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Abstract

Information about size and shape of particles produced in various manu-
facturing processes is very important for process and product development
because design of downstream processes as well as final product properties
strongly depend on these geometrical particle attributes. However, recovery
of particle size and shape information in situ during crystallisation processes
has been a major challenge. The focused beam reflectance measurement
(FBRM) provides the chord length distribution (CLD) of a population of
particles in a suspension flowing close to the sensor window. Recovery of size
and shape information from the CLD requires a model relating particle size
and shape to its CLD as well as solving the corresponding inverse problem.

This paper presents a comprehensive algorithm which produces estimates
of particle size distribution and particle aspect ratio from measured CLD
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data. While the algorithm searches for a global best solution to the in-
verse problem without requiring further a priori information on the range of
particle sizes present in the population or aspect ratio of particles, suitable
regularisation techniques based on relevant additional information can be im-
plemented as required to obtain physically reasonable size distributions. We
used the algorithm to analyse CLD data for samples of needle-like crystalline
particles of various lengths using two previously published CLD models for
ellipsoids and for thin cylinders to estimate particle size distribution and
shape. We found that the thin cylinder model yielded significantly better
agreement with experimental data, while estimated particle size distribu-
tions and aspect ratios were in good agreement with those obtained from
imaging.

Keywords: Chord Length Distribution, Particle Size Distribution, Particle
Shape, Focused Beam Reflectance Measurement.

1. Introduction

Manufacturing of particulate products in pharmaceutical and fine chemi-
cals industries includes various particle formation processes, such as crystalli-
sation or granulation, and downstream processing of resulting suspensions or
powders as well as final product properties are strongly dependent on geo-
metrical particle attributes, most importantly size and shape. Design and
operation of particle formation processes greatly benefits from in situ moni-
toring of particle size and shape, but it has been a major challenge to get reli-
able quantitative estimates of these key particle attributes, especially in cases
where solid loadings are relatively high or sampling is challenging. There are
numerous particle sizing techniques, including sieving, electrical zone sens-
ing, laser diffraction, focused beam reflectance measurement (FBRM) and
imaging [1, 2]. While several techniques are well suited for determination
of particle size distributions of spherical particles, there are significant chal-
lenges when particles become strongly non-isometric, such as in the case
of needle-like or plate-like particles, which are ubiquitous in pharmaceuti-
cal manufacturing. Imaging is well suited for dealing with high aspect ratio
particles, but accurate determination of particle size and shape by imaging
typically requires highly diluted samples and/or specially designed flow cells,
which make it difficult to apply in situ under process conditions. Although
laser diffraction and reflectance techniques provide information which is sen-
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sitive to particle shape, extracting accurate shape information has been chal-
lenging since appropriate models need to be used and corresponding inverse
problems need to be solved. Suspensions also need to be relatively dilute for
laser diffraction measurements in order to avoid multiple scattering effects.

Reflectance techniques, such as FBRM, are particularly suitable for in
situ monitoring of particles in suspensions during the manufacturing pro-
cess. FBRM measures chord length distribution (CLD), which depends on
both size and shape of particles present in a suspension. There has been con-
siderable efforts [3–15] devoted towards obtaining useful information about
particle geometrical attributes from this technique, leading to the develop-
ment of suitable models [3–9, 11–15] for CLDs for particles of various shapes
in order to obtain particle size distributions from FBRM data.

However, the inverse problem of retrieving size and shape information
from FBRM data is non-trivial [2]. The inverse problem is well-known to
be ill-posed, i.e., there are potentially multiple solutions in terms of particle
size distributions and shape which give essentially the same CLD within
the accuracy of experimental data. Several regularisation approaches have
been proposed to deal with this problem [8, 9] but there is still a challenge
of finding a global best solutions for physically reasonable combinations of
particle size distribution and shape. One important factor which can be used
to constrain inverse problem solutions is the size range of particles used in
the calculations. In the work by Ruf et al [4] information about particle size
range was obtained by a laser diffraction technique and microscopy, while
Worlitschek et al. [8], Li et al. [10], Li et al. [16, 17] and Yu et al. [18]
obtained particle size range information by sieving. Also, Kail et al. [14]
obtained information about particle size range in their population of particles
from the manufacturer. However, information about particle size range may
not be readily available or it may not be convenient to obtain this information
a priori (for example in a manufacturing process).

When moving from modelling of CLD of single particles to a population of
particles of various sizes, it is necessary to properly account for size effects. It
has been previously shown [11, 19, 20] (see also section 3 of the supplementary
information) that probability of larger particles to be detected by the FBRM
probe is proportional to their characteristic size. While this effect has been
taken into account in some cases [4, 8] it has been neglected in some other
cases [9, 10] in the previous literature, which may introduce significant errors
if the size range of particles in the population is relatively large.

Early CLD geometrical models [19–23] were based on populations of
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spherical particles 1. While these models can give reasonable estimates of
particle sizes from measured CLD data, if appropriate approaches are used
for solving corresponding inverse problems, they are not suitable for parti-
cles whose shape deviate significantly from spherical. Even though there has
been some progress in retrieving size and shape information from CLD data
for populations of particles with different degrees of variation from spherical
[4, 8–10, 24, 25], there has been no previous attempt (although Czapla et al.
[26] calculated the CLD of needle shaped particles using a numerical model,
the inverse problem was not solved) to obtain size and shape information
for populations of needle shaped particles which are commonly present in
pharmaceutical manufacturing. This is despite the fact that there are suit-
able geometrical models [9, 11] available in the literature which can be used
to obtain useful size and shape information for needle shaped particles from
experimental CLD data.

In this paper, we present an algorithm for estimating of size and shape
information for needle shaped particles from experimental CLD data. We use
2 D geometrical CLD models available in the literature which are suitable
for opaque particles. However, the method presented here can be extended
to different 2 D and 3 D geometrical and optical CLD models for parti-
cles of arbitrary shape and optical properties. Such models would need to
account for possible discontinuities along the particles’ boundaries if the par-
ticles’ boundaries contain strong concavities (for example the case of particle
clusters). More general models would also need to account for the optical
properties of the particles if the particles are not opaque.

The optimum size range of particles in a population providing the best fit
with the experimental CLD data can be directly determined by the algorithm
in the case when no further information is available, although any external
information on particle size range or shape can be utilised in the algorithm
as needed. We compare results from our calculations with data obtained by
dynamic image analysis and laser diffraction in order to assess suitability and
validity of models used.

1The problem is significantly simplified for spherical particles due to the symmetry
properties of the sphere.
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Figure 1: Microscope images (magnification factor of ×150) of samples of COA after
undergoing different drying conditions in the vacuum agitated drier [27]. The samples in
(a) to (e) are labelled Sample 1 to Sample 5 in Figs. 2 and 3. The white horizontal line
on the bottom right of (a) indicates a length of 100µm. Reproduced by permission of The
Royal Society of Chemistry (View Online).
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Figure 2: (a)Volume based particle size distribution obtained with the Malver Mastersizer
and (b) unweighted number based chord length distribution from the FBRM probe for the
samples in Fig. 1.

2. Experimental Data

For the purpose of demonstrating and validating our technique, we shall
apply the method (to be described in subsequent sections) to data obtained
in a previous study [27]. Five samples (sample 1 to sample 5) of needle-
shaped particles of cellobiose octaacetate (COA) that had been subjected
to different drying conditions [28] were analysed by laser diffraction, FBRM
and dynamic image analysis. The drying conditions used caused different
degrees of particle attrition as shown in Fig. 1. Samples were dispersed
in 0.1% Tween 80 (Sigma-Aldrich, UK) solution in water for all particle
size measurements. Laser diffraction measurements were carried out using
a Malvern Mastersizer 2000 (Malvern Instruments, UK). FBRM data were
obtained using a Lasentec FBRM PI-12/206 probe. Dynamic image analysis
was carried out using a QICPIC (Sympatec Ltd., UK) instrument with a
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Figure 3: (a)Volume based EQPC diameter, maximum Feret diameter (b), and minimum
Feret diameter (c) obtained by dynamic image analysis for the samples in Fig. 1. (d)A
measure of the degree of elongation (aspect ratio) of the needles in Fig. 1.

LIXELL wet dispersion unit. Further experimental details for the particle
size analysis techniques employed can be found in the previous study [27].

The particle size distribution (volume weighted) estimated by laser diffrac-
tion, which assumes that the particles are spherical, for samples 1 to 5 is
shown in Fig. 2(a). The CLD data obtained by FBRM for the five samples
is shown in Fig. 2(b). The equivalent projected circle EQPC diameter (which
is the diameter of a circle of equal area to the 2 D projection of a particle)
distribution obtained by dynamic image analysis is shown in Fig. 3(a). The
maximum Feret diameter (Feret Max)2 obtained using dynamic image anal-
ysis, which was shown to be a good indicator of needle length [27], is shown
in Fig. 3(b). In addition, the Feret Min diameter (Feret Min) which is an

2See section 7 of the supplementary information and [27]for further description of the
concepts of Feret diameter and EQPC.
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indication of needle width is shown in Fig. 3(c). The degree of elongation
(aspect ratio) of the needles can be estimated by computing the ratio of the
modes of the Feret Min distributions to the modes of the Feret Max distri-
butions. The result (Fmin/Fmax) of this calculation is shown in Fig. 3(d).
The data in Figs. 2 and 3 will be used to compare against estimated PSDs
and aspect ratios obtained from CLDs data in Fig. 2(b) using the algorithm
described in section 4.

3. Modelling Chord Length Distribution

The FBRM technology involves a laser beam which is focused onto a spot
by a system of lenses. The focus spot is located near a sapphire window and
it is rotated along a circular path at a speed of about 2ms−1 [2, 7, 12, 13].
The assembly of lenses is enclosed in a tubular probe which is inserted into a
slurry of dispersed particles. Particles passing near the probe window reflect
light back into the probe which is then detected. It is assumed that the
particles are much smaller than the diameter of the circular trajectory of the
laser beam, and the particles move much more slowly than the speed of the
laser spot [2]. Hence the length of arc (taken to be a straight line) made
by the laser spot on a particle from which light is back scattered is just a
product of the speed of the laser spot and the duration of reflection [2], and
the corresponding chord length is recorded. Since the beam does not always
pass through the centre of the particle, a range of chord lengths is recorded
as a given particle encounters the beam multiple times. The FBRM device
accumulates chord lengths across different particles present in the slurry for a
duration pre-set by the user, after which it reports a chord length histogram,
and this data is referred to as chord length distribution (CLD).

3.1. Calculating CLD from PSD

The CLD and PSD are related to each other and the CLD obtained from
a given particle depends on both its size and shape. This size and shape
information is expressed in a kernel function A(D,L) which defines the CLD
of a single particle of characteristic size D. In a population of particles,
the probability of a particle being detected is linearly proportional to its
characteristic size [4, 8, 11, 19, 20] (see also section 3 of the supplementary
information). Hence the kernel needs to be weighted by the characteristic
sizes of the particles in the population. The characteristic size of each particle
is a monotonic function of some length scale associated with the particle [8],
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this function depends on the shape of the particle [11]. For example, in the
case of a population of spherical particles of different sizes the characteristic
size is D = 2as, where as is the radius of a sphere. Thus the relationship
between the CLD and PSD can be written as [20]

C(L) =

∫

∞

0

A(D,L)DX(D)dD, (1)

where C is the CLD of the particle population, L is chord length and X is
the PSD expressed as a normalised number distribution. Equation (1) can
be discretised and written in matrix form as [9, 20]

C = AX̃, (2)

whereA is a transformation matrix. The column vectorC is the chord length
histogram or CLD, while the column vector X̃ is defined as

X̃i = DiXi, i = 1, 2, 3, . . . , N, (3)

where D is the vector of characteristic sizes and X is the unknown PSD.
The characteristic sizes Di make up the bin boundaries of the PSD Xi, and
the characteristic size of the particles bounded by the bin boundaries Di and
Di+1 is given as Di =

√
DiDi+1. Equation (2) can be rearranged so that each

component of D multiplies a column of A to give

C = ÃX, (4)

where
Ãj = [aj,1D1 aj,2D2 . . . aj,iDi . . . aj,NDN ], (5)

represents column j of Ã.
The matrix A is of dimension M ×N , where M is the number of chord

length bins in the histogram C and N is the number of particle size bins in
the histogram X [9]. The columns of matrix A are constructed as [9]

Aj = [aj,1 aj,2 . . . aj,i . . . aj,N ], (6)

where
aj,i = pDi

(Lj, Lj+1) (7)

is the probability that the length of a measured chord from a particle of char-
acteristic size Di lies between Lj and Lj+1. The probabilities pDi

(Lj, Lj+1)
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for different particle sizes and chord length bins are calculated from appro-
priate probability density functions (PDF). The PDFs employed in this work
are those given by the Vaccaro-Sefcik-Morbidelli (VSM) [11] model and the
Li-Wilkinson (LW) model [9].

The forward problem of calculating the CLD from a known PSD using Eq.
(4) is trivial as it is mere matrix multiplication. However, the inverse problem
of calculating the PSD from a known CLD is non trivial. The solution vector
X must meet the requirement of non negativity, hence different techniques
have been used in the past [8, 9] to fulfil this requirement. There could
also be errors in the solution vector X if the transformation matrix A is
inaccurate. The accuracy of the matrix A depends on the particle size range
and the model used in calculating the probabilities in Eq. (7). Here we shall
describe a technique to select the most appropriate particle size range. The
method employed here also guarantees the non negativity requirement of the
solution vector X. Appropriate models then need to be chosen based on any
available information about the overall particle shape. In the case of needle-
like particles considered here, we can use two analytical models available in
the literature as discussed below.

3.2. The VSM model

The microscope images in Fig. 1 suggest that the shape of the particles
could be represented by thin cylinders. The 2 D projections of these thin
cylinders will look like the shapes in Fig. 1. The cylindrical VSM model
[11] gives a PDF Xc

p which defines the relative likelihood that a chord taken
from a cylindrical particle has a length between L and L+ dL. To this end,
the model considers all possible 3 D orientations of each cylindrical particle
and calculates chord lengths from each 2 D projection. The characteristic
size of a cylinder is calculated by equating to the diameter of a sphere of
equivalent volume. For a thin cylinder of height ac, base radius bc, aspect
ratio rc = bc/ac and characteristic size Dc = ac

3
√

3r2c/2, the VSM model gives
the probability Xc

p (for bc/ac ≪ 1) as [11]

a∗Xc
p(L) =























1
2

L√
r2ca

2
c−L2

(

1−
√

1− r2c

)

, ∀L ∈ [0, rcac[

1
π

r2c
√

1−( L
ac
)
2
+ 1

2π
ac
L

L
ac

√

1−( L
ac
)
2
+cos−1( L

ac
)

L
rcac

√

( L
rcac

)
2
−1

∀L ∈]rcac, ac[

0 ∀L ∈ [ac,∞[,

(8)
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where

a∗ =
ac
4
+

1

2
rcac

[

1−
√

1− r2c +
1

2
rc

(

1− 4

π
sin−1(rc)

)]

(9)

is a normalisation factor. Then the probability that the length of a measured
chord from a particle of size Dc falls in the bin bounded by Lj and Lj+1 is
calculated as

pcDi
(Lj, Lj+1) =

∫ Lj+1

Lj

Xc
p(L)dL. (10)

The integration in Eq. (10) is performed numerically.

3.3. The LW model

In this case, we approximate the shape of the needles in Fig. 1 by thin
ellipsoids. The model considers 2 D projections of each of ellipsoid with its
major and minor axes parallel to the projection plane, so that all projections
will be an ellipse of semi major axis length ae, semi minor axis length be and
aspect ratio re = be/ae. The length of a chord on this ellipse depends on the
angle α between the chord and the x axis (where the projection plane is the
x − y plane) [9]. Hence the PDF for such an ellipse is angular dependent.
The PDF for different values of α are given by the LW model as [9]:
for α = 0 or π

peDi
(Lj,α, Lj+1,α) =























√

1−
(

Lj

2aei

)2

−
√

1−
(

Lj+1

2aei

)2

, for Lj < Lj+1 ≤ 2aei
√

1−
(

Lj

2aei

)2

, for Lj ≤ 2aei < Lj+1

0, for 2aei < Lj < Lj+1,

(11)
for α = π/2 or 3π/2

peDi
(Lj,α, Lj+1,α) =























√

1−
(

Lj

2reaei

)2

−
√

1−
(

Lj+1

2reaei

)2

, for Lj < Lj+1 ≤ 2reaei
√

1−
(

Lj

2reaei

)2

, for Lj ≤ 2reaei < Lj+1

0, for 2reaei < Lj < Lj+1,

(12)
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for other values of α

peDi
(Lj,α, Lj+1,α) =











































√

1− r2e+s2

1+s2

(

Lj

2reaei

)2

−
√

1− r2e+s2

1+s2

(

Lj+1

2reaei

)2

, for Lj < Lj+1 ≤ 2reaei

√

1+s2

r2e+s2
√

1− r2e+s2

1+s2

(

Lj

2reaei

)2

, for Lj ≤ 2reaei

√

1+s2

r2e+s2
< Lj+1

0, for 2reaei

√

1+s2

r2e+s2
< Lj < Lj+1,

(13)
where s = tan (α). The angle independent PDF is then given as

peDi
(Lj, Lj+1) =

1

2π

∫ 2π

0

peDi
(Lj,α, Lj+1,α)dα. (14)

Equation (14) allows the construction of the transformation matrix A in Eq.
(2) which can be converted to the matrix Ã as described in Eq. (5). The
matrix Ã is then used to solve the inverse problem.

The LW model constructs the PDF of an ellipsoidal particle by consider-
ing only one 2 D projection of the ellipsoid where the major axis is parallel
to the projection plane. Hence the monotonic function which gives the char-
acteristic size De of the resulting ellipse is obtained from the area of a circle
of equivalent area. Hence, using re = be/ae, the characteristic size is given
as De = 2ae

√
re.

4. Inversion Algorithm

As mentioned in the introduction, one important factor which can be
used to constrain inverse problem solutions is the size range (Dmin to Dmax)
of particles used in the calculations, where Dmin is the smallest particle size
and Dmax is the largest particle size in the population. Since this information
is not always readily available, we introduce an inversion algorithm which is
capable of automatically determining the best values of Dmin and Dmax to
solve the inverse problem. We use the bin boundaries of the chord length
histogram to specify the size range boundaries Dmin and Dmax. A number S
of consecutive bins of the chord length histogram are chosen, these bins make
up a window of width S. This means that the width (or size) of a window
is the number of bins contained within that window. The geometric mean of
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Figure 4: Pictorial representation of the bins and bin boundaries of the CLD histogram
showing a window of size S at the first two positions set by p = 1 and p = 2 shifted by
q. The window is moved in such a way that some of the bins contained in the window at
p = 1 overlap some of the bins of the window at p = 2.

the first two bin boundaries of a window is taken as Dmin and the geometric
mean of the last two bins of a window is taken as Dmax. The procedure is
outlined below.

The boundaries of the chord length histogram are labelled as

Lj, j = 1, 2, 3, . . . ,M + 1 (15)

as illustrated in Fig. 4. The characteristic chord length Lj of bin j is the
geometric mean of the chord lengths of its boundaries

Lj =
√

LiLj+1. (16)

At the beginning of the calculation, the first w bins of the chord length
histogram are chosen, so that S = w, Dmin = L1 and Dmax = Lw. After
the first iteration (see steps 5 to 9 in the algorithm below), a new set of bin
boundaries are selected. This new set of bin boundaries is made up of the
same number of bins S as the previous set, but it is shifted to the right of the
previous set by an amount q. That is, there are q bins between the beginning
of the first set of bins and the beginning of the second set. The shift is made
in such a way that the two set of bins overlap each other (that is, q < S). For
example, in the case illustrated in Fig. 4, the window initially runs from bin
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boundary L1 to bin boundary L4. At this position, the window contains bins
L1 to L3 so that the width of the window is S = 3. At the end of the first
iteration, a new set of bins are chosen, this time starting from bin boundary
L3 and ending at bin boundary L6 as in Fig. 4. The number of bins in the
new set of bins (or window) is the same as before S = 3. Each window (or set
of bins) is identified by its position index p. In the case shown in Fig. 4, the
value of the first position index is p = 1 and the value of the second position
index is p = 2. There are two bins between the beginning of the window at
p = 1 and the beginning of the window at p = 2 so that q = 2 < S. At the
end of the second iteration, the window is shifted to the right again, while
maintaining fixed values of S and q. This process continues until the last bin
boundary of the chord length histogram is reached.

Each time a set of bins are chosen, the values of Dmin and Dmax are
calculated as

Dmin = L1β
(p−1)q (17a)

Dmax = Dminβ
(S−1), (17b)

where β = Lj+1/Lj. The position index of the windows take values

p = 1, 2, 3, . . . ,

⌊

M

q

⌋

, (18)

where the floor function ⌊·⌋ returns the value of the largest integer that is
less than or equal to M/q.

Once the values of Dmin and Dmax have been calculated from Eq. (17),
then particle size bins are constructed. The bin boundaries Di of the particle
size bins are calculated as

Di = Dminµ
i−1, i = 1, 2, . . . , N + 1 (19)

where

µ =

(

Dmax

Dmin

)
1

N

, (20)

where N is the chosen number of particle size bins. The characteristic size
of a particle size bin is calculated as

Di =
√

DiDi+1. (21)
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Once the characteristic particle sizes [D1, DN ] have been constructed, then
the transformation matrix Ã can be constructed (for a chosen aspect ratio)
as in Eq. (5). The chord lengths reported by the FBRM sensor run from
1µm to 1000µm. However, the particle size range [D1, DN ] set by a window
will not necessarily cover the entire size range of 1µm to 1000µm. To account
for the other sizes that may not be covered by a window, the length weighted
transformation matrix Ã is augmented with columns of ones as appropriate.
Then the particle sizes are extended to the left of D1 down to 1µm and to the
right of DN up to 1000µm as appropriate. This ensures that the recovered
PSD covers the entire particle sizes from 1µm to 1000µm. The process of
augmenting the transformation matrix with columns of ones corresponds
to the addition of slack variables in an optimisation problem [29] (see also
section 1 of supplementary information).

To guarantee non negative PSD the vector X is written as [30]

Xi = eγi , i = 1, 2, 3, . . . , N, (22)

where γi are arbitrary fitting parameters. Then Eq. (4) is rewritten as

C = ÃX+ ǫ, (23)

where ǫ is an additive error between the model prediction and the actual
measurement. The vector X(r) at the chosen aspect ratio r is then obtained
by searching for γi which minimises the objective function f1 given as3

f1 =
M
∑

j=1

[

C∗

j −
N
∑

i=1

ÃjiXi

]2

, (24)

where C∗

j is the experimentally measured CLD. This nonlinear least squares
problem was solved with the Levenberg-Marquardt (LM) algorithm (imple-
mented in Matlab in this work). Then starting with an initial value4 for the
vector γi the LM algorithm performs a successive iteration until an optimum
γi is reached. The iterations are terminated when a specified tolerance in the
difference between successive function evaluations is reached. In this case we

3In all the calculations here a value of N = 70 was used for both VSM amd LW models
(section 2 of the supplementary information).

4Different choices of initial γi resulted in the same optimum solution.
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used a tolerance of 10−6 since the results did not change for values of tolerance
below 10−4. An initial value of γ = 0 was used in the LM algorithm.

The solution vector X obtained this way (using Eq. (22)) is dependent
on the chosen aspect ratio r (hence X = X(r)), window size S and window
position p. Thus, starting with a window of a chosen size5 and at position
set at p = 1, a solution vector X(r) is obtained for the chosen aspect ratio.
Then the forward problem is solved to obtain a CLD C(r) at that aspect
ratio and window position p = 1. The window position is advanced one step
forward and the calculation repeated until the last bin of the chord length
histogram is reached. The window position at which the L2 norm

‖C∗ −C(r)‖ (25)

is minimized is the optimum window position for that window size. This
optimum window then sets the particle size range to construct the optimum
transformation matrix Ã at that window size. The case of S = 20 applied
to the CLD from Sample 1 (using the LW model) is shown in Fig. 5. The
procedure is repeated using windows of different sizes and eventually the
optimum window size and position which set the particle size range for the
chosen aspect ratio is obtained. The whole process is repeated at different
aspect ratios, and for each aspect ratio the particle size range is obtained
from the optimum window size and position.

The key parameters of the algorithm are the quantities r, S, q and N . An
extensive study (see section 2 of the supplementary information) has shown
that a value of N = 70 is suitable for the two models implemented here. The
algorithm starts with an initial window size S after which the window size is
increased. In section 2 of the supplementary information it was demonstrated
that initial values of S from 2 up to 50 give consistent results for N & 60.
However an initial value of S = 6 was used in all the calculations here for
more accuracy. The smallest value of q that can be used is q = 1, however a
value of q = 2 was used here since there is no significant change in the level
of accuracy obtained at q = 1. The value of q = 1 will only lead to greater
resolution as can be seen in Fig. 5. Once the initial value of S, the values
of q and N have been fixed, then the algorithm loops through subsequent
values of S at all desired values of r as summarised below:

5The values q = 2, and initial window size S = 6 were used for both the VSM and LW
models (section 2 of supplementary information).
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Figure 5: An example of the minimisation of the L2 norm in Eq. (25) when a window of
a given size approaches and passes its optimum position along the bin boundaries of the
chord length histogram.

1. Choose an aspect ratio r.

2. Choose a number S of bins of the chord length histogram.

3. Start at window position p = 1.

4. Obtain the values of Dmin and Dmax dictated by the window at the
position set by p.

5. Construct matrix Ã corresponding to the values of Dmin and Dmax in
step 4.

6. Augment matrix Ã with columns of ones and extend the particle size
range as necessary.

7. Implement the LM algorithm to calculate γ starting with γ = 0, and
then calculate X(r) from Eq. (22).

8. Calculate C(r) from Eq. (4).

9. Calculate the L2 norm in Eq. (25) for the given values of r, S and p.

10. Update p and repeat steps 4 to 9 for the same values of r and S until
the last bin of the chord length histogram is reached.
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11. Choose the best window position (the window position with the mini-
mum L2 norm as in Fig. 5) for the given values of r and S.

12. Update the window size S and repeat steps 3 to 11.

13. For a given r obtain the window position and size at which the L2

norm in Eq. (25) attains its minimum. Record the particle size range
corresponding to this window position and size.

14. Update r and repeat steps 2 to 13.

The values of S used in the algorithm will depend on the desired level of
accuracy. Using closely spaced values of S will result in greater accuracy but
with the consequent increase in computational time. However widely spaced
values of S will lead to lower computational times but less accurate results.
The window sizes are calculated as

Sk = S0 +

⌊

(k − 1)
M

Nw

⌋

, (26)

where ⌊·⌋ is the floor function discussed in Eq. (18), S0 is the initial window
size and Nw < M is the desired number of windows. A value of Nw = 50 was
used in the calculations here. The values of r chosen depends on the desired
range of aspect ratios to explore.

Having obtained the optimum particle size ranges at different aspect ra-
tios for a particular sample, then the optimum aspect ratio for that sample
can be chosen using a suitable procedure. The simplest procedure would
have been to pick the aspect ratio at which the L2 norm reaches its global
minimum. However, the simulations show (see section 6 of supplementary
information) that when the number of particle size bins is large enough the
L2 norm in Eq. (25) does not show a clear global minimum. Instead it
decreases with increasing aspect ratio and then levels off after some critical
aspect ratio. Hence unique shape information cannot be obtained using the
objective function in Eq. (24).

This problem of non uniqueness can be removed if the shape of the re-
covered PSD (Xi in Eq. (24)) is taken into account. As the aspect ratio
deviates further from some reasonable value for a particular sample, the re-
covered PSD shows an increasing degree of oscillations. These oscillations
could also occur even when the aspect ratio is physically reasonable, but they
become more pronounced as the aspect ratio deviates from realistic values.
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To address this issue, one can introduce a modified function which reduces
these oscillations by minimising the total variation in the PSD. Here we use
a new objective function f2 given as

f2 =
M
∑

j=1

[

C∗

j −
N
∑

i=1

ÃjiXi

]2

+ λ
N
∑

i=1

X2
i , (27)

where the parameter λ sets the level of the penalty function imposed on the
norm of the PSD. The value of λ is chosen by comparing the relative magni-
tude of the two sums of squares in Eq. (27) (see section 6 of supplementary
information for more details). The optimum particle size ranges at differ-
ent aspect ratios obtained using the inversion algorithm above are used to
construct the transformation matrix Ã (in Eq. (27)) at the corresponding
aspect ratios. The optimum aspect ratio is chosen as the value of r at which
the objective function f2 reaches its global minimum for a carefully chosen
value of λ. The corresponding PSD at which f2 reaches its global minimum
is then chosen as the optimum PSD.

For a meaningful comparison of calculated PSD with experimentally mea-
sured PSD from laser diffraction and imaging, it is necessary that the cal-
culated PSD be cast as a volume based distribution. This is because some
instruments report PSD in terms of a volume based distribution for example
Figs. 3(a), 3(b) and 3(c). The volume based PSD Xv given by [31]

Xv
i =

Xo
i D

3

i
∑N

i Xo
i D

3

i

, (28)

(where Xo is the optimum number based PSD which minimises the objective
function f2 in Eq. (27)) could lead to artificial peaks at large particle sizes if
there are small fluctuations in the right hand tail of the number based PSD
estimates (see section 5 of supplementary information). These fluctuations
are usually very small with an amplitude of the order of 0.1% of the peak
of the number based PSD Xi in Eq. (27). Because the amplitude of the
fluctuation is small, they are not removed by the penalty function in Eq.
(27). Also, the level of penalty imposed on the recovered number based
PSD needs to be maintained at reasonable levels so that the recovered PSD
does not get skewed. This situation requires that a suitable regularisation
be applied to the recovered volume based PSD such as the λ parameter in
Eq. (27). This problem can be addressed by restating the inverse problem
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as follows:
Calculate the CLD Co

j given by

Co
j = Ão

jiX̂
o
i , (29)

where Ão
ji is the optimum transformation matrix obtained by the inversion

algorithm and

X̂o
i =

Xo
i

∑N

i Xo
i

. (30)

If the volume based PSD Xv
i was known, then the CLD Co

j can also be
calculated from

Co
j = A

o

jiX
v

i , (31)

where

A
o

ji =
Ão

ji

D
3

i

(32a)

Xv
i =

X̂o
i D

3

i
∑N

i X̂o
i D

3

i

(32b)

X
v

i =

[

N
∑

i

Xo
i D

3

i

]

Xv
i . (32c)

Equation (31) is the forward problem for the volume based PSD similar to
the case of Eq. (4) for the number based PSD. However, since the volume
based PSD is not known, then an objective function similar to f2 in Eq. (27)
can be formulated to recover the volume based PSD. This objective function
f3 is given as

f3 =
M
∑

j=1

[

Co
j −

N
∑

i=1

A
o

jiX
v

i

]2

+ λ

N
∑

i=1

[

X
v

i

]2
. (33)

This allows X
v

i (obtained to some weighting factor due to Eq. (32)(c))
to be calculated as

X
v

i = eγ
v
i , i = 1, 2, . . . , N, (34)

where γv
i is an arbitrary parameter which is used to minimise the objective

function f3 for a carefully chosen λ. The weighted volume based PSD is then

19



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

20

50

100

500

rc

∑
j
[C

* j
−
C

j]
2
+
λ
∑

i
X

2 i

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Sample #

M
in

r c

0.2 0.4 0.6 0.8 1

10
3

10
4

10
5

re

∑
j
[C

* j
−
C

j]
2
+
λ
∑

i
X

2 i

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Sample #

M
in

r e

(a) (c)

(d)(b)

Figure 6: (a)The minimum values of the objective function in Eq. (27) versus the aspect
ratio (the minimum values of the objective function for all window sizes and positions
for each sample indicated with symbols as: Sample 1 - red pentagrams, Sample 2 - green
crosses, Sample 3 - blue asterisks, Sample 4 - magenta squares, Sample 5 - black circles)
obtained with the VSM model. (b)The aspect ratios (Min rc) at which the objective func-
tion reaches a global minimum for each Sample obtained with the VSM model. (c) Similar
to (a) obtained with the LW model. (d) Similar to (b) with the LW model.

normalised and made grid independent as

X̃v
i =

X
v

i

(Di+1 −Di)
∑N

i X
v

i

. (35)

5. Results and Discussion

Once the optimum particle size ranges at the different aspect ratios have
been obtained using the inversion algorithm, then the optimum aspect ratio
for each sample can be determined by selecting the aspect ratio at which the
objective function f2 (in Eq. (27)) reaches its global minimum. The objective
function f2 at different aspect ratios rc ∈ [0, 0.4] for the five samples in Fig.
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1 is shown in Fig. 6(a) for the case of the VSM model6. The function f2
reaches its global minimum at rc ≈ 0.2 as in Fig. 6(b). The calculations
with the VSM model was restricted to the range rc ∈ [0, 0.4] because the
thin cylindrical VSM model is only valid for rc ≪ 1 [11].

Figure 6(c) shows a similar result to Fig. 6(a) for the same samples in
Fig. 1 for the case of the LW model. The function f2 reaches its global
minimum for re ≈ 0.3 as in Fig. 6(d). In this case, the aspect ratios re cover
a broader range re ∈ [0, 1] since the LW model is valid for re ∈ [0, 1]. The
aspect ratios predicted by the VSM and LW models in Figs. 6(b) and 6(d)
are comparable to the aspect ratios estimated from image data in Fig. 3(d),
although the calculated aspect ratios appear slightly higher.

The aspect ratios predicted by the VSM model in Fig. 6(b) are closer
to the estimated aspect ratios in Fig. 3(d) when compared with the aspect
ratios predicted by the LW model in Fig. 6(d). This could be because the
cylindrical shape used in the VSM model is closer to the shape of the particles
in Fig. 1 than the ellipsoidal shape used in the LW model. We also note
that the VSM model gives much lower error norm than the LW model for
the same aspect ratio as seen in Figs. 6(a) and 6(c), and this is also the
case when λ = 0 (see section 6 of supplementary information). The effect of
shape on the level of accuracy reached in the calculations is demonstrated
by the fact that when the LW model is applied to a system of spherical
particles (section 6 of supplementary information), the error norm obtained
in that case is comparable to the error norm obtained when the VSM model
is applied to the needle particles.

Figure 7(a) shows the recovered volume based PSD calculated by min-
imising the objective function f3 in Eq. (33) using the optimum aspect ratios
in Fig. 6(b)7 for the case of the VSM model. The transformation matrix Ão

used in Eq. (32) was constructed using the optimum particle size range ob-
tained by the inversion algorithm and aspect ratios shown in Fig. 6(b). The
matrix Ão is then weighted as in Eq. (32)(a) to obtain the matrix A

o
. The

volume based PSD X̃v normalised and rescaled as in Eq. (35) are shown in
Fig. 7(a).

The PSDs in Fig. 7(a) are shown as a function of the characteristic

6The values of λ = 0.01 and λ = 0.2 were used in Eq. (26) for the VSM and LW model
respectively (section 6 of the supplementary information)

7The values of λ = 0 and λ = 8 × 10−15 were used in Eq. (33) for the VSM and LW
models respectively (see section 6 of the supplementary information).

21



10
0

10
1

10
2

10
3

0

0.5

1

1.5

Dc (µm)

X̃
v i
×
1
0
2
(µ
m
)−

1

Sample #

1

2

3

4

5

10
0

10
1

10
2

10
3

0

100

200

300

400

500

L (µm)

C
o
u
n
ts

Sample 1

10
0

10
1

10
2

10
3

0

100

200

300

400

L (µm)

C
o
u
n
ts

Sample 2

10
0

10
1

10
2

10
3

0

100

200

300

400

L (µm)

C
o
u
n
ts

Sample 3

10
0

10
1

10
2

10
3

0

100

200

300

L (µm)

C
o
u
n
ts

Sample 4

10
0

10
1

10
2

10
3

0

50

100

150

200

250

300

L (µm)

C
o
u
n
ts

Sample 5

(a) (b) (c)

(d) (e) (f)

Figure 7: (a)The recovered volume based PSDs calculated from the objective function
in Eq. (33) for λ = 0 (with the VSM model) at the minimum aspect ratios (shown in
Fig. 6(b)) for each Sample. (b)-(f) Calculated (symbols) and measured (solid line) Chord
Length Distributions for the Samples indicated in each Figure. The calculated CLDs were
obtained by solving the forward problem in Eq. (4) using the number based PSD which
minimise the objective function in Eq. (23) for λ = 0.01.

particle size Dc. This PSD can be compared to the data from laser diffraction
in Fig. 2(a) and EQPC diameter in Fig. 3(a). The particle sizes in Fig. 7(a)
cover a range of Dc ≈ 7µm to Dc ≈ 200µm. The modes of the distributions
cover a range of Dc ≈ 40µm to Dc ≈ 70µm, with the sizes increasing from
sample 1 to sample 5. This is consistent with the data from laser diffraction
in Fig. 2(a) where the diameters cover a range of about 2µm to about 200µm.
The modes of the distributions cover a range of about 10µm to about 30µm
with the particle sizes increasing from sample 1 to sample 5. Similarly, the
EQPC diameters in Fig. 3(a) cover a range of about 10µm to about 200µm
with the modes running from about 30µm to about 100µm, and the sizes
increasing from sample 1 to sample 5. The peaks of the PSDs from the laser
diffraction in Fig. 2(a) and EQPC diameters in Fig. 3(a) decrease from
sample 1 to sample 5 which is consistent with the results reported in Fig.
7(a).

22



The symbols in Figs. 7(b) to 7(f) show the calculated (using the VSM
model) CLDs for the five samples in Fig. 1. The CLDs were calculated from
Eq. (4) using the number based PSD which minimises the objective function
f2 in Eq. (27). The calculations were done at the optimum aspect ratios in
Fig. 6(b). The blue solid lines in Figs. 7(b) to 7(f) are the experimentally
measured CLDs for the five samples shown in Fig. 2(b). The agreement
between the calculated CLDs and the experimentally measured CLDs in
Figs. 7(b) to 7(f) is near perfect. This level of agreement between the
calculated PSD and CLD with the experimentally measured PSD and CLD
demonstrates the level of accuracy that can be achieved with this algorithm.
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Figure 8: Similar to Fig. 7 obtained with the LW model. In this case the volume weighted
PSDs were obtained at λ = 10−14 from Eq.(33), while the CLDs correspond to number
based PSD obtained at λ = 0.2 from Eq. (27).

Figure 8(a) shows the volume based PSDs for the five samples in Fig.
1 calculated with the LW model. The calculations were done in a similar
manner as in Fig. 7(a). The distributions are plotted as a function of the
characteristic size De which are comparable to the laser diffraction data in
Fig. 2(a) and EQPC data in Fig. 3(a). The level of consistency of the
volume based PSDs in Fig. 8(a) to the particle sizes in Figs. 2(a) and 3(a) is
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Figure 9: Particle lengths for the five samples calculated with (a) the VSM model and (b)
the LW model.

similar to the case of Fig. 7(a). The range of particle sizes in Fig. 8(a) and
the modes of the distributions in Fig. 8(a) are close to the measured data in
Figs. 2(a) and 3(a). However, the calculated PSDs in Fig. 8(a) show some
oscillations. This is also reflected in the fact that the error norms between
the measured CLD and calculated CLD with the LW model is higher than
the corresponding error norm of the calculations with the VSM model as seen
in Figs. 6(a) and 6(c).

The symbols in Figs. 8(b) to 8(f) show the calculated (using the LW
model) CLDs for the samples in Fig. 1. The calculations were done in a
manner similar to the case of Figs. 7(b) to 7(f). However, the calculated
CLDs in Figs. 8(b) to 8(f) show a slight mismatch with the experimental
data unlike the case of Figs. 7(b) to 7(f) where the match is near perfect.

A likely reason for the different levels of agreement between calculated
data with the two models and experimental data is that different kinds of
approximations were made in the formulation of the models. The VSM model
considers all possible 3 D orientations of the cylinder in the computation of
the cylindrical PDF [11]. However, the LW model considers only one 2 D
projection of the ellipsoid where the major and minor axes are parallel to
the x − y plane [9]. Also, the cylindrical shape of the VSM model is closer
to the needle shape of the particles than the ellipsoidal shape of the LW.

Figure 9(a) shows the volume based PSD calculated with the VSM model
plotted as a function of the characteristic length lc = ac (the length of the
cylinder). This data can be compared to the Feret Max data in Fig. 3(b).
The Feret Max data covers a range of about 100µm to about 800µm for
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samples 4 and 5, and about 10µm to about 500µm for samples 1 to 3. The
characteristic lengths predicted by the VSM model in Fig. 9(a) are short of
the Feret Max data in Fig. 3(b) because the aspect ratios predicted by the
VSM model in Fig. 6(b) are higher than the estimated aspect ratios in Fig.
3(d). This implies that the VSM model predicts needles that are slightly
thicker and shorter than the actual needles in the samples. However, the
needle lengths calculated with the VSM model cover a range of about 10µm
to about 300µm which are still comparable to the Feret max measurements
in Fig. 3(b).

A similar situation holds for the LW model where the predicted ellipsoid
heights (le in Fig. 9(b)) are short of the Feret Max measurements in Fig.
3(b). Similarly, the aspect ratios predicted by the LW model in Fig. 6(d) are
higher than the estimated aspect ratios in Fig. 3(d). This again shows that
the LW model predicts needles which are slightly thicker and shorter than
the actual needles in the samples. The range of needle lengths calculated
with the LW model are reasonable when compared with the measured Feret
Max in Fig. 3(b).

Even though the predicted lengths (lc and le) do not have a perfect match
with the measured Feret Max data, the trend in the lengths of needles from
sample 1 to sample 5 in Fig. 3(b) are consistent with the trend in needle
lengths from sample 1 to sample 5 in Fig. 9(a). However, the trend in needle
lengths in Fig. 9(b) are not so consistent with the trend in needle lengths in
Fig. 3(b) moving from sample 1 to sample 5. This is because the LW model
predicts smaller aspect ratios for sample 2 and sample 3 in Fig. 6(d) resulting
in a shift of the distributions to higher values for sample 2 and sample 3 in
Fig. 9(b).

6. Conclusions

We have presented an algorithm which produces best estimates of PSD
and particle aspect ratio from measured CLD data. Although the algorithm
does not require any additional information about particle size range or par-
ticle aspect ratio, this information can be used to further constrain the search
if it is available. If such information is not available (for example during in
situ monitoring of a crystallisation process), then the algorithm will perform
an automatic search for the best estimate of particle size range and aspect
ratio. The approach described here can be used with any geometrical or op-
tical model that provides CLD for particles of given size, shape and optical
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properties. In the case considered here the particles were treated as opaque
and assumed to have convex shapes (that is cylindrical or ellipsoidal). This
representation is suitable for the CoA particles considered here as can be seen
in Fig. 1. A more detailed discussion of the possible errors that can occur
from using this representation is presented in Section 8 of the supplementary
information. Also in the supplementary information is a detailed analysis of
sensitivity of resulting estimates to choice of algorithm parameters to validate
accuracy and robustness of algorithm outcomes.

We applied the algorithm to previously collected CLD data for slurries of
needle shaped crystalline particles of COA with different particle size distri-
butions. COA slurries were characterised using FBRM (to measure CLD),
imaging (to measure EQPC, maximum and minimum Feret diameters) and
laser diffraction (to measure PSD based on equivalent sphere diameter ap-
proximation). Measured CLD data were used in the algorithm without any
further information input, using two different CLD geometrical models, one
for ellipsoids and the other one for thin cylinders. Best estimates for particle
aspect ratios and corresponding PSDs were obtained with each model and
these were compared to experimental data from imaging and laser diffraction.

Estimated aspect ratios from the thin cylinder model were in good agree-
ment with those obtained from the ratio of maximum and minimum Feret
diameters, while those from the ellipsoid model were somewhat higher. Cor-
responding to this, there was a good agreement between measured and fitted
CLDs for the thin cylinder model, but some discrepancies could be seen for
the ellipsoid model. Ranges and modes of particle size distributions deter-
mined for both models were in a good agreement with those obtained by
imaging. Although it was possible to estimate aspect ratios of needle like
particles from CLD data reasonably accurately for the system analysed here,
the optimisation problem of finding most appropriate PSD and aspect ra-
tio would be greatly simplified if additional information about particle size
range or shape is available, for example from a suitable imaging or scattering
technique, especially in the case of systems with significant polydispersity or
multimodality in terms of particle shape or size.

The technique described here will be of particular benefit to crystallisation
process control, since controlling the process critically depends on real-time
in situ information about the size and shape of the particulate product.
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Supplementary Information
1. Slack Variables

The concept of slack variables in optimisation problems is described in
previous literature [29]. The idea of introducing columns of 1s to the transfor-
mation matrix is based on the following argument. Consider the optimisation
problem:
find β which minimises the objective function φ where

φ =
M
∑

i=1

[yi − gi(β)]
2, (1)

where y ∈ R
M , β ∈ R

N and g : RN → R. The optimisation problem in Eq.
(1) is equivalent to

minimise
M
∑

i=1

zi

subject to zi = [yi − gi(β)]
2 .

(2)

Since [yi − gi(β)]
2 ≥ 0, then zi ≥ yi − gi(β). Hence the optimisation problem

in Eq. (2) is equivalent to

minimise
M
∑

i=1

zi

subject to yi − gi(β)− zi ≤ 0.

(3)

There exist slack variables si ≥ 0, j = 1, 2, . . . ,M such that yi− gi(β)− zi+
si = 0. Hence the optimisation problem in Eq. (3) is equivalent to

minimise
M
∑

i=1

zi

subject to yi − gi(β)− zi + si = 0

si ≥ 0.

(4)
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Substituting for zi in Eq. (4) gives the following equivalent formulation for
the optimisation problem in Eq. (1):

minimise
M
∑

i=1

yi − gi(β) + si

subject to si ≥ 0 �.

(5)

2. Choice of Algorithm Parameters
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Figure 1: (a)Variation of the L2 norm in Eq. 25 of the main text (from the LW model)
with the number of size bins N at the different aspect ratios re (indicated in the Figure) for
Sample 1. (b)Recovered number distributed PSDs (from the LW model) at the specified
values of re and N . The quantity De is the characteristic size for the LW model described
in the main text. (c)Chord length distributions corresponding to the PSDs in (b). The
parameter L is the chord length described in the main text.

In this section the motivations for choice of values for parameters in the
inversion algorithm are presented.
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Figure 2: Similar to Fig. 1 obtained with the VSM model.

2.1. Number of size bins N

The solution vector X which minimises the objective function f1 in Eq.
(24) of the main text varies slightly with different numbers of particle size
bins N . This in turn leads to a variation in the vector C obtained from
the forward problem in Eq. (4) of the main text. Hence different values of
N were used and each time the L2 norm in Eq. (25) of the main text was
calculated in order to determine the optimum number of fitting parameters.

The variation of the L2 norm with the number of particle size bins N at
different aspect ratios for the LW model is shown in Fig. 1(a). As the value
of N increases, the L2 norm decreases gradually and then begins to level off
at large values of N . The result is the same for different aspect ratios re as in
Fig. 1(a). For a fixed aspect ratio re (for example re = 0.3 in Fig. 1(b)) and
a small value of N , the PSD obtained from the inverse problem is a bit noisy
at the left hand tail of the distribution as in the case of N = 20 in Fig. 1(b),
while the corresponding CLD calculated from the forward problem contains
small oscillations as shown in Fig. 1(c). As the value of N is increased, the
recovered PSD becomes more noisy as can be seen for the case of N = 40 in
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Figure 3: Particle size distributions recovered (using the LW model at the aspect ratios
re indicated) by minimising the objective function f1 in the main text using the different
number of particle size bins N indicated in each figure.

Fig. 1(b). However, the oscillations in the corresponding CLD decrease as
in Fig. 1(c). As N is increased further, the oscillations in the recovered PSD
become more severe as in Fig. 1(b) for N = 80. The corresponding CLD for
N = 80 shows very little change from that obtained at N = 40.

A similar situation holds for the VSM model where the L2 norm levels off
with increasing N as in Fig. 2(a) for different aspect ratios rc. The behaviour
of the recovered PSDs for different values of N in Fig. 2(b) is similar to the
case of Fig. 1(b). Also, the behaviour of the corresponding CLDs for different
values of N in Fig. 2(c) is similar to the case of Fig. 1(c).

Figures 1(a) and 2(a) show that the L2 norm had become fairly level
for N & 60 for both models and all aspect ratios, which suggests that the
calculations reach about the same level of accuracy for number of particle size
bins N & 60. However, as already seen in Fig. 1(b) and 2(b) the recovered
PSDs have different levels of fluctuations for N & 60. This situation is shown
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Figure 4: Same as in Fig. 3 with the VSM model.

more clearly in Figs. 3 and 4.
Figure 3(a) shows the recovered PSD (with the LW model) at the indi-

cated aspect ratios re for N = 60. The PSD for re = 0.1 is fairly smooth
except the long spike at De ≈ 1. However, the PSDs begin to develop oscilla-
tions as the aspect ratio re increases as seen in the cases of re = [0.3, 0.5, 0.7]
in Fig. 3(a). A similar situation holds for N = 70 (Fig. 3(b)) and N = 80
(Fig. 3(c)). However, the oscillations for the case of N = 80 is much more
severe.

Figure 4 is similar to Fig. 3 but calculated with the VSM model. For a
fixed N, the fluctuations in the PSDs increase as the aspect ratio rc increases
as seen in Figs. 4(a), 4(b) and 4(c). The level of fluctuations at N = 80 in
Fig. 4(c) is much more severe when compared with the cases of N = 60 (Fig.
4(a)) and N = 70 (Fig. 4(b)). For N = 60 (Fig. 4(a)) the small particle
sizes of Dc ≈ 2 for rc > 0.1 are not fully resolved when compared with the
case of N = 70 in Fig. 4(b). The data in Figs. 1 to 4 suggest that the
optimum number of size bins N should be N = 70. This is because the level
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Figure 5: Variation of the L2 norm in Eq. 25 of the main text with different initial values
of window size Sw. The calculations were done with the LW model at the different aspect
ratios re and number of particle size bins N indicated in each figure.

of accuracy in the calculations does not increase significantly for N > 70.
Instead, using a larger value of N only leads to severe fluctuations in the
calculated PSDs and longer computational times. The value of N = 70 also
gives a better resolution of small particle sizes for both models. Hence a
value of N = 70 was used in all the calculations in the main text.

2.2. Window size S and spacing q

The inversion algorithm described in Section 4 of the main text places
a window of size S on the bins of the chord length histogram. This win-
dow starts with an initial size S0, then slides along the bins of the chord
length histogram until it reaches the last bin of the chord length histogram.
The window then returns to the beginning of the vector at which its size
is increased. The calculations are more accurate if the initial window size
is sufficiently small. However, this also depends on the number of particle
size bins in the particle size histogram. Then the question is: what is the
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Figure 6: Same as in Fig. 5 with the VSM model.

appropriate number of size bins at which the accuracy of the calculations
become independent of the initial window size?

Figure 5(a) shows that for N = 20 (calculations with the LW model),
the L2 norm in Eq. 25 of the main text (calculated at the optimum window
size and position) shows a dependence on S0 at different aspect ratios. This
dependence reduces significantly at N = 40 as in Fig. 5(b) and becomes
nearly independent at N = 60.

A similar situation holds for calculations with the VSM model where the
large dependence of the L2 norm (at different aspect ratios) on S0 seen in
Fig. 6(a) (for N = 20) decreases as N increases to 40 in Fig. 6(b). The
L2 norm becomes nearly independent of S0 at N = 60 as in Fig. 6(c). The
values of the L2 norm obtained with the VSM model for N & 40 (Fig. 6)
are significantly less than the values of the L2 norm obtained with the LW
model for the same aspect ratios in Fig. 5. This suggests that the cylindrical
geometry of the VSM model fits the needle data better than the ellipsoidal

34



geometry of the LW for sufficiently large N .
The results in Figs. 5 and 6 suggest that any value of S0 from 2 up

to 50 (corresponding to a particle size range of about 1µm to about 43µm)
could be used in the calculations for N & 60. However, a value of S0 = 6
(corresponding to a particle size range of 1µm to 1.5µm) and N = 70 were
used in all the calculations in the main text. The spacing between consecutive
positions (that is, q in Eq. 17 of the main text) was kept at q = 2 in all the
calculations in the main text. The smallest value of q = 1 did not yield any
significant increase in accuracy of the calculations.

3. Length Weighting

In this section we present a simple numerical simulation which demon-
strates the effect of particle size on detection probability. It had already been
suggested [11, 19, 20] that larger particles have a higher probability of being
encountered by the FBRM laser. Here we represent the laser beam in the
focal plane by the red circle in Fig. 7(a). The circular window of the probe is
represented by the black circle in Fig. 7(a). We simulate spherical particles
(represented by the blue circles in Fig. 7(a)) falling at random positions on
the plane of the laser spot. We assume that all particles regardless of size
have equal probability of falling in the focal plane. Each time the boundary
of a particle intersects the trajectory of the laser beam a ‘hit’ is recorded.
The idea behind the simulation is to see how the number of hits scales with
the particle size (diameter of each circle).

Since each event of a particle falling on the focal plane is independent of
another particle falling on the focal plane, then we simulate Nr realisations
of a single particle of size Ds falling on the focal plane separately from the
same number of realisations of another particle of a different size.

The FBRM probe reports chord lengths between 1µm and 1000µm (for
example Fig. 2(b) of the main text). Hence we set the particles sizes Ds ∈
[10−3, 1]mm. The radius RL of the laser beam is set at 4mm [2], while the
radius of the circular window RW is set in multiples of RL.

The results shown in Fig. 7 (b) show that the number of hits scale linearly
with the particle size regardless of the size of the probe window. These results
agree with earlier suggestions in [11, 19, 20]. Hence a linear characteristic
size weighting is used in the main text in relating the population CLD to the
PSD of the population.
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Figure 7: (a) Pictorial representation of the viewing window (black circle) of the FBRM
probe, the laser beam (in the focal plane) is represented by the red circle while spherical
particles are represented by the blue circles. (b)Variation of the frequencies of hits of the
laser beam with different particles of sizes Ds and different sizes of the viewing window as
indicated in the Figure.

4. Single Particle and Population CLD

In this section we show the single particle CLD realised with the LW and
VSM models. Then we demonstrate the effect of length weighting on the
population CLD.

4.1. Single Particle CLD of LW and VSM models

Different mathematical approximations were made in the formulation of
the LW and VSM models [9, 11] as already noted in the main text. These
different approximations give rise to different CLDs for a single particle of
similar geometrical shape. The single particle CLDs (for different aspect
ratios) realised for an ellipsoid (an ellipse in 2D) of length le = 2ae = 100µm
(ae is the length of the semi major axis) is shown in Fig. 8(a). The peaks of
the single particle CLDs shift to the left as the aspect ratio re = be/ae (where
be is the semi minor axis length) is decreased. The single particle CLDs of the
LW model increase slowly at small chord lengths before reaching their peaks
at 2be and then decrease to zero at le. They have a right shoulder which gets
broader as re is decreased. The LW model approximates the single particle
CLD of the ellipsoid by considering a single projection of the ellipsoid where
the major and minor axes are parallel to the x − y plane. It is not known
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Figure 8: (a) Single particle CLDs for an ellipsoid (for the LW model with aspect ratios
indicated as re) of length le = 2ae = 100µm (ae = semi major axis length of ellipsoid) and
a cylinder (for the VSM model with aspect ratios indicated as rc) of height ac = 100µm.
(b) Simulated PSD X

s, recovered PSDs Xt (with length weighted transformation matrix)
and X

f (with unweighted transformation matrix). (c)Weighted CLD C
+ from X

s due
to weighted transformation matrix and unweigthed CLD C from X

s due to unweighted
transformation matrix.

what the effects of the other orientations of the ellipsoid will have on the
single particle CLD as these orientations were not considered.

The single particle CLDs of the cylindrical (for a cylinder of height
ac = 100µm) VSM model shown in Fig. 8(a) are less sensitive to small
chord lengths as they rise very quickly to their peaks at 2bc (bc is the radius
of the cylinder). They then decrease more slowly (in a manner similar to the
LW case) to zero at ac. The low sensitivity of the single particle cylindrical
VSM CLDs to small chord lengths is due to the small angle approximation
[11] made in the calculation of the probability density function for the cylin-
drical VSM model. However, the positions of the peaks of the single particle

37



cylindrical VSM match those of the LW for the same aspect ratio as seen in
Fig. 8(a).

4.2. Effect of Length Weighting on Population CLD and Recovered PSD

The effect of the size of a particle to its detection probability has been
demonstrated in section 3. This length bias could have a substantial effect on
the calculations if it is not incorporated in some way. Consider the simulated
PSDXs shown by the solid line in Fig. 8(b). The PSD was made by randomly
drawing 106 particle sizes from the normal distribution with mean size 500 µm
and standard deviation 100 µm. Then the particle sizes were shifted to ensure
non negativity. Finally the PSD was made from a normalised histogram of
30 bins. The solid line in Fig. 8(c) shows the CLD C calculated from the
normalised PSD Xs as

C = AXs, (6)

where A8 is the transformation matrix in Eq. (6) of the main text without
any length weighting. The symbols in Fig. 8(c) show the CLD C+ calculated
from the normalised PSD Xs as

C+ = ÃXs, (7)

where Ã is the transformation matrix in Eq. (5) of the main text with length
weighting. Figure 8(c) shows that the CLDC+ calculated with length weight-
ing is substantially higher than the corresponding CLD C without length
weighting and slightly shifted to the right. This shows that the experimen-
tally measured CLD could be substantially biased due to the length weighting
effect demonstrated in section 3. Hence the length weighting effect needs to
be incorporated into the calculations to account for this length bias.

The red diamonds in Fig. 8(b) show the PSD obtained by minimising the
objective function φ (similar to the function f1 in Eq. 24 of the main text)
given as

φ =
M
∑

j=1

[

C+
j −

N
∑

i=1

ÃjiX
t
i

]2

, (8)

where M is the number of chord length bins, N is the number of particle size
bins and Xt is the optimum PSD which minimises the objective function.

8The matrix is calculated with the LW model.
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The recovered PSD Xt matches the original PSD Xs because the length
weighting effect has been incorporated into the matrix Ã. However, when
the objective function is formulated as

φ =
M
∑

j=1

[

C+
j −

N
∑

i=1

AjiX
f
i

]2

, (9)

the optimum PSD Xf is substantially higher than the original PSD Xs and
slightly shifted to the right as seen in Fig. 8(b). This again demonstrates
the need to account for the length bias that comes with the experimentally
measured CLD to reduce its effect on the calculated PSD.

5. Number and Volume Based PSD

Some particle sizing instruments report the PSD in terms of a volume
distribution for example Figs. 2(a), 3(a), 3(b) and 3(c) of the main text.
Hence it becomes necessary to calculate a volume based PSD that is compa-
rable to the experimentally measured PSDs. The volume based PSD Xv can
be calculated from [31]

Xv
i =

XiD
3

i
∑N

i=1 XiD
3

i

, (10)

where X is the number based PSD and D is the characteristic size of the
population of particles. This is equivalent to

Xv
i =

X̂iD
3

i
∑N

i=1 X̂iD
3

i

, (11)

where

X̂i =
Xi

∑N

i=1 Xi

. (12)

Because the inversion problem is ill posed, the calculated PSD X (which is
usually Gaussian like) from the experimentally measured CLD could have
small fluctuations at the tails of the distribution. The presence of small
fluctuations at the right tail of the number based PSD X leads to artificial
peaks at large particle sizes. For example, the number based PSD (shown
in Fig. 9(b)) recovered for sample 1 with the LW model contains a small

39



10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

De

P
S
D

Sample 1

X

Xv
1

Xv
2

re = 0.3

10
0

10
1

10
2

10
3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Dc

P
S
D

Sample 1

X
Xv

1

Xv
2

rc = 0.2

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

ParticleSize

P
S
D

Xs

Xv
1

Xv
2

Simulated data

(c)(b)

(a)

Figure 9: (a)The simulated PSD X
s in Fig. 8(b), volume based PSDs Xv

1 (calculated from
Eq. (10) using X

s) and X
v
2 (calculated from Eq. (13)). (b)Normalised number based PSD

X obtained by minimising the function f1 in the main text using the LW model at the
aspect ratio re indicated in the figure. Volume based PSD X

v
1 calculated from Eq. (10)

using the PSD X. Normalised volume based PSD X
v
2 obtained from the function f3 (at

λ = 0) in the main text. (c) Same as in (b) with the VSM model.

fluctuation at De ≈ 200µm. This leads to the peak at De ≈ 200µm in
the volume based PSD Xv

1 calculated from Eq. (10). This peak is clearly
artificial as the number based PSD X in Fig. 9(b) shows a near zero particle
size count at De ≈ 200µm. This problem led to the formulation of a new
method for calculating the volume based PSD which allows the application
of a suitable regularisation to remove these artificial peaks.

To demonstrate that the method summarised in Eqs. 29 to 33 of the main
text reproduces the correct volume based PSD, consider the simulated PSD
Xs in Fig. 9(a) which is the same normalised PSD Xs in Fig. 8(b). The
red squares in Fig. 9(a) show the volume based PSD Xv

1 calculated froom
Eq. (10) using the PSD Xs. The black pentagrams in Fig. 9(a) show the
normalised volume based PSD Xv

2 calculated by minimising the objective
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function φ given as

φ =
M
∑

j=1

[

C+
j −

N
∑

i=1

AjiX
v

i

]2

, (13)

where

Aji =
Ãji

D
3

i

, (14)

Ã is the length weighted transformation matrix in Eq. (7), C+ is the length
biased CLD in Eq. (7) and X

v

2 is the optimum PSD which minimises the ob-
jective function in Eq. (13). The normalised volume based PSD Xv

2 obtained
as

Xv
2i =

X
v

2i
∑N

i=1 X
v

2i

(15)

matches the volume based PSD Xv
1 calculated from Eq. (10). The PSD Xv

2

is shown by the black pentagrams in Fig. 9(a). The peaks of the volume
based PSDs Xv

1 and Xv
2 are shifted to the right of the number based PSD Xs

as expected.
Figure 9(b) shows the volume based PSD Xv

2 calculated (using the LW
model and normalised as in Eq. (15)) by minimising the objective function
f3 given by Eq. 33 of the main text for λ = 0. the volume based PSD
Xv

2 calculated from f3 matches the volume based PSD Xv
1 calculated from

Eq. (10) as expected as shown in Fig. 9(b). However, the volume based
PSD Xv

2 still contains the artificial peak at De ≈ 200µm. This peak can be
removed using a suitable value of λ which enforces the penalty on the norm
as given in Eq. 33 of the main text. The recovered number based PSD X

contains fluctuations at small particle sizes De ≈ 1, but these fluctuations
have no effect on the volume based PSDs Xv

1 or Xv
2 since the third moment

of particle sizes De ≈ 1µm is much less than the third moment of particle
sizes De ≈ 102µm.

A similar situation holds for the VSM model as seen in Fig. 9(c). The
volume based PSD Xv

1 calculated from Eq. (10) using the recovered number
based PSD X matches the volume based PSD Xv

2 obtained by minimising
Eq. 33 of the main text. However, in this case, there is no artificial peak in
either Xv

1 or Xv
2 at large particle sizes since there are no fluctuations in the

number based PSD X (at large particle sizes) in this case.
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6. Uniqueness of Shape Information

As discussed in section 4 of the main text, minimisation of the objective
function f1 defined in Eq. 24 of the main text using different particle size
ranges (at different aspect ratios) results in a situation where the L2 norm
in Eq. 25 of the main text flattens out after some critical aspect ratio. This
situation is shown in Fig. 10(a) (for N = 70) for sample 1 (referred to in
the main text) using the LW model. The situation is the same for the VSM
model as seen in Fig. 10(b) for the same sample 1.

The L2 norm decreases with increasing aspect ratio after which it becomes
nearly flat after some critical aspect ratio indicated as r∗e ≈ 0.3 in Fig. 10(a)
and r∗c ≈ 0.25 in Fig. 10(b). The L2 norm in the two cases shown in Figs.
10(a) and 10(b) does not have a clear global minimum making it necessary
to reformulate the problem in such a way that unique shape information can
be retrieved. The problem of non uniqueness is common to other samples
discussed in the main text.

This problem of non uniqueness only comes to light when the number of
particle size bins is large enough. For the case where the number of particle
size bins is not large enough say N = 20 in Fig. 10(a), an artificial global
minimum could be realised for a suitable initial window size. This result is
only artificial as it depends on the initial window size chosen. This is because
the L2 norm is still dependent on the initial window size as seen in Fig. 5(a).
Also the fits obtained at such values of N are poorer than fits obtained at
larger N as seen in Fig. 5.

Figure 10(b) also shows a situation where an artificial global minimum is
realised with the VSM model for a small value of N (N = 40 in Fig. 10(b)).
The reason being similar to the case of the LW model. The L2 norm is still
strongly dependent on the initial window size (for small values of N) as seen
in Fig. 6.

Figures 10(a) and 10(b) (for N = 70) show that the level of fit to the
needle data is much better with the VSM than the LW model. This could be
because the cylindrical shape of the VSM model is closer to the shape of the
needles than the ellipsoid geometry of the LW. This proposition is supported
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Figure 10: Variation of the L2 norm in the main text with aspect ratios for different number
of particle size bins N for (a) sample 1 (calculations with the LW model), (b)sample 1
(calculations with the VSM model) and (c) the system of spherical particles described in
footnote 9 (calculations with the LW model).

by the fact that for a system of spherical particles9 10, the level of fit obtained
with the LW model (Fig. 10(c)) is comparable to the level of fit obtained
with the VSM model for the needles (Fig. 10(b)).

This situation of non uniqueness of particle shape information led to the
introduction of the objective f2 defined in Eq. 27 of the main text. The

9 The system of spherical particles is a 0.05% weight suspension of polystyrene micro-
spheres dispersed in isopropanol. The suspension was place in a jacketed vessel (with a
jacket temperature of 20◦C) in the Mettler Toledo EasyMaxTM system. The suspension
was stirred at 100rpm and the CLD was measured with a Mettler Toledo FBRM G400
probe.

10The refernce to the system of spherical particles here is only done for the purpose of
comparing Fig. 10(c) with Fig. 10(b). There shall be no further reference to the system
of spherical particles beyond this point. All other samples referred to in this text or in the
main text are (or any of) the sample 1 to sample 5 shown in Fig. 1 of the main text.
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Figure 11: (a)Variation of the squared residual norm between the measured CLD C
* and

calculated CLD C with aspect ratio for the different values of λ (in the function f2 in the
main text) indicated in the figure. (b)Variation of the square norm of the recovered PSD
with aspect ratio for the values of λ indicated in (a). (c)Variation of the function f2 with
aspect ratio for the values of λ in (a). All calculations with the LW model for sample 1.

motivation comes from the observation in Figs. 3 and 4 that the level of
fluctuations of the recovered number based PSD increases as the aspect ratio
increases for a fixed N . A possible reason for this could be because the larger
aspect ratios in Figs. 3 and 4 deviate too much from the actual shape of the
particles (as seen in Figs. 1 and 3(d) of the main text) even though they
yield about the same level of fit with the intermediate aspect ratios as seen
in Figs. 10(a) and 10(b) (for N = 70).

A suitable value of λ (in Eq. 27 of the main text) can be chosen by
comparing the relative magnitudes of the two sums in Eq. 27 of the main
text. The variation of the square residual norm between the measured CLD
C* and calculated CLD C with aspect ratio for sample 1 (for different values
of λ in Eq. 27 of the main text) are shown in Fig. 11(a). The square of
residual norm for λ = 0 (in the flat region) is of the order of 104 as seen in
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Figure 12: The recovered PSDs from the function f2 (at the values of λ indicated in (a))
at the aspect ratios re indicated in the figures. All calculations with the LW model for
sample 1.

Fig. 11(a). Figure 11(b) shows the square norm from Eq. 27 of the main
text for different values of λ. The square norm for λ = 0 shows a spike at
re ≈ 0.1 and then increases gradually with aspect ratio as in Fig. 11(b). The
square norm is of order 105. This suggests values of λ of order 10−1. The
squares of the residual norm between the measured CLD C∗ and calculated
CLD C for λ = [0.1, 0.2, 0.3] are shown in Fig. 11(a) while the corresponding
squares of the norms of the recovered number based PSD are shown in Fig.
11(b).

As expected, the spikes in the recovered number based PSDs are mitigated
for λ 6= 0 as seen in Fig. 11(b). However, the penalty becomes less effective
as the aspect ratio increases resulting in an increase in the squares of PSD
norms in Fig. 11(b) with increasing re. Also, the fits to the experimental
data reduces as λ increases as seen in Fig. 11(a), but the mismatch increases
with aspect ratio.

The process of penalising spikes in the recovered number based PSD (at
the cost of reduced match of the experimental data as seen in Fig. 11(a)) seen
in Fig. 11(b) leads to the development of a global minimum in the objective
function f2 as seen in Fig. 11(c) for λ 6= 0. For λ = 0.1, the global minimum
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Figure 13: Volume based PSDs calculated from the function f3 at (a)λ = 0 and (b)λ =
10−14 for the five samples in the main text. (c)The square norm of the calculated volume
based PSD from f3 in the range of aspect ratios where the function f2 reaches it minimum
in Fig. 11(c) for all five samples. (d)The sum of squared deviation of the calculated CLDs
defined in f3 for the range of aspect ratios in (c) for all five samples. All calculations in
(a) to (d) done with the LW model. (e) Similar to (a) but calculated with the VSM model.

is quite shallow and not so obvious. However, it gets clearer at λ = 0.2 as in
Fig. 11(c). The global minimum occurs at about the same region of re ≈ 0.3
for λ = [0.1, 0.2, 0.3] as in Fig. 11(c). Since λ = 0.2 yields a clear global
minimum for the objective function f2 with less cost on the quality of fit,
then the value of λ = 0.2 was chosen for the minimisation of the objective
function f2 in the main text for the LW model. A similar procedure led to
the choice of λ = 0.01 for the VSM model.

The effect of penalising the number based PSD is shown in Fig. 12. At
re = 0.1 and λ = 0, the recovered number based PSD has a long thin spike
at De ≈ 1 as in Fig. 12(a). However, the spike at De ≈ 1 is removed for
λ 6= 0 as seen in Fig. 12(a). The cost of removing the spike at De ≈ 1 in Fig.
12(a) is the introduction of oscillations at small particle sizes. Similar to the
spike at De ≈ 1 in Fig. 12(a) is the spike at De ≈ 2 in Fig. 12(b) (although
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shorter than the case of Fig. 12(a)) for λ = 0. This spike is removed for
λ 6= 0. The same situation plays out at re = 0.3 in Fig. 12(c). As the aspect
ratio increases, the single long spike at a small particle size is replaced by
small oscillations at small particle sizes for λ = 0 as seen in Figs. 12(c) to
12(f). However, at the optimum value of λ = 0.2 selected in Fig. 11, the
distributions close to the minimum re ≈ [0.2, 0.3] in Fig. 11(c) have the
least oscillations at all particle sizes as seen in Figs. 12(b) and 12(c). This
confirms that the choice of λ = 0.2 (for the LW model) used in Eq. 26 of
the main text and the consequent minimum of the objective function f2 at
re ≈ 0.3 for sample 1 in Fig. 11(c) yield physically realistic PSDs. A similar
situation holds for the other samples and the VSM model.

Having obtained the optimum size ranges using the inversion algorithm
and the optimum aspect ratio by minimising the objective function f2, then
the volume based PSD can be calculated at the optimum particle size range
range and aspect ratio. The volume based PSD is calculated by minimising
the objective function f3 (defined in Eq. 33 of the main text) using the
optimum particle size range and aspect ratio. The objective function f3
could be minimised at λ = 0 or λ 6= 0 depending on the level of noisebin
the recovered volume based PSD. For example, in the cases of samples 1 and
5 (using the LW model), the volume based PSDs recovered by minimising
the objective function f3 at λ = 0 contain spikes at De ≈ 200 as in Fig.
13(a). This is because the corresponding number based PSDs contain small
fluctuations at De ≈ 200 leading to an exaggerated particle size counts at
De ≈ 200. These spikes at De ≈ 200 in samples 1 and 5 can be removed by
searching for a suitable value of λ 6= 0 so that the penalty on the norm of
the PSD in the objective function f3 becomes effective.

The procedure for selecting λ is similar to the case of the number based
PSD. However, this time around the selection is done using the optimum
particle size range obtained from the inversion algorithm and aspect ratio
recovered from the objective function f2. The sum of the squared deviation
[Co

j −A
o

jiX
v

i ]
2 in Eq. 33 of the main text is of order [10−6, 1] for re ∈ [0.15, 0.4]

for the five samples as seen in Fig. 13(d). The sum of the squares [X
v

i ]
2 in

Eq. 33 is of order [108, 1011] for the five samples as in Fig. 13(c). This
suggests values of λ of order 10−15. The value of λ = 8× 10−15 was used for
the five samples for calculations with the LW model. The resulting volume
based PSDs for the five samples obtained at λ = 8× 10−15 are shown in Fig.
13(b). Figure 13(b) shows that the spikes at De ≈ 200µm have been removed
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Figure 14: Schematic representation of metrics Feret Max, Feret Min and EQPC obtained
by dynamic image analysis for the five samples.

for samples 1 and 5.
The volume based PSDs obtained by minimising the function f3 (at λ =

0) with the VSM calculation were fairly smooth unlike the case of Fig. 13(a).
Hence the value of λ = 0 was employed for the five samples for the case of
the VSM model. The volume based PSDs recovered from the function f3 (at
λ = 0) using the VSM model for sample 1 to sample 5 are shown in Fig.
13(e).

7. Dynamic image analysis

As mentioned in the main text, dynamic image analysis was performed
with a QICPIC (Sympatec Ltd., UK) instrument with a LIXELL wet dis-
persion unit. The metrics obtained from dynamic image analysis were the
equivalent projected circle EQPC diameter, the maximum feret (Feret Max)
and the minimum feret (Feret Min) as described in [27]. The Feret Max is
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the longest distance between two parallel tangents on opposite sides of the
projected particle, while the Feret Min is the shortest distance between two
tangents on opposite sides of the projected particle [27]. The EQPC diam-
eter is the diameter of a sphere whose 2 D projection has an area equal to
the area of the 2 D projection of the particle. These metrics are illustrated
schematically in Fig. 14.

8. Possible discrepancies between calculated and measured chord

lengths

The calculation presented in the main text is based on a chord being
defined as extending from edge to edge across a particle. The analytical
models used in this work assume continuity of the particle boundary and
the geometry of each particle has been assumed to be perfectly cylindrical
or ellipsoidal with no concavities. However, real convex (approximately)
particles contain small concavities along their boundaries which implies that
the particle boundaries are not always continuous or smooth. The approach
used here implies that these small discontinuities in the particles’ boundaries
have been removed by using a linear interpolation between the points of
discontinuity.

However, the presence of concavities along particles’ boundaries will in-
troduce small discrepancies between measured and calculated chord lengths.
The typical particle size is of the order of 100µm so that the depth of these
concavities will be less than 1µm. Hence we expect an error of less than 1%
in the calculated chord lengths. However, for particles with more pronounced
concavities (for example agglomerates) the error could increase significantly
if the concavities are not properly accounted for by the model used. Work on
a suitable model for dealing with agglomerates (which contain pronounced
concavities) is currently in progress.

Another factor that can introduce discrepancies between the measured
and calculated chord lengths is the optical properties of the particles. The
focal spot of the laser has a fixed width. The laser beam converges towards
the focal plane and diverges away from it. Hence a suitable threshold is used
in the FBRM sensor to determine when the reflected light is accepted or
rejected. This then implies that the length of a chord depends on the distance
of the particle (from which light is reflected) from the focal plane and its
reflecting properties. A small particle (whose size is close to the width of the
laser spot) close to the focal plane could give rise to a measured chord length
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which is larger than its true value if the particle has very good reflectance.
However, this small particle may be missed completely by the FBRM sensor
if the particle is far away from the focal plane and has a poor reflectance.
The situation is similar for a large particle (whose size is significantly larger
than the width of the laser spot). The measured chord length could be larger
or smaller than the true value depending on the reflecting properties of the
particle and its distance away from the focal plane.

Hence the optical properties of the particles in a population determine
if a measured CLD is representative of the particles in the population or
not. The degree of accuracy of the calculated CLD will also be affected by
whether the optical properties of the particles are taken into account in the
models or not. In the work presented here all particles are assumed to be
opaque and to have good reflectance. Representative images of the particles
in Fig. 1 of the main text shows that this approximation is justified. Hence
we do not expect a significant shift in the peak of the calculated CLD for
this kind of system of particles. However, for a system of highly transparent
particles, there could be a significant shift in the peak of the calculated CLD
and hence the optical properties of the particles will need to be taken into
account.
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