume frac-

tion increases so does the magnitude of each size effect. At 50%

volume fraction both size effects are of the same magnitude as

already seen in Fig. 2. Beyond this they each continue to increase

up to a maximumwhich occurs at around 66% and 83% for the neg-

ative and positive effects respectively. Beyond this the size effects

diminish as the samples are now largely comprised of compliant

material.

3. Size effects in a two dimensional medium with periodic

heterogeneity

A two dimensional material with regular or periodic hetero-

geneity that has been investigated previously (Beveridge et al.,

2013) in the context of generalised continua, specifically micropo-

lar elasticity theory, is illustrated in Fig. 8. The heterogeneity

results from introducing a regular array of circular voids into an

otherwise classically elastic matrix material as illustrated. The

geometry of the heterogeneity is fully defined by the void radius,

VR, and the separation of the void centres, Sx and Sy, in the indicated

x and y directions respectively. The void centres lie on a triangular

grid and when Sy =
p
3Sx/2 results of detailed of finite element anal-

ysis incorporating a sufficiently large number of voids indicate that

the material exhibits approximate planar isotropy and is therefore

transversely isotropic. The behaviour of the matrix material is

described by its Young’s modulus and Poisson’s ratio in accordance

with the assumption that it behaves in a classically elastic manner.

Finite element analysis of slender beam samples of different

depths but the same aspect ratio revealed that this material exhib-

ited a size dependent stiffening consistent with Eq. (10) (Beveridge

et al., 2013). In generating the mesh required for each analysis a

structured array of quadratic quadrilateral elements illustrated in

Fig. 9 was used to represent the perforated rectangular region of

matrix material surrounding each void so that the details of the

heterogeneity were explicitly represented. As a consequence of

generating the mesh representing each sample in this way the

upper and lower surfaces were each implicitly located midway

between adjacent, axially aligned rows of voids and hence none

Fig. 7. Variation in the magnitudes of positive and negative size effects as a

function of compliant material volume fraction.

Fig. 8. Two dimensional material with regular, periodic heterogeneity investigated

previously within the context of micropolar elasticity theory.

Fig. 9. Structured mesh of quadratic quadrilateral finite elements used to represent

rectangular region around a particular void within two dimensional heterogeneous

material.

Fig. 10. Representation of beam samples of increasing size generated by finite

element meshes shown in Figs. 9 (right) and 11 (left).
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of the voids intersected these surfaces as illustrated in Fig. 10.

However, locating the surfaces in this manner constitutes only

one particular means of identifying the beam samples from within

a larger piece of the material. The samples could reasonably be

identified in alternative ways in which the surfaces intersect the

voids. Another means of generating the finite element mesh of

the matrix material, shown in Fig. 11, has therefore been employed

here to investigate one alternative. Although a structured mesh is

once again exploited in representing the matrix material between

a specific void and its neighbours it does enable an alternative in

which the sample surfaces periodically bisect all voids in a given

row, as also shown in Fig. 10, to be readily investigated. This means

of mesh generation was therefore used to analyse beams of

increasing depth, this being determined by the number of rows

of voids with the smallest beam containing just a single row and

the largest four rows as shown in Fig. 10. The void separations, Sx
and Sy, were prescribed at 1.0 mm and 0.866 mm respectively

while the length to depth aspect ratio was set at 10.4:1 thus fixing

the overall dimensions of each beam. The Young’s modulus and

Poisson’s ratio of the matrix material were set to 20 GPa and 0.3

respectively and plane stress behaviour assumed. Constraints and

loading representative of three point bending were then applied

but since geometry and loading are both symmetric suitable

boundary conditions were imposed at the central loading plane

to facilitate analysis of only one half of each beam thereby reducing

computational effort.

Fig. 12 shows the predicted variations in beam stiffness with

size for different void volume fractions, Vf, when the voids and sur-

faces do not intersect. Evidently, at any given void size, the stiff-

ness variation is approximately linear. According to Eq. (10) the

modulus of each material can thus be derived from the intercept

of the corresponding variation while the characteristic length can

be obtained from the slope. Values of these two constitutive

parameters are listed in table 1 as a function of void radius and vol-

ume fraction. Data derived from the stiffness variations deter-

mined when the sample aspect ratio is increased to 20.8:1 are

also listed. It can be seen from the data presented in this table that

as the void radius increases the modulus reduces as might be

expected since the amount of matrix material capable of support-

ing the applied loading is decreasing. However, the characteristic

length increases as the void radius is increased. Moreover, the dif-

ferences in the values of this constitutive parameter obtained at

aspect ratios of 10.4:1 and 20.8:1 are slight implying that although

Eq. (10) assumes slender beam behaviour the lower, 10.4:1, aspect

ratio beams are sufficiently slender enough to satisfy this assump-

tion and thereby provide very reasonable estimates of the charac-

teristic length. Fig. 13, which depicts the relationship between void

radius and characteristic length for the higher, 20.8:1, aspect ratio

beams, clearly shows that this is linear thus corroborating theoret-

ical predictions for both Cosserat materials (Bigoni and Drugan,

2007) and generalised continua of the second order Mindlin type

(Bacca et al., 2013a, 2013b).

Variations in beam stiffness with size for the same set of void

radii when the surfaces now bisect the voids are shown in figure

14. Obviously these variations no longer concur with Eq. (10), they

each now show a decrease in stiffness with reducing size.

Nonetheless each variation is linear which does accord with Eq.

(9) for the case where r = 0.5. In addition, the intercept of a given

Fig. 11. Alternative mesh of quadratic quadrilateral finite elements used to

represent region between neighbouring voids within two dimensional heteroge-

neous material.

Fig. 12. Stiffness against the reciprocal of depth squared for beams with smooth

surfaces at a 10.4:1 length to depth aspect ratio for various void volume fractions,

Vf.

Table 1

Comparison of the characteristic lengths for different void radii at 10.4:1 and 20.8:1

length to depth aspect ratios.

Void

Diameter,

Vd (mm)

Void

Fraction

Vf

Normalised

void radius

VR/SY

Young’s Modulus

(GPa)

Characteristic

length (mm)

10.4:1

aspect

ratio

20.8:1

aspect

ratio

10.4:1

aspect

ratio

20.8:1

aspect

ratio

0.2 0.036 0.12 17.47 17.87 0.28 0.28

0.3 0.082 0.17 15.37 15.71 0.42 0.43

0.4 0.145 0.23 12.90 13.16 0.55 0.57

0.5 0.227 0.29 10.31 10.50 0.66 0.70

0.6 0.326 0.35 7.74 7.83 0.75 0.82
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negative size effect seen in this figure is the same as that of the

positive effect for the corresponding void radius shown in

Fig. 12. This reflects the convergence of both effects at large beam

depths seen in Fig. 2. The magnitudes of the positive size effects

seen in Fig. 12 along with those of their negative counterparts

observed in Fig. 14 have been determined for each void radius con-

sidered and are shown as a function of the void volume fraction in

Fig. 15 with the volume fraction having been straightforwardly

derived from the void radii and separations beforehand. As

Fig. 15 demonstrates the variation in the magnitude of the negative

effect broadly reflects that of the positive effect and, moreover,

they both emulate the variations shown in Fig. 7; at low volume

fractions each size effect is small but increases with volume frac-

tion up to a maximum beyond which they begin to reduce again.

4. Size effects predicted in a two dimensional stochastic foam

and observed in cortical bone

Forecasts of the size effect expected in two dimensional foams

were made previously (Tekoglu and Onck, 2008) by representing

the stochastic cellular microstructure as random Voronoi tessella-

tions with individual sections of cell wall being represented by

Timoshenko beam finite elements. While all internal cells within

an elongated rectangular region were represented by closed poly-

gons those cells intersecting the boundary remained open, no ele-

ments were located coincident to the boundary to close them.

Fig. 16 shows the details of the beam finite element mesh in the

vicinity of the rectangular region boundary. Rupturing of those

cells adjacent to the surface is clearly seen in the inset detail.

The discrete representations were loaded in simple shear, uniaxial

compression and pure bending of the major axis. Multiple analyses

were conducted for each of these loading modes using a different

randomly generated finite element mesh on each occasion in order

to capture the behaviour of the stochastic microstructure. For each

analysis a constant rotation was imposed on the mesh at the ends

of the rectangular region by applying linearly varying displace-

ments. The resulting moment was then determined from the com-

puted reaction forces. Bending stiffness could thus be calculated

from the ratio of resulting moment to imposed rotation.

The bending stiffness of the material was found to change with

beam depth, this being varied by altering the lesser dimension of

the representative rectangular region. Results were presented

graphically with the stiffness, normalised with respect to the bend-

ing stiffness anticipated by classical beam theory, being plotted

against beam depth, this being normalised with respect to the

average cell size. At small depths forecast stiffness was less than

classically anticipated but was found to rise and asymptotically

approach the classical result as depth increased. In Fig. 17 the size

effect seen in Fig. 2 for the laminated beam with compliant surface

layers is once again shown but now the normalised stiffness is

plotted as a function of the beam depth where this is normalised

with respect to the average depth of the stiff and compliant layers.

When presented in this manner the size effect observed in the lam-

inated beams closely resembles that forecast for the two dimen-

sional foam material.

Size effects have also been observed previously (Yang and

Lakes, 1982; Choi et al., 1990) in experiments where human corti-

cal bone samples were loaded in bending. The results of these

investigations are contradictory with the earlier work reporting a

positive size effect while the later reported an opposite, negative

Fig. 13. Variation in micropolar characteristic length with void diameter for 20.8:1

aspect ratio beams.

Fig. 14. Stiffness against the reciprocal of depth squared for beams with intersected surfaces at a 10.4:1 length to depth aspect ratio for various void volume fractions, Vf.

Fig. 15. The magnitude of the size effects as a function of void volume fraction Vf

for beams with both smooth and intersected surfaces and a 20.8:1 length to depth

aspect ratio.
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effect. In the earlier work beam specimens with depths ranging

from 5.2 mm down to 1.4 mm were tested while in the later inves-

tigation samples were divided into two categories, those with a

depth of greater than 0.5 mm and those with a depth of less than

0.5 mm. The most significant size effect was observed in samples

in the latter category. The latter investigators questioned the valid-

ity of the earlier work and suggested that the true nature of the size

effect was only revealed by testing the smaller sized samples. They

then suggested a qualitative explanation of the size effect based on

the enhanced compliance of the material adjacent to the sample

surfaces resulting from the interaction of the major microstruc-

tural feature, the nutrient transporting vascular channel or

Haversian canal system, with the sample surfaces themselves.

Fig. 18 shows an optical microscope image of a section of cortical

bone with the section surface lying parallel to the channel orienta-

tion. The partial exposure of the tubular channels at the surface is

clearly visible thereby supporting the suggested explanation for

the increased compliance of the adjacent material. However,

despite the suggested explanation they interpreted the measured

size effect quantitatively as a reduction in the apparent modulus

of the material, this being determined from the measured stiffness

using classical elasticity based beam theory. No attempt was made

to explain this reduction in apparent modulus in the context of

generalised continuum theories.

While the investigators did not explicitly report the experimen-

tally measured stiffness of each sample they tested they did pro-

vide full details of sample size and geometry when reporting

their results for the apparent material modulus. It has thus possible

for us to calculate the stiffness of each sample from their published

data using beam theory. Since each of their samples had an approx-

imately square cross section we have then normalised the calcu-

lated sample stiffness data with respect to sample breadth to

facilitate comparison with sample sets of common breadth.

Fig. 19 shows the variation in this normalised stiffness with sample

size where, as earlier, this is quantified by the reciprocal of beam

depth squared. When presented in this format the data shown in

Fig. 19 reflect those shown in Figs. 2 and 3 for the cases where

E2 < E1, that is, the surface layers are comprised of the more com-

pliant of the two constituent materials.

5. Discussion and conclusions

When loaded in bending the simple two phase laminate mate-

rial considered in this paper exhibits an intriguing variety of size

effects which, under certain circumstances identified explicitly

here, are compatible with the predictions of generalised contin-

uum theories in that stiffness appears to increase as overall size

reduces. Such behaviour has thus been categorised as a positive

effect. However, in other situations that have also been established

the predicted size effect is entirely different in character, the mate-

rial apparently becomes more compliant as size is decreased, beha-

viour which has therefore been classified as a negative effect. The

circumstances determining the nature of the size effect appear to

Elongated Rectangular Region 

Region Surface 

Beam Elements 

Major Axis 

Voronoi Cells 

Fig. 16. Surface details of two dimensional foam material studied previously

(Tekoglu and Onck, 2008).

Fig. 17. Variation in stiffness with beam depth in the case where E1 = 10.0E2, t1 = t2,

r = 0.5.

Fig. 18. Section of cortical bone illustrating partial exposure of vascular channels at

section surface (arrow indicates channel principal orientation).

Fig. 19. Variation in stiffness with size for human cortical bone samples of unit

width (based on data reported by Choi e0074 al. (1990)).
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be governed entirely by the surface state of the material. A nega-

tive size effect may be expected when the surface layer is both

greater than a certain minimum thickness and more compliant

than the bulk material. Any reduction in the thickness of the com-

pliant surface layer below the minimum may however result in a

more elaborate size effect the nature of which is also strongly size

dependent.

Negative size effects have been reported in both real and com-

puter generated heterogeneous materials in other literature. In the

real material, cortical bone, the sample surface arising from the

exposure of dominant microstructural features was suggested as

the source of the observed size effect. In the computer generated

material, a two dimensional, closed cell foam, rupturing of cells

adjacent to the surface and the associated increase in the compli-

ance of the material located there resulted in a negative size effect

being numerically predicted. It has been demonstrated here that

these negative effects are entirely in accordance with the beha-

viour of the simple laminate material.

While negative size effects were reported previously no attempt

was made to explain them in the context of generalised continuum

theories nor identify any associated constitutive properties, pre-

sumably because the nature of the observed effects contradicted

the predictions of such theories. Identification of constitutive prop-

erties is the central intent of mechanical testing of materials since

such property data provide a rational basis for comparing the prac-

tical performance of materials when loaded. However, it appears

that this intention cannot be fulfilled in the case of a heteroge-

neous material that displays a negative size effect. Nevertheless,

the fact that the negative size effects forecast for both the simple

laminated and the more involved perforated materials considered

here apparently reflect the positive size effects exhibited when

these materials actually behave as generalised continua in the

orthodox manner, may offer a pragmatic response to this dilemma

since it might be possible to infer constitutive property data from

observed effects in the case where they are negative.
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