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Abstract

A common problem arising in many domains is how value the benefits of projects

in a project portfolio. Recently, there has been some attention given to a decision

analysis practice whereby analysts define a value function on some criterion by

setting 0 as the value of the worst project. In particular, Clemen and Smith

have argued this practice is not sound as it gives different results from the case

where projects are ”priced out”, and makes a strong implicit assumption about

the value of not doing a project. In this paper we underscore the criticism of this

way of using value functions by showing it can lead to a rank reversal. We provide

a measurement theoretic account of the phenomenon, showing that the problem

arises from using evaluating projects on an interval scale (such as a value scale)

whereas to guard against such rank reversals, benefits must be measured on at least

a ratio scale. Seen from this perspective, we discuss how the solution proposed by

Clemen and Smith, of explicitly reformulating the underlying optimisation problem

to allow for explicitly non-zero values, addresses the issue, and explore in what

sense it may be open to similar problems. In closing we discuss what lessons from

practice may be drawn from this analysis, focussing on settings where the Clemen

and Smith proposal may not be the most natural way of modelling.

Keywords: Decision analysis, Portfolio Decision Analysis, multicriteria decision

analysis (MCDA)

1. Introduction

All organisations have to decide which activities (out of a set of possible ac-

tivities) they will initiate, which they will continue, and which they will stop.
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Supporting such decisions by evaluating projects and assessing the benefits of pos-

sible portfolios as a function of the component projects represents a significant

part of the professional work of many analysts. The application of decision analy-

sis in such settings is often referred to as ”Portfolio Decision Analysis”: Portfolio

Decision Analysis seeks to provide frameworks for performing portfolio analysis in

a way which allows a rigorous treatment of issues of value and uncertainty. Klein-

muntz (2007) and Phillips and Bana e Costa (2007) have provided overviews of

past work, and personal statements of what good practice looks like. The edited

volume by Salo, Keisler and Morton (2011) provides a range of perspectives on

theory and practice in this area.

A common practice in Portfolio Decision Analysis in a multicriteria setting is to

define criterion-specific value functions by setting 0, the baseline for measurement,

as the value of the worst item, as recommended by Phillips and Bana e Costa (2007,

p 57) and implicitly recommended Kirkwood (1996); see for example Kirkwood’s

example of Section 8.1 and the discussion in footnote 3 of Clemen and Smith

(2009). These scores are then summed up across criteria to give an overall project

score, and summed across the constituent projects to give an overall portfolio

score. Clemen and Smith (2009) (henceforth, ”CS”) argue that it is not a sound

approach to analysis as it gives different results from the case where projects are

”priced out”, and makes a strong implicit assumption about the value of not doing

a project. As a solution, they advocate explicitly assigning project-specific value

scores for not doing particular projects.

A number of scholars have sought to build on the work of CS. In particular,

Liesiö and Punkka (2014) have explored how to elicit a suitable baseline value and

also provide techniques for exploring sensitivity of the solutions recommended by

a particular decision model to uncertainty about the appropriate baseline values.

de Almeida et al. (2014) explore three consequences of rescaling the valuations

of projects in a portfolio setting, which they dub the portfolio size effect, the

baseline effect, and the issue of consistency across different aggregation sequences;

and de Almeida and Vetschera (2012) explore a similar issue in the context of the

PROMTETHEE multicriteria method.

CS demonstrate by citing and describing in some detail numerous published

examples that this practice is widespread. Notably, they cite an application to
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capital budgeting in healthcare (Kleinmuntz and Kleinmuntz, 1999); an applica-

tion to project selection in a telecommunications company (Linstedt et al., 2008);

and a military portfolio optimisation (Parnell et al., 2002). They comment that

that this list is not exhaustive and they ”have found similar issues in many studies”

(p 262). This author has had the same experience. For example, in the con-

text of R&D prioritisation, Morcos (2008) recommends expressing scores ”along

a value scale with intervals from 0 (least desirable) to 100 (most desirable)” (p

77). (Examination of the figures in this paper suggests that he departs from this

rule in the case of one criterion, ”profitability” but adheres to it for the ”risk” and

”reliability” criteria.) Similarly Baltussen and Niessen (2006) present an illustra-

tive example of multicriteria techniques to priority setting in healthcare (in which

the task is to rank order projects with a view to deciding what subset of them to

undertake) in which the zero has been set at the level of the least preferred project

on three of four criteria (for the fourth criterion, ”severity of disease”, the projects

are given between one and four stars, and the zero is set at one star). The reason

for the pervasiveness of this practice seems to be that setting the zero at the level

of the least preferred alternative is standard, unproblematic and uncontested ad-

vice in the context where one is choosing a single item from a set. Many authors

generalise this advice to the setting where the task is to choose multiple objects

from a set.

In this paper we will study the setting of baselines from a measurement theo-

retic point of view. Seen from this perspective, the issue is one which has surfaced

in different forms in the literature over the years. In particular, Rao and Weiss

(1986) provide a numerical exploration (in the context of a particular application)

of the number of possible ways of ranking items in benefit/ cost order when the

benefit scores of individual items are translated by a constant. Roberts (1990)

provides an introduction to the theory of measurement and explores how it may

be relevant in the context of combinatorial optimization problems: he observes

that one can only be sure that the solution to a combinatorial optimization prob-

lem will be invariant with respect to monotonically increasing transformations of

its objective function coefficients when the optimizing algorithm uses only ordinal

information about these coefficients (for example, a greedy algorithm).

The contribution of this paper will be to study the practice discussed by CS
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and answer the following questions.

1. Can we get a clear view of what goes wrong when we use value functions to

value projects multicriteria portfolio decision analysis?

2. What are the specific characteristics of value functions which give rise to this

problem? Might this problem apply more generally when project benefits

are assessed in some other way? In what way is this a specifically portfolio

problem?

3. Why does the solution proposed by CS ”work” to resolve this problem? Is the

solution proposed by CS vulnerable to other similar and related problems?

4. How important is the separability of the rule for combining project benefit

values as overall portfolio benefits in this analysis? Do the results we obtain

for this rule give insights into what should happen in a more general setting?

5. What, practically speaking, can we learn from this analysis about how to

perform better and more robust analysis?

The structure of the paper will be as follows. Section 2 will answer question

1. Section 3 will provide the analytic framework to answer the second and third

groups of questions, which will be dealt with in Sections 4 and 5 respectively.

Section 6 answers the fourth group of questions and Section 7 returns to the

example of Section 2 to answer the question 5. Finally, Section 8 concludes.

2. Background

In this section we try to get a clear fix on the problem under consideration.

To do so, consider the following example, which is smaller and thus hopefully

gives a more direct insight into what is going on than that of CS. A government

funded medical research institute has four research projects on the table. These

projects will reduce mortality and contribute to scientific understanding, and the

company cares both about the immediate medical and broader scientific benefits.

Specifically, suppose that the projects have the profile of costs and benefits shown

in Table 1.

Senior management’s value function over each of the two criteria is assessed as

shown in Table 2, with values scores for each criterion referred to as Vmortality and

Vscience respectively.
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Reduced mortality Scientific impact Costs (£’000s)
a 6,000 lives saved Excellent 200
b 4,000 lives saved Good 100
c 4,000 lives saved Good 100
d 3,000 lives saved Neutral 100

Table 1: Values and costs data

Vmortality Vscience Costs (£’000s)
a 1 1 200
b 1/3 1/2 100
c 1/3 1/2 100
d 0 0 100

Table 2: Values and costs data

Suppose we are seeking to maximize total benefits with a budget of £200,000

and we compute the values of portfolios as the values of the constituent projects.

Irrespective of the weights applied, from the data of Table 2, the most attractive

portfolio seems to be {a} which yields one unit on the scale of Vmortality, and one

unit of value on the scale of Vscience , whereas {b, c} yields only 2/3 on the scale

of Vmortality. At this point we might start to have doubts about the soundness of

this procedure, as {b, c} will save 8,000 people whereas {a} will save only 6,000,

and so if saving lives is weighted heavily, {b, c} should appear more attractive.

Such doubts are reinforced if we add a project e which saves 1,000 lives, has

neutral scientific impact and costs £100,000 to the project list. In this case, we

rescale the values to obtain the data shown in Table 3.

Vmortality Vscience Costs (£’000s)
a 1 1 200
b 3/5 1/2 100
c 3/5 1/2 100
d 2/5 0 100
e 0 0 100

Table 3: Revised Values and costs

Now {b, c} is the most highly valued portfolio whatever weights are applied.

So the ordering of portfolios induced by this procedure may change when items

are added to the choice set. In other words, we can observe a rank reversal
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induced by the rescaling of the value function - a sure sign that we have done

something problematic. Note that this phenomenon does not arise because of

the linear transformation itself (as a monotonically increasing transformation this

cannot change the ordering of projects within a criterion) but rather arises because

of an interaction between the linear transformation and the use of an additive

combination rule to compute overall portfolio scores. In any case, the rank reversal

is a violation of the principle of Independence of Irrelevant Alternatives, according

to which the preference for {a} over {b, c} or vice versa should not depend on

whether portfolios including e are members of the choice set. Violation of this

same principle has led many decision analysts to reject the Analytic Hierarchy

Process as a method for supporting multicriteria choice (see e.g. Belton and Gear,

1983; Dyer, 1990; Salo and Hämäläinen, 1997).

3. Derived measurement, consistency and invariance

In the technical part of this paper, we will address the following problem:

suppose you have a set of benefit numbers, and the numbers are measured on a

particular scale, and the numbers are combined in a particular way to give an

overall portfolio value, what does the class of admissible transformations of the

underlying scale have to be in order to avoid the sort of rank reversal problem

which the example demonstrates? This problem embraces the question of what

goes wrong with the decision analysis procedure discussed above, but casts it in

a more general setting. Practising analysts – whether decision analysts or not –

have numbers (such as benefit scores), and they do operations on these numbers

(such as adding them up to come up with overall portfolio values), but are they

doing this in an appropriate way?

The framework we will use for studying this question is that of derived measure-

ment (Suppes and Zinnes, 1963). The canonical example of derived measurement

is density. The story is that someone has measured mass M and volume V by

bringing some measurement technology to bear on some objects. We obtain these

measurements and calculate the derived measurement (density) as M
V

using these

original (or fundamental) measurements. If object 1 has mass M1 and volume V1

and object 2 has mass M2 and volume V2 we say ”object 1 is denser than object 2”
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if M1

V1

> M2

V2

. But can we be sure that if mass or volume had been measured using

some different scale we would still be led to the same conclusion about relative

densities?

In our approach we start with a (finite) set of objects A which are the objects

of choice and a binary preference order % over A. When we say % is a preference

relation we mean it is complete and transitive and so is representable by a real-

valued function. The indifference relation ∼ and strict preference relation ≻ are

defined in the usual way. We will be interested in the situation where we can

compute a derived measurement which represents our preferences in the following

sense.

Definition 1. A relation % on A is represented by the function v : A 7→ R

iff a′ % a′′ ⇔ v (a′) ≥ v (a′′) ∀a′, a′′ ∈ A.

The conditions for the existence of representing functions of various forms are

well-known (Fishburn, 1970, Krantz et al, 1971).

We will suppose that the contents of A are vectors of decisions and mea-

surements, formally that A = Rkn × {0, 1}n for some positive integer n and

k ∈ {1, 2}. The intended interpretation of the {0, 1}n is that there are n

things which we could or could not do. The intended interpretation of the

Rkn is that associated with each decision xi there is a vector of measurements

zi of dimensionality equal to k. Hence a generic element of A will be written as

(z, x) = ((z1, ..., zi, ..., zn), (x1, ..., xi, ..., xn)).

We restrict our focus in this paper to situations in which we are faced with

binary decisions. In fact, often decisions can be thought of as polychotomous in

the sense that one can choose different levels of different levels of investment (e.g.

”bronze”, ”silver” and ”gold”) in a project or area. Incorporating polychotomous

investment decisions would not be difficult technically but this would render the

notation more cumbersome, without providing additional insights.

The specific nature of these measurements (and of the associated technology)

is purposely left undefined: measurements could be directly assessed subjective

values, elicited using standard decision analytic techniques (von Winterfeldt and

Edwards, 1986); judgmental assessments of benefits which could be at least in

principle measurable once the project is implemented using techniques drawn from
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professional disciplines such as accounting or epidemiology; or actual physical mea-

surements (e.g. in the situation where the DM is interested in purchasing scrap

metal and she may be able to weigh potential purchases). We highlight that we

do not assume that these measurements are values assigned by a value function,

although they could be.

The measurement system is such that a family of permissible transformations

of the numbers are possible (for example revenues may be measured in British £

and we wish to convert them into e). We call this family F : the contents of

F are functions f : Rkn 7→ Rkn. By a harmless abuse of notation we will also

use f to denote a function which maps Rkn × {0, 1}n into itself and is defined by

f(z, x) = (f(z), x), and F to be the set of such functions. Associated with each

f ∈ F (extended in this way) is a preference ordering R(f) on A. The indifference

relation I(f) will be defined in the usual way. A set of functions and associated

preference relations will be written 〈F ,R〉.

Next, we define a notion of consistency.

Definition 2. A set of functions and associated relations 〈F ,R〉 is consistent

with % iff a′ % a′′ ⇔ f(a′) R(f)f(a′′) ∀a′ , a′′ ∈ A, ∀f ∈ F .

In the ensuing ”with %” will be understood and we will just write ”consistent”.

Clearly this concept of consistency can be interpreted as ruling out rank re-

versals when we perform some operation on the project benefit scores (such as

rescaling them as we did in the example of the previous section).

We wish to distinguish consistency from another condition.

Definition 3. A relation % is F−invariant if a′ % a′′ ⇔ f(a′) % f(a′′)∀a′

, a′′ ∈ A, ∀f ∈ F .

Intuitively, invariance would apply (for example) if, presented with a vector

of numbers representing revenues from a set of projects we could undertake, and,

when asked whether it would make a material difference to our preferences over

portfolios of projects whether the currency in which these revenues were denomi-

nated was $, £, e, or U, we reply ”no, it does not matter”. This would be the

case if our value function was strictly monotonically increasing, but not if we had
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some particular threshold such we are indifferent to all levels of money above it.

(We might find it hard to imagine what to do with the second billion e or £, but

not with the second billion U.) Indeed, this is the difference between invariance

and consistency: with consistency we are allowed to change the threshold when

we rescale, with invariance not.

It is pretty clear that invariance is stronger than consistency, in the following

sense:

Proposition 1. If % is F−invariant, and R(f) is defined by % ∀f ∈ F then
〈F ,R〉 is consistent.

To give an example where we might have preferences which are consistent but

not F−invariant, suppose that F = {f(z) = z − 2} and % is defined by z′ % z′′

iff −(z′ − 2)2 ≥ −(z′′ − 2)2. Then 2 ≻ 3 but f(3) = 1 ≻ 0 = f(2), so % is

not F−invariant. But if we define f(z′)R(f)f(z′′) by −f(z′)2 ≥ −f(z′′)2, then

〈F ,R〉 is consistent.

Obviously consistency is desirable from a normative point of view. Once we

have converted £ into e or vice versa we should not find ourselves changing our

minds about the attractiveness of our investments. However, it is also pretty weak

by itself. In the ensuing we will have to supplement consistency by assuming the

functions which represent % and R(f) have some particular functional form. This

will make it possible to derive interesting results. Invariance, on the other hand,

is a strong and normatively significant assumption, which can be used as the basis

for representation theorems (see e.g. Sen, 1977).

4. One-part portfolio models

The setting for our first model is that we are confronted by n ≥ 2 ”projects”

in which we can invest, and these projects have benefits if implemented. We have

a measurement technology which maps the set of projects into Rn (i.e. k = 1) and

an element in this space will be called b = (b1, ..., bn). The intended interpretation

of such a point is that it corresponds to a set of projects where bi is delivered

through project i. In terms of our derived measurement framework, this vector b

is a fundamental measurement. If we then compute, as a derived measurement,

the value of the portfolio, and we want this measurement to be consistent, what
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properties do we require of the underlying measurement technology from which we

obtain b?

The precise answer turns out to depend on the formula which is used to compute

the overall portfolio value. The most natural formula is as follows.

Definition 4. If % on {0, 1}n×Rn is represented by
∑

i

bixi say it is represented

by a one-part additive portfolio model.

The function
∑

i

bixi is the function recommended by Kirkwood (1996), and

which CS criticise as neglecting to explicitly draw attention to the value of not

doing a project. The intended interpretation is that if a project i is done (xi = 1)

then a benefit bi is realized.

An important class of admissible transformations is as follows:

Definition 5. The set S of similarity transformations with common scal-

ing factor is the set {f(·)|∃α ∈ R++, : f(b) = αb ∀b ∈ Rn}.

Obviously any similarity transformation of the underlying data will leave the

preference ordering represented by
∑

i

bixi unchanged, but are there other transfor-

mations which have this property? The answer is no.

Proposition 2. If 〈F ,R〉 is consistent and % and R(f)are represented by a one-
part additive portfolio model ∀f ∈ F , then F ⊆ S.

Proof. We develop the proof for the case n = 2: other cases are similar. We will
write the representing portfolio model as v(·). Take an arbitrary f ∈ F . First
observe that because both ((b, 0), (1, 0)) and ((b, 0), (1, 1)) have value b:

((b, 0), (1, 0)) ∼ ((b, 0), (1, 1)) (1)

Now, by consistency:

((f1(b), f2(0)), (1, 0))I(f)((f1(b), f2(0)), (1, 1)) (2)

Hence by representability v((f1(b), f2(0)), (1, 0)) = v((f1(b), f2(0)), (1, 1)) =⇒ f1(b) =
f1(b) + f2(0) =⇒ f2(0) = 0. (Note that this conclusion is unaffected even if
we transform v(·) by some strictly increasing transformation ψ; we can always
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solve the resulting equation by transforming both sides by ψ−1 to retrieve f1(b) =
f1(b) + f2(0)). By a parallel argument f1(0) = 0.

Now note that because % is represented by a one-part additive value function,

((b, 0), (1, 1)) ∼ ((0, b), (1, 1)) (3)

Hence, by consistency:

((f1(b), f2(0)), (1, 1))I(f)((f1(0), f2(b)), (1, 1)) (4)

Hence, by representability f1(b)+f2(0) =f1(0)+f2(b) =⇒ f1(b) =f2(b)∀b. Hence-
forth write φ for both f1 and f2.

Now observe that:

((b1, b2), (1, 1)) ∼ ((b1 + b2, 0), (1, 1)) (5)

Hence, by consistency again:

((φ(b1), φ(b2)), (1, 1))I(f)((φ(b1 + b2), φ(0)), (1, 1)) (6)

From which we can conclude that φ(b1) +φ(b2) = φ(b1 + b2), which is a Cauchy
functional equation. As is well-known (Aczél, 2006), the only solution to this
equation is φ(b) = αb. Hence the result is proved.

Recall that an absolute scale is one where no transformations are permissible;

a ratio scale is one where similarity transformations (ie multiplication by a scaling

factor) are permissible; and an interval scale is one where affine transformations

(multiplication by a scaling factor and addition of a positive constant) are permis-

sible. So the implication of Proposition 2 is that if the project benefit scores are

measured on an absolute scale, no rank reversal is possible; if they are measured

on a ratio scale, no rank reversal is possible; but if they are measured on (for ex-

ample) an interval scale, then a rank reversal can occur, indicating that we have a

problem. Value functions are generally taken to be measured on an interval scale,

and it is this which justifies the rescaling as the option set changes, which in turn

gives rise to the rank reversal described in Section 2.

It is important to realise that the above analysis applies only to settings where

we are making portfolio choices. In settings where we are choosing one item from

a set, defining value functions in this way and choosing the item with the high-

est value is unproblematic advice. It is also important to realise that the set of
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consistent transformations (ie transformations which do not induce a rank rever-

sal) is dependent on the choice of portfolio model. For example, if the portfolio

model is max
i

{bixi} then F can contain any strictly increasing function without

fear of inducing an inconsistency (the best portfolios are those which contain the

best project, and no strictly increasing transformation will change the ranking of

the projects), and so rescalings are unproblematic, as long as the benefits of all

projects are rescaled by the same amount. To take another example, if the portfo-

lio model is Π
i
bixi then F can be contained in the following set without introducing

an inconsistency:

Definition 6. The set W of weighted power transformations is the set {f(·)|∃αi ∈

R++, ∃p ∈ R++ : f i(r) = αir
p ∀r ∈ R}.

In other words, the range of transformations which may feature in F without

inducing an inconsistency is enlarged - but nevertheless, measuring benefits on

interval scales which permit a change in zero point (for example, value functions)

is still problematic even with this choice of one-part additive portfolio model.

5. Two-part portfolio models

In the second formalisation we have n ≥ 2 ”sectors” in which we can invest

or not. Investing in a sector leads to different outcomes than if we had not

invested. Sectors could be locations, or diseases, or physical installations, such

as roads or flood defences; if one is planning flood defences, the decision could be

to upgrade from sand defences to concrete. We have a measurement technology

which measures the outcomes associated with investing and not investing, i.e now

our measurement technology produces 2n measurements (k = 2). Specifically,

associated with each sector i we have a measurement of the outcome zi in the case

where we invest and zi in the case where we do not invest. Write zi = (zi, zi).

These are our fundamental measurements in this setup. Again we are agnostic

about what these outcomes are: they could be subjectively assessed values or

wealth levels, number of premature deaths from illness, or expected monetized

damage from flooding.
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We use a model of the form
∑

i

(

zixi + zi(1 − xi)
)

as a representing portfolio

function for these preferences (this is the model which is recommended in CS as

equation (3)). It will be noted that when this model
∑

i

(

zixi + zi(1− xi)
)

is used

the conclusions of the previous section do not hold: in particular, a transformation

of the form fi(zi) = zi+β applied to both zi and zi will obviously leave the ranking

of solutions induced by this portfolio model unchanged.

Definition 7. If % is represented by
∑

i

(

zixi + zi(1 − xi)
)

say it is represented

by a two-part additive portfolio model.

We define the following set of transformations. Note that α is a scalar and β

is a vector.

Definition 8. The set A of affine transformations with a common scaling

factor is the set {f(·)|∃α ∈ R++, ∃β ∈ Rn : f(z) = αz + β∀z ∈ Rn}.

As in the previous section, the transformations in the designated set are the

only transformations to leave the preference ordering unchanged.

Proposition 3. If 〈F ,R〉 is consistent and % and R(f)are represented by a two-
part additive portfolio model ∀f ∈ F , then F ⊆ A.

Proof. Take an arbitrary f ∈ F . Observe that the indifference ((z, 0), (0, 0), (1, 0)) ∼
((0, 0), (z, 0)(0, 1)) follows from representability. Hence from consistency:

(((f1(z), f1(0)) , (f2(0), f2(0))) , (1, 0)) I(f) (((f1(0), f1(0)) , (f2(z), f2(0))) , (0, 1)))
(7)

from this it follows that:

f1(z) + f2(0) = f1(0) + f2(z) (8)

or in other words, f1(z) and f2(z) differ only in a constant term. Call this
term κ and write f2(z) = f1(z)+κ.

Now observe that (((z1, 0), (z2, 0)), (1, 1)) ∼ (((z1 + z2, 0), (0, 0)), (1, 1)) and
hence:

(((f1(z1), f1(0)) , (f1(z2) + κ, f1(0) + κ)) , (1, 1)) I(f)

(((f1(z1 + z2), f1(0)) , (f1(0) + κ, f1(0) + κ)) , (1, 1)) (9)
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Because the κs cancel, it follows that:

f1(z1) + f1(z2) = f1(z1 + z2) + f1(0) (10)

This is equivalent to:

f1(z1) − f1(0) + f1(z2) − f1(0) = f1(z1 + z2) − f1(0) (11)

Hence we can define γ(z) = f1(z) − f1(0) and obtain the following functional
equation:

γ(z1) + γ(z2) = γ(z1 + z2) (12)

This is the Cauchy equation again, so γ(z) = αz. Write β1 = f1(0) and
β2 = f1(0) + κ and we have an affine transformation with common scaling factor
as claimed.

Hence, for these two part functions, using value functions (or other measure-

ment technologies) which provide interval valued measurements, does not represent

a threat to consistency and place us at risk of inducing a rank reversal.

Does this mean that we can disregard nature of the scales on which the out-

comes are measured when using such two-part models? Absolutely not! Consider

the following example.

Example 1. Suppose outcomes are measured on an ordinal scale, and portfolios
are evaluated by a two-part additive model. Consider the following data shown in
Table 4 for some evaluation problem.

z z Costs (£’000s)
a 3 1 100
b 3 1 100
c 4 1 200

Table 4: Outcomes and cost data

Suppose we have a budget of £200,000. The optimal choice is portfolio {a, b}
because the value of the model

∑

i

zixi+
∑

i

zi(1 − xi) is 3 + 3 + 1 = 7 whereas if we

choose {c} we obtain 1 + 1 + 4 = 6. However, if a transformation f(z) = z3 is
applied to the zs and zs (since all strictly increasing transformations of an ordinal
scale are permissible), then the data become as shown in Table 5.

Now if we apply the formula
∑

f(
i

zi)xi+
∑

f(
i

zi)(1 − xi) {a, b} is associated

with an value of 27 + 27 + 1 = 55 and {c} with a value of 64 + 1 + 1 = 66 so the
order has reversed.
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f(z) f(z) Costs (£’000s)
a 27 1 100
b 27 1 100
c 64 1 200

Table 5: Transformed outcome and costs data

Comparing Proposition 2 and Proposition 3 gives us some insight into why us-

ing value functions (or indeed any measurement technology which produces num-

bers measured on an interval scale) to evaluate benefits is problematic in the case

of a one-part additive portfolio model but non-problematic in the case of a two-part

additive portfolio model. However, Example 1 shows us that we would experience

a problem exactly analogous to the problem of Section 2 when using a two part

function additive portfolio model if we were to use a technology which produced

measurements on an ordinal scale to measure benefits.

Moreover, our positive conclusion that it is safe to choose an interval scale when

using a two-part portfolio model is not necessarily good if the model in question

does not have an additive form - for example a model with the multiplicative form

Π
i

(

zixi + zi(1 − xi)
)

. Consider the following example.

Example 2. We are seeking to build a small research team, and we need a math-
ematician (m) and a programmer (p). We have people with both these skills in
house, but we have some funds and can hire either a better m or a better p (but
not both). We rate both existing and potential new hire ms and ps on a zero to
100 scale as follows, with z denoting the score for the new hire and z denoting the
score for the existing staff, as in Table 6.

z z

m 48 30
p 60 40

Table 6: Original staff evaluations

We believe that mathematics and programming are complementary skills and so
we combine scores multiplicatively to arrive an overall score for the team. Within
our budget constraint, we have two possibilities – the portfolio containing the new
m and the existing p with a total score of 48×40 = 1920 or the portfolio containing
the existing m and new p with a total score of 30× 60 = 1800. So clearly choosing
to hire the new mathematician is the way to go. However, we have a second

15



thought - these are skilled professionals, so surely we should start the scale at 100
instead of zero and go up to 200? We thus transform our scores by the function
g(z) = z + 100. This gives us new scores as shown in Table 7.

g(z) g(z)
m 148 130
p 160 140

Table 7: Transformed staff evaluations

Now we recompute the portfolio scores. This time, the portfolio containing the
new m and the existing p has a total score of 148 × 140 = 20720 and the portfolio
containing the existing m and new p has a total score of 130 × 160 = 20800, so it
seems now we should hire the new programmer instead.

In this case we have performed an affine transformation of the underlying scale –

quite permissible if the scale is indeed an interval scale – and have obtained a rank

reversal, even though we are using a two-part model. This is not a coincidence, and

in fact it can be shown (using the same line of reasoning as that of Propositions 2

and 3) that in the case of a two-part multiplicative model the only transformations

of the underlying scales which preserve consistency are those in the set W , as

introduced in the last section.

6. Beyond separable models

So far in this paper, we have identified admissible transformations of underlying

data which preserve particular value models. However, a possible objection to this

analysis is that we have so far focussed exclusively on additive and other separable

value models. This is a significant restriction in a portfolio context as often

there will be interactions between decisions about particular projects or particular

sectors. For example, the value of investing in secondary care facilities for people

suffering from stroke or advanced kidney disease may depend on whether one has

also invested in preventive activity for these conditions; to the extent that one has

not invested in prevention, one can expect secondary care facilities to have higher

utilization and thus add more value.

An interesting instance of this sort of model is described in Mild and Salo

(2009). These authors describe an application undertaken for the Finnish Road
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Administration where particular profiles of maintenance decisions are mapped into

a descriptive system which captures the distribution of the various elements of the

road infrastructure across a number of quality classes. This in turn is mapped by

a multiattribute value function with four criteria representing road safety, asset

value preservation, customer satisfaction and environmental aspects, into a value

score. In our terms, one can think of this formal apparatus as a device for

mapping a profile of decisions into an outcome space, with non-zero outcomes

associated both with choosing both with ”doing” and ”not doing” a particular piece

of maintenance. Such a model ”feels like” a two-part model but the outcome values

need not combine additively over sectors (for example, in the Mild and Salo (2009)

model, as there is a Markov chain which governs the degradation of the roads over

time, a maintenance action in one period may interact with a maintenance action

in a subsequent period).

Is there anything we can say, then, about these situations where we do not

have separability between decisions? It turns out there is. To see what may be

generalizable to this more complex environment, make the following definition:

Definition 9. The set T of translations is the set {f(·)|∃β ∈ Rn, : f(b) = b+ β

∀b ∈ Rn}.

One of the striking feature of the previous section has been that the project

value models of Section 4 are not consistent with respect to sets of data transfor-

mations containing T (even the portfolio model max
i

{bixi} requires us to transform

each project score by the same monotonic function), whereas the sector value mod-

els of Section 5 may be (for example the class of consistent transformations of the

two part additive model is a superset of T ).

To see how this insight applies in a more general setting, in this section, rather

than studying relations represented by particular functions, we study a property

imposed on the relation itself directly. We continue to suppose that % is a prefer-

ence ordering but no longer suppose that it has an explicit representation through

a specific portfolio model. Instead we will be interested in the following property.

Definition 10 (PC). A preference relation % over A = Rkn×{0, 1}n (k ∈ {1, 2})

will be said to be one-part coherent if (i) (0kn,1n) ∼ (0kn,0n) and (ii) (z′,0n) ∼
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(z′′,0n)∀z′, z′′ ∈ Rkn where 0kn,0n are the zero vectors of dimensionality kn and

n respectively, and 1n is a vector of ones of dimensionality n.

Thus, part (i) of one-part coherence captures the idea that a zero on the benefit

scale has the meaning that one is indifferent between doing a project and not doing

it. Part (ii) says that if one does not do any project, it does not matter how much

benefit would have been realized had one done some.

It is interesting to compare with this what one may think of as the essential

features of the two-part representation. Consider the following axiom.

Definition 11 (SC). A preference relation % over A = R2n × {0, 1}n will be

called two-part coherent if

((z
1
, z1), ..., (zi , zi), ..., (zn, zn)), (x1, ..., 1, ..., xn))

∼ ((z
1
, z1), ..., (zi, zi), ..., (zn, zn)), (x1, ..., 0, ..., xn))

∀i ∈ {1, ..., n}, ∀(z
1
, z1), ..., (zi−1, zi−1), (zi+1, zi+1), ..., (zn, zn)) ∈ R2(n−1) and

∀zi, zi , zi ∈ R.

This axiom captures the idea that whether one obtains z
i

from choosing 1 or

from choosing 0 is a matter of indifference: it is the same z
i

in either case.

We also need a very mild axiom.

Definition 12. A preference relation % over A = Rkn ×{0, 1}n will be said to be

essential if ∃z′, z′′ ∈ Rkn : (z′,1n) ≻ (z′′,1n).

To see that one-part and two-part coherence are very different ideas, consider

the following result.

Proposition 4. No preference relation % over A = R2n × {0, 1}n can be both
one-part coherent, two-part coherent and essential.

Proof. For conciseness, write z = [(z
i
, zi)]. Choose z′ = [(z′

i
, z′i)], z

′′ = [(z′′
i
, z′′i )] :

(z′,1n) ≻ (z′′,1n). By part (ii) of PC, ([(z′i, z
′

i
)],0n) ∼ ([(z′′i , z

′′

i
)],0n) ∀z′i, z

′′

i ∈ R.
By SC, ([(z′i, z

′

i
)],0n) ∼([(z′

i
, z′i)],1

n) and ([(z′′i , z
′′

i
)],0n) ∼([(z′′

i
, z′′i )],1n). From

the transitivity of indifference, we can conclude (z′,1n) = ([(z′
i
, z′i)],1

n) ∼([(z′′
i
, z′′i )],1n) =

(z′′,1n) which is a contradiction to essentiality.
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We are able to prove an impossibility theorem for one-part coherence.

Theorem 3. For all preference relations % over A = Rn × {0, 1}n, if 〈F ,R〉
is consistent and % and R(f) are essential and one-part coherent ∀f ∈ F then
T * F .

Proof. Suppose T ⊆ F and consider z′ and z′′ distinct such that (z′,1n) ≻
(z′′,1n) . Now apply the transformation fi(zi) = zi − z′i ∀i to z′ to obtain:
((f1(z1), ..., fn(zn)),1n) = (0n,1n). By PC part (i), (0n,1n)I(f)(0n,0n) and
so by consistency, (z′,1n) ∼ (z′,0n). By parallel reasoning, (z′′,1n) ∼ (z′′,0n).
Hence by transitivity of strict preference, (z′,0n) ≻ (z′′,0n)). But this is a con-
tradiction to PC part (ii).

Thus, it is not possible to measure the benefit values in any one-part model

on a scale which permits arbitrary translation without exposing oneself to the

possibility of rank reversal. Contrast this with the main result (Proposition 3)

which shows that it is possible to measure the benefit values in two-part models

on such a scale with no such risk.

The non-permissibility of translation in portfolio models which represent project-

wise coherent preferences is important for practical purposes, in that it shows that

the reason for the sorts of pathologies by the one-part model exhibited in Section 2

do not arise because of some quirk of the additive form: in fact they are much more

general. Moreover, as will be apparent in the next section, the idea of one-part

coherence gives actual operational guidance into how a natural baseline for mea-

surement can be fixed to avoid the sorts of rank reversal pathologies documented

in Section 2.

7. Implications for practice

In this section, we return to the fundamental question: how should practising

analysts model problems like that of Section 2? CS are proponents of the additive

two-part model
∑

i

zixi+
∑

i

zi(1− xi) as a way of dealing with the baseline setting

issue. According to these authors ”it is best to consider each project individually

by explicitly scoring not doing the project on each attribute and using these scores

to calculate an overall project-specific score, voi [their notation], for not doing

project i.” (p260). Somewhat contra this view, we argue that there are cases
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where it is more natural to use one-part models. We illustrate our argument by

revisiting the case where a government funded medical research institute wishes

to select a portfolio of projects without spending in excess of a budget. The aim is

to develop medications for a potentially lethal disease (let us say diabetes). One of

the criteria for evaluation is impact on mortality. We argue that it is more natural

to use a one-part model rather than a two-part model in this case.

The principal reason is that a significant attractive feature of the one-part

model
∑

i

bixi , is that one does not have to explicitly to identify the outcomes in

terms of how many people die from diabetes associated with not doing a project,

which may be contentious and not decision relevant. For example, knowing the

precise extent of diabetes in a population (as long as it is agreed that there is ”a

lot”) may not be relevant to decisions between a number of ”small” projects to

redress diabetes, since only once the projects become sufficiently large that one

may run out of people to treat does the scale of the underlying health problem

become an issue. This is a real concern in economically underdeveloped countries

with poor systems of public health surveillance and death registration, estimating

how many people in the general population have a given disease and how many

people die from that disease to a high level of accuracy is for all practical purposes

impossible.

Suppose one agrees with these two reasons that it is more natural to implement

a one-part model scenario but wishes to assess value functions over the benefits

(expressed in terms of reduction in diabetes mortality), with a view to trading off

mortality reduction against other criteria. We know from the example of Section

2 and Proposition 2 that we should avoid using interval scales so as not to expose

ourselves to the possibility of rank reversal. To do this we need to find a natural

baseline for measurement of the value function which will not vary as we change

as we introduce new projects. In the spirit of the notion of ”one-part” coherence

of the previous section, the natural baseline for measurement is ”zero projects

implemented” which in this case means ”zero lives saved”. Note the contrast

between the CS suggestion and our suggestion - we are proposing that the baseline

for measurement of the benefit of a project should not be the project-specific

concept of ”not doing a [ie the given] project” but rather the general concept of

”not doing any projects from the choice set at all”.
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To illustrate how this might work, let us return to the example of Section 2.

If one evaluates ”lives saved” relative to this ”zero projects implemented”/ ”zero

lives saved” baseline as the zero of the measurement scale, takes the level of the

most beneficial project - ”6,000 lives saved”- as the unit and assumes a linear

value function, referring back to the original column of Table 1, one obtains value

scores of 1, 2/3, 2/3 and 1/2 for the different projects respectively. Note that

this value measurement system does not give unique measurements: if we add an

extra project which saves 10,000 lives to the option set, we have to rescale the

value scores to get 3/5, 2/5, 2/5 and 3/10 for a,b, c, d respectively, but this simply

involves multiplying the original value scores by a common constant (a similarity

transformation), so the ranking of portfolios we obtain from summing up these

value scores is unaffected. Proposition 2 tells us that whenever we want to add

up value scores in this way, we can only be sure that our measurement system

will not induce a rank reversal of portfolios if the permissible score transformation

are similarity transformations. This is the reason that the original procedure of

Section 2 gets us into difficulties. Now, because we have chosen a baseline which

is independent of the choice set and does not change when we add projects, we no

longer have to worry about rank reversals.

As a matter of fact, this approach of setting a so-called ”do nothing” baseline

has been used widely in the multicriteria context in practice, in papers as early as

e.g. Bana e Costa et al. (1999, 2002). Indeed, this is what is done in the case study

presented in Phillips and Bana e Costa (2007) (despite these authors’ advice to

set the 0 at the level of the least preferred option). Hence we see the contribution

of this paper as being in part to justify the procedure of these authors, which

recognises the problem identified by CS but approaches its solution in a different

and to our way of thinking more natural manner.

Hence, while we recognise the issue which CS raise, our view is that the solution

that they suggest - using
∑

i

zixi+
∑

i

zi(1 − xi) - is not always the most natural

modelling solution. It is perfectly possible to continue to describe problems using

the additive one-part model
∑

i

bixi as long as one takes care the the coefficients

are measured in a way so that they are unique at least up to rescaling by a

fixed constant, and a natural way to do this is to by using a do-nothing baseline
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for measurement which is independent of the set of projects being considered for

inclusion in the project portfolio. As part of the theoretic contribution of this

paper, our ”one-part coherence” axiom of Section 6 can give insight into the most

appropriate way to identify this baseline.

8. Conclusion

This paper has studied the issue of the choice of measurement scales to measure

project benefits in multicriteria portfolio decision analysis using a derived measure-

ment frame, motivated by an issue in MCDA practice. The distinctive feature of

our frame here has been that we suppose that we have some measurements, and

some way of combining them, and wish the resulting derived measurement to have

certain consistency properties. We then ask what properties the underlying tech-

nology which has produced our measurements would have to have (bearing in mind

that these measurements may be from judgemental elicitation, from the use of the

techniques of professional disciplines such as accounting or epidemiology, or from

some actual physical measurement system).

We relate our conclusions back to our motivating questions as follows:

1. Can we get a clear view of what goes wrong when we use value functions to

value projects multicriteria portfolio decision analysis? We provide a small

toy example showing that, in an environment where additive functions are

used to combine project values, rescaling value functions by changing the

baseline of measurement can lead to rank reversals between portfolios.

2. What are the specific characteristics of value functions which give rise to this

problem? Might this problem apply more generally when project benefits are

assessed in some other way? In what way is this a specifically portfolio prob-

lem? As long as the one-part additive portfolio model is used to transform

project benefit values to portfolio scores, benefits have to be measured on a

scale on which the only permissible transformations are similarity transfor-

mations if rank reversals are to be avoided, but value functions are generally

taken to be interval scales: this is their problematic characteristic. This is

a specifically portfolio problem in the sense that whether using a particular
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scale for the measurement of benefits leads to a rank reversal problem de-

pends on the nature of the portfolio model used to combine benefit scores

- for example one could safely use interval scales for the measurement of

benefit functions if a max function was use to transform value scores.

3. Why does the solution proposed by CS ”work” to resolve this problem? Is the

solution proposed by CS vulnerable to other similar and related problems?

In the alternative ”two-part” additive model which CS propose, the class of

transformations by which the benefits can be rescaled without inducing a

rank reversal is the class of affine transformations, so using value functions

is unproblematic in this context. But rank reversals can still be induced in

the two two-part additive models if benefits are assessed on other scale types

(e.g. ordinal) and rescaling project values by an affine transformation is still

a problem if a two-part multiplicative model is used – so two part models

are not immune to rank reversal problems if one is careless about the nature

of the scale on which the underlying benefits are measured.

4. How important is the separability of the rule for combining project benefit

values as overall portfolio benefits in this analysis? Do the results we obtain

for this rule give insights into what should happen in a more general setting?

Even in the case of non-separable portfolio models, there is a clear difference

between the one- and two-part models, in that the one-part models can

never be used with benefit scores assessed on scales which allow arbitrary

scale translation, whereas this is unproblematic in the case of the two-part

additive model.

5. What, practically speaking, can we learn from this analysis about how to

perform better and more robust analysis? We argue contra CS that one-

part models often provide a more natural frame for modelling, rather than

two-part models which require one to separately define and evaluate the

outcomes associated with each and every project. We show that our axiom

of one-part coherence provides a theoretically based way to identify a ”do-

nothing baseline” for value measurement. Consistent use of this baseline

rather than a shifting baseline which changes when the option set changes is

a natural way to establish a value scale with the necessary properties to be

used in portfolio analysis without the possibility of rank reversal.
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Our philosophy in writing this paper has been that mistakes (like the mistake

highlighted by CS) are worth studying in some detail as a close understanding of

how one has gone wrong in the past can ensure that one learns the right lessons

and does not overlearn (for example it is not the case that it is always wrong

to use interval scales to assess benefit values when using one-part models), and

avoid making similar mistakes in the future (for example using interval scales in

the setting where one has two-part multiplicative models). We hope that the

discussion and findings in this paper will help researchers and practitioners draw

appropriate conclusions about how to assess benefits in portfolio settings.
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P. Zaraté. S. Liu, R. Ribeiro, B. Delibasic, J. Papathanasiou (Eds.),Decision

Support Systems III - Impact of Decision Support Systems for Global Envi-

ronments. LNBIP 184 (Lecture Notes in Business Information Processing):

Springer. 131-140.

10. Dyer, J. S. (1990). Remarks on the Analytic Hierarchy Process. Management

Science, 36(3), 249-258.

25



11. Fishburn, P. C. (1970). Utility theory for decision making. Chichester: Wiley.

12. Golabi, K., Kirkwood, C. W., & Sicherman, A. (1981). Selecting a portfolio

of solar energy projects using multiattribute preference theory. Management

Science, 27, 174-189.

13. Kirkwood, C. (1996). Strategic Decision Making: Multiobjective Decision

Analysis with Spreadsheets. Belmont, CA: Duxbury.

14. Kleinmuntz, C. E., Kleinmuntz, D. N. (1999). A strategic approach to al-

locating capital in health-care organizations. Healthcare Financial Manage-

ment 53(4) 52–58.

15. Kleinmuntz, D. N. (2007). Resource allocation decisions. In W. Edwards,

R. F. Miles & D. von Winterfeldt (Eds.), Advances in decision analysis (pp.

400-418). Cambridge: CUP.

16. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations

of Measurement Vol 1. New York: Academic Press.
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