-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE
provided by University of Strathclyde Institutional Repository

%)

University of “-{;_,/'
Strathclyde

Glasgow

Strathprints Institutional Repository

Paul, Greig and Irvine, James (2015) 5G-enabled decentralised services.
In: 2015 IEEE 81st Vehicular Technology Conference, 2015-05-10 - 2015-
05-13., http:/ldx.doi.org/10.1109/VTCSpring.2015.7145588

This version is available at http://strathprints.strath.ac.uk/52238/

Strathprints is designed to allow users to access the research output of the University of
Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights
for the papers on this site are retained by the individual authors and/or other copyright owners.
Please check the manuscript for details of any other licences that may have been applied. You
may not engage in further distribution of the material for any profitmaking activities or any
commercial gain. You may freely distribute both the url (http:/strathprints.strath.ac.uk/) and the
content of this paper for research or private study, educational, or not-for-profit purposes without
prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

https://core.ac.uk/display/29183051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

5G-Enabled Decentralised Services

Greig Paul
Department of Electronic & Electrical Engineering
University of Strathclyde
Glasgow, UK
Email: greig.paul @strath.ac.uk

Abstract—Increasing numbers of connectivity-dependent ser-
vices are entering the market, many of which require users to
entrust their data to the provider of the service. In exchange for
having more convenient access to data, users must upload and
entrust their data to these services. Companies are constantly
launching and offering new products and services, to which users
are submitting important data. A significant future challenge
for users and service providers alike is retaining user trust, as
services close and data is no longer available. This is increasingly
important as mobile device connectivity improves to the point
where cloud-based services are the norm, and local storage of data
is less popular. We present a model demonstrating how viable,
user-friendly services (not limited to data storage services) can
be based upon a simple, decentralised storage-based back-end.

I. INTRODUCTION

With the rise of modern, cloud-based services, users of
these services are often no longer in possession of client soft-
ware capable of accessing their data. Instead, users typically
access their data via a vendor-provided web interface. Increases
in the use of mobile computing devices to access data, such
as smartphones, tablets, and browser-based systems (such as
Chromebooks), mean services typically present a web-based
API, which can be queried by the application running on the
client system. The client is therefore simply a platform-native
version of the web application, which is fully dependent on
the operation of the underlying web service.

Web-based services offer a number of advantages, typically
centred around user convenience. For example, most cloud
services offer universal access from any device equipped with a
web browser. The trade-off here, however, is that for data to be
accessible via the web-browser, it is typically not encrypted in
a manner which prevents the service operator from accessing
the data. For the service provider to be able to display the
data within the user’s browser, the data is available to the web
server process (and other processing services) which run on the
service provider’s infrastructure. A typical conventional service
architecture is shown in Figure 1.

Even where a user accepts this, and trusts the service
provider with their data, they are exposed to a number of
risks. Firstly, there is the risk of server compromise, where
a malicious attacker was able to gain unauthorised access to
data held by the service [1]. This could (in some cases) be
through no fault of the service provider itself, especially for
services which use third party hosted infrastructure (such as
“cloud” services or datastores, or virtual private servers which
are hosted by another company) [2]. Another risk is that, in the
event of the company no longer being able to provide services

James Irvine
Department of Electronic & Electrical Engineering
University of Strathclyde
Glasgow, UK
Email: j.m.irvine@strath.ac.uk

Service provider servers

4o
Internet Connectivity ¢ ’ \

EJ b

£383

wm du o

Storage Backend

Fig. 1. A conventional cloud-based service architecture on a mobile device

(or of the service provider’s infrastructure suppliers ceasing to
trade), user data may not be accessible. A less extreme example
was seen with the Google Reader service, which Google
ceased to provide, meaning users could no longer access their
data, or use the service after its termination [3], which is an
inherent risk of relying upon externally hosted, centralised
services. While user data backups could be migrated to a
new service (if interoperable), this may leave users without
access to their data for a period of time during the migration.
Indeed, the utility of a remote service is the outsourcing of the
processing itself, often in removing the need for in-depth or
inefficient processing to be carried out on a mobile device (with
battery constraints), rather than the data itself. If the company
providing the service were to no longer trade, or there were
to be a more major failure of hardware or software, the data
held by the service may also be permanently unavailable [4].

This problem highlights the motivation for this work —
to demonstrate that it is possible to provide services to users,
which are user-friendly and simple to use, but are not reliant
upon any single entity to provide server hosting. Through this
decentralised service architecture, users retain access to their
own data at all times, and cannot lose access to the access
interface to their data. In this case, we demonstrate that it
is possible to implement a wide variety of services using a
simple storage-based backend, such as that of a MaidSafe-like
decentralised storage network. [5] Such a storage network is
based upon a Distributed Hash Table (DHT) for key-value pair
based data storage.

In future, with 5th Generation connectivity to mobile
devices, the push towards cloud-based services will most likely
continue, particularly towards users of mobile devices. Faster
connectivity such as 5G means the perceived need to store
data locally is further reduced, and cloud-based offerings

Local API server

Fig. 2.
device

The proposed decentralised storage-based architecture on a mobile

can be pushed towards mobile users. We demonstrate here
a concept to offer mobile-compatible services, which work
with existing web-style APIs, removing the reliance of users
upon centralised cloud-based architectures. At the same time,
all data on the network is encrypted and unreadable to other
parties, including the service provider. An example of our
proposed service architecture is shown in Figure 2.

II. DECENTRALISED STORAGE-BASED NETWORKS

A decentralised, storage-based network, such as Maid-
Safe [6] or Storj [7], is an example of a service, without
fixed infrastructure under the control of a single entity. This
lack of overall centralised control gives decentralised networks
security against a number of attacks which are difficult to
prevent in a centralised system. For example, if a web-based
email provider’s servers are compromised by attackers, or the
operator of the service proves to be untrustworthy, the con-
tents of any unencrypted content on the service is vulnerable
to theft. With the recent drive towards cloud-based service
adoption, users are increasingly being asked to entrust their
private information (such as personal or confidential business
correspondence and financial details) to the operators of online
services [8]. This poses a security and privacy risk for service
users.

Given the ease with which a domain name and servers can
be purchased, it is eminently feasible and practical for fake
cloud-based services to be launched, solely with the goal of
encouraging users to upload data which could be abused or
stolen by the operators of the service. Indeed, the honesty of
a service provider is not guaranteed, and the ability for future
network services to not require users to trust the provider of
the service to behave ethically, legally, and honestly with their
data, is clearly advantageous.

The MaidSafe network is an example of decentralised
storage-based network, built around a Kademlia-like dis-
tributed hash table (DHT) implementation [9]. This work shall
use the MaidSafe network as a platform upon which decen-
tralised services can be created, although these techniques
should be generic enough that they may be applied to any
similar network. By breaking down the required operations
of a service, it is possible to implement complex, interactive
services, upon the storage layer, without users seeing the
service simply as a storage system. This could be considered
analogous to the use of centralised storage-only based cloud
services, such as Amazon S3, although such a single point of
failure [4] is desirable to mitigate. Previous work has focused
on securing the data held within Amazon S3 [10].

III. USER AUTHENTICATION

User authentication is critical to the security of any
network-based service, to ensure that only legitimate users
gain access to data held on the service. Within a decentralised
network, standard user identification and authentication proce-
dures cannot be easily applied.

A. Standard Centralised Authentication

In a conventional centralised service (such as a website
or other web-based service), each user of the service has an
account, which is defined by a unique identifier (such as a
username). A central authentication server has a record of
all valid user accounts, and also contains a record of the
authentication credentials required for a given account. This
could include cryptographic hashes of passwords, or the public
key identifier of a client-side certificate. When a user attempts
to authenticate to the service, they are challenged by the
authentication server, and prove they are authorised to log
in using the requested account, by disclosing the account
password, or decrypting and replying to a message using
their client-side key. The basic principles of an authentication
service are described by Gong in [11].

The authentication server can carry out other kinds of
verification in the background at this point (such as using IP
address geolocation to identify geographically unusual login
requests based on previous account logins). To grant access
to the user in question, the authentication server returns the
user a token (valid for a session, or a finite period of time),
which can be used to communicate directly with the service
in question. In the case of a web service, this token would
be stored by a web browser as a cookie, and sent with future
requests to the web service.

The access points to the service itself carry out a verifica-
tion process on every request received, whereby the supplied
token is validated. A revoked (the user had logged out, or it
has expired) or invalid (it was forged or non-authentic) token
would result in the refusal of the request. Various strategies
for the validation of such tokens exist (such as the service
making an internal request to verify the token, or the token
being signed, allowing it to be verified directly by the server
providing the service).

The obvious weakness to this model for user authentication
is that it places full trust on the authentication server. In the
event of the authentication server being compromised (or a
rogue server operator at the service provider), the service is
no longer secure, since the attacker may generate legitimate
authentication tokens (via the server), and use these to access
any user’s account. Centralised authentication remains the most
commonly used method, and it is seen across almost all
websites featuring some kind of login-based account, despite
these weaknesses and limitations.

B. Decentralised Authentication

In contrast, authentication within a decentralised network is
a much more difficult task. A decentralised network inherently
has no trusted entity to act as the authentication server. An
improved model for authentication is clearly necessary, since
it is obviously unacceptable for any user of the network to

be able to pose as another network user in an undetectable
manner, and this would be possible if the authentication-server
model was used in a decentralised network [12].

In the absence of a single centralised entity to carry out user
authentication, it is therefore necessary for every member of
the network to be able to carry out authentication itself, at the
time it is presented with a request. It is necessary to ensure that
the authentication process is not critical to the confidentiality
of data stored within the network. This removes the ability for
other users to compromise the data of any individual user. This
can be achieved by ensuring that each user encrypts their own
data held on the network, using a key known only to them. The
process of authenticating a user is therefore simply a means
to prevent vandalism of data (and authorise the modification
of data), since the underlying data would not be readable to
an imposter.

By separating the authentication and security layers, au-
thentication can be carried out with every request. To preserve
the security of this authentication process, however, it must use
strong authentication (where others can verify a user’s identity,
without gaining any information as to the authentication secret
held by the client). Users can authenticate themselves to other
nodes by signing data with a private key, corresponding to
a verifiable public key. To ensure public keys can always be
identified, the user identity can be defined as the cryptographic
hash of the user’s public key.

IV. SERVICE API AND STORAGE MODEL

We now consider the operations available on such a net-
work, which can be used to form services, having established
the possibility of using decentralised authentication techniques.

A. Available Primitives

In order to implement features which users expect from a
service, such as the ability to store data (and later retrieve it),
as well as inter-user sharing, it is necessary to consider the
primitives necessary to achieve this. These form the basis of
the API-style requests which are required by applications to
implement functionality.

e GET(chunkID) - the GET operation retrieves, from the
decentralised storage network, a given chunk of data,
by the given address.

e PUT(data, chunkID) - the PUT operation will request
a given block of data is stored on the network (with
optional Chunk ID for mutable data).

e UPDATE(data, chunkID) - the UPDATE operation
modifies a given block of data (provided it was stored
as mutable data).

e DELETE(chunkID) - the DELETE operation, which
can only be carried out by the owner of a chunk, may
be used to remove it from the network.

e SHARE(chunkID, recipientID) - the SHARE operation
shares a given data map with another user on the
network, based on their public key.

e GETSHARES(senderID) - the GETSHARES operation
locates any data shared with the current user by
another user, as discussed in Section IV-B

e GETADDRESS(friendlyName) - the GETADDRESS
operation retrieves the DHT-based address for a given
user account, based on their friendly-name or other
human-readable identifier (such as email address).

With these basic primitives, it is possible for a variety
of complex, synchronous and asynchronous services to be
implemented. The GET, PUT and UPDATE operations are
relatively simple DHT operations, as described in [5].

The SHARE operation takes a given datamap (passed in as
a chunk address), by encrypting it with the public key of the
given recipient. This data must then be shared with the user
by the application, although this sharing would typically be
carried out asynchronously, as shown below in Section IV-B.

B. Inter-User Data Sharing

In order for collaboration and inter-user sharing to be
possible, it is necessary for some coordination data to be
securely exchanged between users, to notify them of such
a file share. The MaidSafe protocol describes how inter-user
sharing can be carried out, based upon the use of asymmetric
encryption to create an additional encrypted data map, which
would be communicated to the recipient of the shared data.
[13] It does not specify the process through which this would
be shared. To resolve this, we initially propose the use of a
form of shared inbox, where a set of inbox addresses on the
DHT are regularly polled by each user. These inbox addresses
are derived from the cryptographic hash of both corresponding
users’ DHT addresses. There will therefore be 2 such inbox
addresses for each pair of users. Data placed in the inbox
from node A to node B would therefore be submitted to inbox
H(A|B), and data from node B to node A would be submitted
to the inbox H(B|A).

Data submitted to an inbox is signed by the sender (to
prevent tampering or forged messages), and is encrypted by
the public key of the recipient, to preserve the confidentiality
of the data contained within the inbox. The inbox data simply
consists of a data-map structure (from the storage network),
which gives the recipient the keys needed to retrieve the data
contained within those addresses on the network. When the
recipient has added this data to their node, they update the
content of the inbox to contain a signed (and encrypted with the
sender’s public key) message, stating that the inbox is empty,
and to update with future messages.

In this way, it is possible for 2 users to asynchronously
exchange data in a secure fashion. This permits users to share
data or transmit messages between accounts on the network,
which is a key part of any kind of collaborative protocol.

V. EXAMPLE SERVICE IMPLEMENTATIONS
A. User Identity and Discovery

The process of user discovery is an essential, but often
overlooked, aspect of service implementation. While popular
centralised services such as Whatsapp use a trusted-server
approach (where other service users are discovered by sharing
a list of existing contacts, and having the server carry out a
lookup of existing service users), this approach is not suitable
on a decentralised network. While it is not strictly necessary to

H(H(A | B))
Enc(Sig(ack))
ECOCEN

{
MsgID: 13fb59c62...
} encrypted to A

e

{

MsgID: 99fc389fba...
MsgID: 178ba5b41...
} encrypted to A

Fig. 3. The proposed inbox-based asynchronous data exchange protocol

use user-friendly identifiers if a user’s DHT address is known,
this address is long and inconvenient to use.

For this reason, a decentralised model of usable identifiers
(akin to a username) are desirable — they are easy to exchange
and communicate with others. The standard means of ensuring
uniqueness of user identifiers (by using a central server to
allocate and allow or deny the addition of a new identifier) is
naturally not possible in a decentralised network.

To register a new friendly name on the network, a user
simply selects their desired identifier, and initiates a PUT to
the network, to store a mutable chunk containing the user’s
address and friendly name, signed by their private key. This
chunk is stored at the address of the hash of the user’s desired
friendly name. To retrieve the identity of a user on the network,
based on their friendly name, another user would carry out
a GET request against the hash of the friendly name, which
returns the signed DHT address of the user owning that address
(provided one exists).

Modification of these identity chunks is prevented by the
nature of mutable data on the network, which cannot be
modified without a valid (signed) request being received by
the holder of each copy of a chunk. The nodes holding the
chunk monitor each other to prevent invalid modifications from
being accepted on the network, using the reputation system to
remove an untrustworthy node from the network.

This technique is, however, vulnerable to flooding attacks,
whereby all desirable user identities could be occupied by a
small number of malicious users, to make the friendly name
system less useful. Techniques such as the Hashcash proof of
work mechanism [14] could potentially be used in future to
deter such attacks.

B. File Storage

The first, and most simple, service which could be im-
plemented would be a file storage system. The user runs a
client, which connects to the network, and presents a virtual
filesystem, mounted via FUSE or an equivalent library [15].
Filesystem metadata (including directory listings and hierar-
chies) is stored within a data atlas, which is an encrypted
directory of the files available to the user, containing pointers
to the address of the corresponding file’s data map entry.
Subdirectories are links to other data atlases, which themselves
contain links to data atlases and maps. This data map entry
itself is encrypted, holding pointers to the actual data chunks,

oF

Vo, \—
l User Data Maps Data Chunks
I Data Atlas 04f28cbd... 24fcb776
= =
- file "index.html" @ 24fcb776 19a56¢90

- file "favicon.ico"@ 19a56¢90 \)E—,E

- dir "css" @ 0fa42954 0fa42954

- dir "js" @ f328fbat \E—’E
f328fbat

Fig. 4. File Storage Service Implementation

NEEK
NEEK
NEKK

as well as the keying data necessary to decrpyt these chunks.
Figure 4 shows the relationship between the data atlas, data
maps, and data chunks.

The process of retrieving a file from the network involves
making a GET request for the user’s encrypted root data atlas
chunk (the location and key of which are deterministically
derived from the user’s identity). Following decryption (and
provision of the root directory contents to FUSE), a file or
directory will be selected, and the data atlas pointers will
determine the next GET request to be made.

When a read request is made against a file, its data map
is loaded, and a GET request is made to the network, to
retrieve the chunks containing the requested file. The data
map contains the keying information necessary to decrypt
the file, and the file can thus be accessed by the user and
their local applications, through FUSE layer. The process of
updating a file varies, depending upon the use-case the user’s
client is configured for — the MaidSafe network supports both
mutable and immutable data, meaning that it is possible to
either preserve a full version history of a file indefinitely, or
to simply overwrite previous copies.

For the case of preserving version history data, the file is
stored in immutable form, meaning the data map (and chunks)
are unable to be modified in future. By simply recording the
address (and decryption key) for the relevant datamap in the
user’s data atlas as a past version, it can be accessed in future
if necessary. If the user wishes to overwrite files, a new data
map entry would be created, with a new pointer to a new set
of chunks for the file. A (signed) request would then be made
to the network, by the client, to remove the existing chunks
and data map.

C. Asynchronous Messaging (Email-like)

In order to send asynchronous messages (where both par-
ties may not be online simultaneously), the sender composes
a message, addressed to a given user on the network (by their
node ID). Note that friendly names can be resolved into node
IDs, via the process described in Section IV-A.

The composed message is signed by the sender (to prove
authenticity), and is encrypted with the recipient’s public key.
The content of the message (which can include text, and other
content like attachments) is then uploaded to the network as
regular data via a PUT request. The data maps pointing to
this data (and holding the requisite keys) are then encrypted
by the recipient’s public key, and appended (via the UPDATE
operation) to the mutually agreed inbox address on the network

(as mutable data). This inbox address is deterministic, and
derived from the sender and recipient identifiers (meaning the
two nodes need never directly communicate prior to being able
to exchange messages). Since the inbox address is unique for
each sender-receiver pair, the sender retains their own copy of
the inbox contents (allowing them to append by mutating the
contents of the inbox address).

To signify acknowledgement of the contents of the inbox,
the recipient uses PUT (and subsequently UPDATE) on their
own mutable acknowledgement chunk (stored at the hash
of the inbox address), to place a signed (and encrypted)
message for the sender, indicating which messages have been
retrieved. This allows the sender to remove their records of
sent messages, and clear the inbox contents.

In this case, it is not possible for unsolicited messages to
be received, as the recipient must be aware of the identity of
the sender (to be able to derive the inbox address). This means
that a user will only receive messages from senders they have
agreed to receive messages from.

VI. SECURITY CONSIDERATIONS

Some security considerations applicable to networks such
as this are discussed in [5]. The primary concern with regard
to any network such as this is data confidentiality. In a
decentralised network, users are no longer reliant upon the
trustworthiness of the service provider to ensure their data
confidentiality, instead making use of standard, proven, cryp-
tographic protocols. A secondary concern is over the ease with
which users could potentially abuse such a network through
the creation of many accounts [16].

The principle security assumptions made are that the cryp-
tographic hash algorithm used by the network remains secure
(the MaidSafe network uses SHAS512), and that symmetric
AES encryption remains unbroken. The need for the hash
algorithm to remain secure against partial pre-image attacks
is to ensure that network nodes are added to the network in a
uniform manner, thus preventing one attacker from flooding a
portion of the network, and using their localised majority of
untrusted nodes to take control and carry out malicious actions.

VII. FUTURE CONSIDERATIONS

A DHT-based push-messaging based system may remove
the need for regular polling of addresses on the network. By
allowing a network user to subscribe to changes made to a
given chunk of (mutable) data, it would be possible for a data
manager to alert client software to the change of contents,
with this message being routed through the network as a
synchronous DHT-based message. These notifications could
alternatively be carried over websockets (or a similar protocol),
although this would potentially allow storage nodes to directly
identify the node making the request. Nonetheless, supporting
push-based updates to mobile clients would reduce power
usage, and allow decentralised DHT-based networks to offer
more user-friendly and mobile-optimised services.

VIII. CONCLUSION

We demonstrate a model for DHT-based distributed storage
to be used as the back-end architecture for modern, user-
friendly mobile services, removing the dependency upon a

single service operator. By implementing the core application
functionality locally, users can take advantage of increasing
connection speeds and cheap online storage as part of a
decentralised storage network, safe in the knowledge all their
data is securely encrypted. Complex client applications can
be built upon a simple back-end based solely around storage,
offering new possibilities for users wishing to ensure their data
remains available in the future, in the event of the developer
of one of their applications ceasing to trade, or discontinuing
the service.

ACKNOWLEDGMENT

This work was funded by EPSRC Doctoral Training Grant
EP/K503174/1, and MaidSafe.net.

REFERENCES

[1] D. McCullagh, “Dropbox confirms security glitth-no password
required,” CNET, June 20 2011. [Online]. Available: http://www.cnet.
com/news/dropbox-confirms-security- glitch-no-password-required

[2] S. Gallagher. (2014, October) Security bug in Xen
may have exposed Amazon, other cloud services. arstech-
nica. [Online]. Available: http://arstechnica.com/security/2014/10/
security-bug-in-xen- may- have-exposed-amazon- other-cloud-services/

[3] E Manjoo. (2013, March) Why did Google Reader die? Slate. [Online].
Available: http://www.slate.com/articles/technology/technology/2013/
03/google_reader_why_did_everyone_s_favorite_rss_program_die_
what_free_web.html

[4] H. Blodget. (2011, April) Amazon’s cloud crash disaster permanently
destroyed many customers’ data. Business Insider. [Online]. Available:
http://www.businessinsider.com/amazon-lost-data-2011-4

[S1 G. Paul and J. Irvine, “Security of the MaidSafe Network,” Wireless
World Research Forum. WWRF32, May 2014. [Online]. Available:
http://strathprints.strath.ac.uk/48569/

[6] D. Irvine, J. Irvine, and S. K. Goo, “Sigmoid (x): Secure distributed
network storage,” WWRF, 2011. [Online]. Available: http://pure.strath.
ac.uk/portal/files/34898763/Paul_etal_wwrf32_vault_network.pdf

[7]1 Storj - the future of cloud storage. Storj.io. Retrieved 16 February
2015. [Online]. Available: http://storj.io/

[8] W. K. Hon, C. Millard, and I. Walden, “The problem of personal
datain cloud computing: what information is regulated?the cloud of
unknowing,” International Data Privacy Law, vol. 1, no. 4, pp. 211-
228, 2011.

[9] P. Maymounkov and M. David, “Kademlia: A peer-to-peer information
system based on the xor metric,” in /st International Workshop on Peer-
to-Peer Systems, 2002.

[10] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, “Truststore: Making
Amazon S3 trustworthy with services composition,” in Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing. 1EEE Computer Society, 2010, pp. 600-605.

[11] L. Gong, “Increasing availability and security of an authentication
service,” Selected Areas in Communications, IEEE Journal on, vol. 11,
no. 5, pp. 657-662, Jun 1993.

[12] D. Irvine, “Self-authentication,” pp. 2—4, 2010. [Online]. Available:
http://maidsafe.net/Whitepapers/pdf/Self Authentication.pdf

[13] —— “Maidsafe distributed file system,” pp- 1-4,
2010. [Online]. Available: http://maidsafe.net/Whitepapers/pdf/
MaidSafeDistributedFileSystem.pdf

[14] A. Back er al., “Hashcash-a denial of service counter-measure,” 2002.
[Online]. Available: http://hashcash.org/papers/hashcash.pdf

[15] M. Szeredi. (2005) Fuse: Filesystem in userspace. [Online]. Available:
http://fuse.sourceforge.net

[16] G. Paul and J. Irvine, “A protocol for storage limitations and upgrades
in decentralised networks,” in Proceedings of the 7th International
Conference on Security of Information and Networks, ser. SIN
’14. New York, NY, USA: ACM, 2014, pp. 69:69-69:72. [Online].
Available: http://doi.acm.org/10.1145/2659651.2659724

