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Abstract. The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear
dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under
the action of an ideal central gravitational field. The aim is to gain an insight into the natural dynamics. The Hamiltonian
dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame.
Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems
theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the configuration
manifold underlying the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium
configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on
chaotic motions in the rest of the domain.
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INTRODUCTION

Emerging mission concepts involve the use of multi-joint-satellite systems. These can be categorised into two main

areas of application: on-orbit satellite servicing and active debris removal. Many mission concepts, see [1], [2], require

two main bodies connected via hinges, robotic arms or tethers. For instance, the German Aerospace Centre DLR

mission Deutsche Orbitale Servicing Mission (DEOS), [3, 4], and the Orbital Express Demonstration System (OEDS)

flight test, [5, 6]. DEOS is a semi-autonomous satellite endowed with a robotic arm. Its mission is to berth, secure

and de-orbit malfunctioned satellites from low earth orbit. The OEDS flight test, flown from March to July 2007, was

a mission to demonstrate the required capabilities to autonomously service satellites on-orbit in different scenarios.

Both these examples fall within the category of space multi-body systems. In particular, they may be modeled as a

three-body system after the grasping/docking phase of the mission, where the two main bodies are connected together

via a rigid link.

According to the definition in [7], a multi-body system is defined to be a collection of subsystems, called bodies,

kinematically constrained which may undergo large translations and rotational displacements. This definition captures

both space and terrestrial systems. Space systems differ from terrestrial systems in that they are not subject to a uniform

gravity force1 and do not have an anchorage pivot.

In mechanics, space multi-body problems are generally non-integrable as they are high dimensional systems with

only two conserved quantities (when non-conservative forces are excluded): the total mechanical energy and the total

angular momentum. These systems have a highly complex nature, characterised by their nonlinear dynamics, with

interdependent orbital and attitude dynamics. All this makes the behaviour difficult to predict and so it is important

that research into their global dynamics is undertaken. Understanding the underlying dynamics of the system can aid

efficient system and control design. This is important because, in space, energy demands and actuator constraints are

critical factors (for instance, reductions in fuel and power usage directly influences the useful operative life of the

spacecraft, the weight and the mission costs). Dubowsky and Papadopoulos, who studied extensively free-flying and

free-floating robotic systems, examples of space multi-body systems, suggest that understanding their fundamental

dynamic behaviour will improve system design, [8], and that it will aid the development of solutions to problems of

1 Constant in direction and magnitude.
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planning and control, [9] and [10]. In addition, as achieved in orbital dynamics, see [11], and more recently in attitude

dynamics [12, 13], understanding the natural motions of the system offers the possibility to exploit them to design fuel

efficient motions (when the time scale of the natural motions is comparable with the missions’ operational timescale).

The aim of this paper is to study the dynamics of a multi-body space system made of three finite-shape rigid-bodies

joined by ideal hinges. The system is assumed to be under the action of an ideal central gravity field only. As a

consequence, when all the initial conditions lie on a plane, the system’s motion can be proved to evolve on a plane,

[14]. The problem is, therefore, restricted to the planar case. As a further assumption, the characteristic dimensions

of the bodies are assumed to be negligible relative to the central body, as a spacecraft orbits a much larger celestial

body. The novelty of this work is in using finite-shape bodies to model the problem in order to have a more accurate

description of the system. Moreover, the methods of analysis applied to study a multi-spacecraft problem are relatively

new in this field.

The content of the paper is as follows:

• In Section 2 the three-body model is introduced. The corresponding Hamiltonian dynamics for the multi-body

system in orbit around a large celestial body is derived.

• In Section 3 relative equilibria are identified, approximations are introduced to uncouple the orbital dynamics

from the attitude dynamics and an analysis of the Hamiltonian of the attitude dynamics is addressed numerically

via Hamiltonian plots.

• In Section 4 the behaviour far from the equilibria is investigated using numerical tools, such as phase portraits

and a Poincaré map.

• In Section 5 results are discussed. They are compared with the ones from a two-rigid-body system and their

implications for future multi-body space system design and control are discussed.

THE PHYSICAL MODEL

1: Illustrations of the system and of the vector set used to describe it

In this paper we take inspiration from [15], [16], [10], and [17] to derive the Hamiltonian equations of motion. This

form is convenient to analyse the equilibria and their non-linear stability.

The following reference frames are used:

1. Main Reference Frame

2. Orbital Reference Frame

3. Body Reference Frame (one per body)
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The Main Reference Frame (MRF) is assumed to be inertial and fixed in space; its origin is the origin of the gravity

field. The X |MRF and Y |MRF plane is assumed to be the orbital plane with the z− axis parallel to the orbital angular

momentum vector.

The Orbital Frame (ORF) is not inertial; its origin is the instantaneous overall center of mass of the multi-body

system. Its x−axis is parallel to the position vector of the origin w.r.t. the MRF ; the z-axis is taken as parallel to the

Z|MRF and consequently the y-axis will be parallel to the local horizon such that it forms a right handed frame.

Every single body will be given its own reference frame (BRFi - where the subscript i is a number identifying the

body), with the origin its center of mass and orientation set according to the principal axes of inertia.

System configuration variables

A particle mass of the i-th body is described by the following position vector:

~R(δm) = ~RM0 + ~R0i +~ri(δm) =

~RM0 +TM0 ({~R0i}0 +T0i {~ri(δm)}i)
(1)

The following notation has been adopted: ~RM0 position vector of the overall center of mass w.r.t. the MRF ; ~R0i is

the position vector of the i-th body center of mass w.r.t. the ORF ; ~ri(δm) is the position vector of the infinitesimal

mass δm w.r.t. the BRFi; TAB is a coordinate transformation matrix which rotates a generic vector from reference frame

A to the reference frame B. In particular the subscripts: M refers to the MRF ; 0 refers to the ORF and i refers to the

i-th BRF .

Note that TM0 depends on the orbital true anomaly ν only and T0i depends on the attitude angle of the i-th body θi

only, as the problem is set as 2-D.

Moreover: TMi = TM0T0i. Also, note that the position vector of the ORF can be described in polar coordinates as
~RM 0 = TM0 {R0,0}. Three constraint equations are introduced:

m1
~R01 +m2

~R02 +m3
~R03 =~0 ; ~R01 + ~d1H1

+ ~dH1 2 = ~R02 ; ~R02 + ~d2H2
+ ~dH2 3 = ~R03 (2)

Where ~d1H1
, ~dH1 2, ~d2H2

and ~dH2 3 are the position vectors of the hinges with respect to the bodies centers of mass

and~0 is the null vector. As the bodies are assumed to be rigid, the vectors are fixed in their respective body reference

frames. The first identity is satisfied because it has been set the overall center of mass of the system as origin of the

ORF . The second and third identities describe that the bodies are joined at the hinges via rotational joints.

Using the constraints to reduce the system, this is fully described by the following set of configuration variables:

{R,ν ,θ1,θ2,θ3} ;
{

Ṙ, ν̇ , θ̇1, θ̇2, θ̇3

}

(3)

where R is the modulus of the orbital vector; ν is the orbital anomaly angle; θ1,θ2,θ3 are the attitude angles of the

bodies which describe the inclination of the X |BRFi
axis with respect to the X |ORF axis.

Kinetic Energy

Differentiating eq. (1) with respect to time, using the reduced variables set and applying the inner product yields the
kinetic energy of the i-th body as:

Ki =
1

2

∫

Bi
< ~̇R(δm), ~̇R(δm)> δm (4)

Note that the rotation matrices satisfy the differential equation
dTAB(ψ)

dt
= TABΩAB with ΩAB a skew-symmetric matrix

function of
dψ
dt

= ωAB only. After some algebra eq (4) becomes:

K =
m

2
(Ṙ2 +R2ω2

M0)+λ12(ω01 +ωM0)(ω02 +ωM0)cθ1−θ2
+

λ13(ω03 +ωM0)(ω01 +ωM0)cθ1−θ3
+λ23(ω03 +ωM0)(ω02 +ωM0)cθ2−θ3

+

1

2
Î1(ω01 +ωM0)

2 +
1

2
Î2(ω02 +ωM0)

2 +
1

2
Î3(ω03 +ωM0)

2

(5)
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Where: m = m1 +m2 +m3 total mass of the system; ‖~̇R‖2 = Ṙ2 +R2
Ω

2
M0 is the term related with the translational

kinetic energy of the ORF ; εi j = (mim j)/m ; λ12 = d1H1
[d2 H2

ε13 +dH1 2(ε12 + ε13)]; λ13 = d1dH2 3ε13 ; λ23 =

dH2 3 [dH1 2ε13 +d2 H2
(ε13 + ε23)]; Î1 = I1 + d2

1H1
(ε12 + ε13) ; Î2 = I2 + d2

H1 2ε12 + d2
2 H2

ε23 + ε13(dH1 2 + d2 H2
)2; Î3 =

I3 + d2
3(ε13 + ε23); cθi−θ j

= cos(θi − θ j). Note that Îi is the augmented inertia of the body. Moreover it has been

assumed that the bodies’ centers of mass are aligned with the hinges and the generic position vector of the hinge takes

the form {~di j}i = (di j,0) in its body reference frame.

Potential Energy

The effect of gravity on every single body is considered. This depends on the shapes and the attitudes of the bodies.

In order to obtain a simple form of the potential functions, these are expanded in Taylor series and only the terms up

to the third degree will be considered. The bodies are assumed to have a characteristic length negligible compared

with the orbital radius, have a quasi 1-D shape and constant density. The derivation of the approximated form of the

potential is inspired by a well known procedure, see for instance [18] or [19], and it is described in detail in [20]. The

final form of the potential energy is as follows:

U =U1 +U2 +U3 =

−µ
m

R
+−mu

1

4R3

{

Î1 + Î2 + Î3 −
[

−3Î1c2θ3 −3Î2c2θ4 −3Î3c2θ5+

−8λ12c3c4 −8(λ13c3 +λ23c4)c5 +4λ12s3s4 +4(λ13s3 +λ23s4)s5]} ;

(6)

Again the trigonometric functions have been shortened using the notation: cos(φ) = cφ and sin(φ) = sφ .

HAMILTONIAN DYNAMICS

Let the name of the variables be changed to the following, in order to coincide with the general Lagrangian notation:

{R0,ν ,θ1,θ2,θ3} ≡ {q1,q2,q3,q4,q5} (7)

By constructing the Lagrangian function of the system L =K −U and applying the Legendre transform, momenta

follow in the form:

~p = J~̇q (8)

with

J =













m 0 0 0 0

0 J2,2 Î1 + c12λ12 + c13λ13 Î2 + c12λ12 + c23λ23 Î3 + c13λ13 + c23λ23

0 Î1 + c12λ12 + c13λ13 Î1 c12λ12 c13λ13

0 Î2 + c12λ12 + c23λ23 c12λ12 Î2 c23λ23

0 Î3 + c13λ13 + c23λ23 c13λ13 c23λ23 Î3













(9)

where J2,2 = mq2
1 + Î1 + Î2 + Î3 +2(c12λ12 + c13λ13 +λ23c23). The Hamiltonian function follows as:

H = K (~q,~p)+U (~q) =
1

2
~pTrJ(~q)−1~p+U (~q) (10)

Thereafter, the Hamilton’s equations are:

∂H

∂~p
= J−1~p ;

∂H

∂~q
=

1

2
~pTr ∂J−1

∂~q
~p+

∂U (~q)

∂~q
(11)

Because of the absence of dissipative forces, the total mechanical energy and total angular momentum are conserved

(the variable q2 is cyclic). However, a continuous exchange of energy and angular momentum between the two bodies

and between orbital and attitude dynamics take place. The Hamiltonian can be split in two contributions:
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H = HAtt +HOrb (12)

HAtt depends on all the variables but q2; the HOrb is function of the orbital elements only. Their order of magnitude

are significantly different: o(HAtt) ≪ o(HOrb). As a consequence, the orbital dynamics can be uncoupled by the

attitude dynamics introducing an approximation error between exact orbital motion and approximated one that can be

proved to be of the order of centimeters for systems orbiting the Earth, [20]. This allows us to focus on the attitude

dynamics only.

Equilibria

The relative equilibria of the attitude dynamics, i.e. equilibria of the system with respect to the ORF , are defined

by: {q̇3 , q̇4 , q̇5 , ṗ3 , ṗ4 , ṗ5} =~0. This set of equations has a solution for circular orbits only and at the following

configurations:

(

κ π , κ ′ π, κ ′′ π
)

and
(

τ
π

2
, τ ′

π

2
,τ ′′

π

2

)

with κ , κ ′ , κ ′′ ∈ Z τ , τ ′ , τ ′′ ∈ Z0 (13)

This defines a number of 42 equilibria over the domain S× S× S, which can be grouped in six different classes

depending on the symmetries of the configurations.

Hamiltonian Maps

Let the attitude Hamiltonian, for given initial conditions, be defined by:

HAtt |t=0 = HAtt : {~q0,~p0} ≡
{

~q0,J(~q0) ~̇q0

}

with ~q0 = {q10, ...,q50} ; ~̇q0 = {q̇10, ..., q̇50} (14)

Then, let be defined the following function of the bodies’attitude angles:

H̃Att = H̃Att(q30,q40,q50)≡ HAtt |t=0 : {q̇30, q̇40, q̇50}=~0 with (q30,q40,q50) ∈ S×S×S (15)

This function will provide the energy state associated with each motion starting from the point (q30, q40, q50) with

zero bodies’ initial spinning rates. For circular orbits (where relative attitude equilibria exist):

q1 ≃ const , p1 ≃ const , p2 ≃ const ⇒H = H (q3,q4,q5, p3, p4, p5)

or equivalentlyH = H (q3,q4,q5, q̇3, q̇4, q̇5)
(16)

Hence, in this case, given (q3(t),q4(t),q5(t), q̇3(t), q̇4(t), q̇5(t)) = (q30,q40,q50,0,0,0) for t = 0:

H̃Att(q3(t),q4(t),q5(t))≤ H̃Att(q30,q40,q50) (17)

as a consequence that for null spinning rates the value of the kinetic energy is at its minimum and the total

mechanical energy must be constant.

A representation of the function H̃Att(q30,q40,q50) is provided for a system on a circular orbit with a nominal

altitude of 300 km above the Earth in the case of three equal bodies with the parameters listed in table 1. This

set of parameters has been chosen according to the work in [20], where symmetry was noted to help highlighting

characteristic properties of the dynamics. With these conditions, the values of the H̃Att(q30,q40,q50) at the equilibria,

H̃Att Eq. i with i = 1, ..,6, are shown in fig. 2.

To provide a description of H̃Att(q30,q40,q50) over the three-dimensional domain, a sequence of iso-energy surfaces

are shown in fig. 3. In particular, here only the energy levels associated with the equilibria, H̃Att Eq. i, have been plotted.

In figure 3, the value of H̃Att(q30,q40,q50) at the point determines the colour of the point itself. As the value increases

from the minimum value to the maximum, the colour varies from dark blue to bright red, as it can be seen in the colour

bars. The Hamiltonian map shows graphically the position of the equilibria, as identified in the previous section.
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Variable Measure Dimension

Total Body Length li 50 cm

|di| 25 cm

mi 1.5 kg

Ii =
1
12

mil
2
i 0.0078 kg m2

1: Data used for evaluating H̃Att(q30,q40,q50).
Bodies are considered orbiting around the Earth on

a nominal orbit circular at an altitude of 300km

above the surface.

0 1 2 3 4 5 6 7
−6e−7

−4e−7

−1e−7

7e8

3.5e7

6e−7

1.3e−6

Equilibria

H̃
A
tt

E
q.
i
(J

)

2: H̃Att at the equilibria

(a) Iso-energy surfaces at H̃Att Eq.1, the

lowest value of H̃Att

(b) Iso-energy surfaces at H̃Att Eq.2 (c) Iso-energy surfaces at H̃Att Eq.3

−2

0

2
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

 

 

q 5
0
(r
a
d
)

q30 (rad)
q40 (rad)

−4

−2

0

2

4

6

8

10

12

x 10
−7(J)

(d) Iso-energy surfaces at H̃Att Eq.4 (e) Iso-energy surfaces at H̃Att Eq.5 (f) Iso-energy surfaces at H̃Att Eq.6

3: Illustration of H̃Att(q30,q40,q50) over its three-dimensional domain through a series of iso-energy surfaces. The

elements of each manifold have the same value of H̃Att

Moreover, the stable equilibria are shown by small and isolated ellipsoids of low-energy colour. These surfaces are

surrounded by higher energy manifolds which confine the motion on the equilibrium itself. On the contrary, unstable

equilibria can be recognised as they are part of large manifolds which are surrounded by lower energy surfaces. A

motion starting in the neighborhoods of these points can evolve on a large part of the domain or even in the whole

domain. Finally, the map gives a description of the distribution of H̃Att in all the attitude angles’domain, revealing

a very complex structure underlying the dynamics od the problem. Equilibria are surrounded by ellipsoidal surfaces

and some of them are connected by a “pipe-like” structure. These connections between equilibria can potentially be
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used in the manoeuvre design by exploiting the system’s natural motions for reconfigurations manoeuvres. It is worth

noting the importance of the role of the physical parameters which might be used to introduce in the dynamics new

connections between equilibria or “close” existing connections.

SYSTEM BEHAVIOUR FAR FROM EQUILIBRIA

In order to provide a global description of the system behaviour, different representations of the dynamics will be

shown using various analysis tools. The dynamic equations (11) are integrated and the trajectories analysed. Inspired

by common techniques of integration using symplectic integrators, Hamiltonian and total angular momentum are

introduced in the differential equations set in order to keep control of the numerical errors and to drive the accuracy of

the integration always below a maximum relative error of an order of o(10−13) on the initial values of the conserved

quantities2. Conditions in table 1 are used in the following sessions.

Phase Plots and Poincaré sections

Phase plots capture and show three different kinds of behaviours. Figure 4 shows projections of the trajectories of the

system in the {q4,q5}, {q4, q̇4} and {q5, q̇5} planes. These projections are supported by the relative Poincaré sections.

Poincaré sections are a standard technique to inspect complex systems. These are projections of phase spaces where a

snap shot is taken whenever the trajectory intersects a prescribed plane in the phase space. Consequently, the Poincaré

mapping3 is a collection of points sampled in a regular way from the phase portraits. For this problem Poincaré sections

are constructed sampling the state of the system when the following condition is verified: {θ1 = 0,ω1 ≥ 0}. Here, the

sections are provided in the same planes of phase plots4.

In figure 4a a fully regular behaviour is observed5. The motion is periodic and its projections evolve over a line in

the plane {q4,q5} and over circles (clockwise) in the planes{q4, q̇4} and {q5, q̇5}. Trajectories topologically equivalent

to the one shown here have been observed for initial conditions in a relatively small6 neighborhood of the stable

equilibrium point.

Figure 4b shows a regular behaviour which is identified as “quasi-periodic” as it evolves in a bounded region on

almost periodic trajectories without ever exactly coming back on themselves. In the Poincaré sections, the system’s

natural evolution is completely described by a set of points which appears to be aligned on a closed curve, even though

not totally drawn. This feature is typical of quasi-periodic motions, for instance, see the Hénon-Heiles Poincaré section

for e = 0.08333 in [23].

Finally, in figure 4c any sort of regularity disappears and the points cover an apparently random shaped area rather

than being ordered along a curve. This kind of behaviour can be recognised in the Poincaré sections of many systems

as the double pendulum, the three body system or again in the Hénon-Heiles equations for e = 0.12500, see [23].

Poincaré Map

A Poincaré map is constructed collecting all the Poincaré sections generated from initial conditions which have

H̃Att = −3.96×10−7 J. This energy state is chosen as it shows a wide range of different behaviours. Fig. 5a shows,

which initial conditions belong to the indicated energy.

Each initial condition shown in fig.5a has been integrated and the trajectory analysed. The resulting Poincaré map

is shown from three different projections in fig. 5.

Chaotic motion can be seen where the region is dense on the set, as shown in figures 5b, 5c and 5d. Invariant tori

can be recognised in the regions at the center-bottom of 5b, the center of 5c and in center-top of 5d. In these areas,

2 This solution has been preferred to the reduction of the system introducing into the equations the conserved quantities, in order to effectively have
way of monitoring the magnitude order of the error.
3 Also referred as a stroboscopic technique
4 For further details on Poincaré maps, see [21] or [22].
5 It should be noted that no dissipative forces have been included in the model.
6 Note the magnitude orders of the x and y axis scales in fig.4a are particularly small.
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(c) Example of periodic behaviour of the system

4: Illustration of three different behaviours of the system using phase plots and Poincaré sections.

ordered sequences of concentric discontinuous lines in a layout typical of quasi-periodic motions can be found. This

kind of structure clearly suggests the presence of motions developing into invariant tori. Furthermore, the boundary

between different qualitative behaviours is fuzzy. There are some particular cases where the quasi-periodicity is weak

and the motion can be classified as either quasi-periodic or chaotic.
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(d) Poincaré Map from H̃Att Eq.0 in the plane (q5, q̇5)

5: A Poincaré Map of the problem

CONCLUSIONS

A three finite-shape rigid-body system has been studied. The problem is restricted to the planar case and under the

effect of an ideal gravitational field only. An Hamiltonian approach has been used to highlight conserved quantities of

the problem and derive the dynamics. With the introduction of a negligible approximation error the orbital dynamics

is taken as uncoupled from the attitude dynamics and the analysis of the problem restricted to the attitude dynamics

behaviour only. This reveals six classes of relative equilibria. For every class each body is either aligned with the X |ORF

or with the Y |ORF , that is, parallel or perpendicular to the position vector of the overall center of mass with respect

to the main inertial reference frame. A numerical investigation of the problem in the case of three equal bodies has

been undertaken. First, the Hamiltonian has been studied graphically revealing a very complex structure underlying

the dynamics. Connections between equilibria are observed. The analysis of the behaviour far from the equilibria has

been undertaken using phase plots and Poincaré sections. Three different kinds of motions have been found: periodic,

quasi-periodic and chaotic. Fully regular motions are observed only in a relatively small neighborhood of the stable

equilibria. A Poincaré map for a given energy level of the initial conditions is provided. The map shows the presence

of invariant tori as well as chaotic manifolds. In conclusion, the three-body-problem shows very complex dynamics
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mostly driven by a chaotic behaviour with a number of 42 equilibria divided in 6 different classes. The presence of

many connections between equilibria is identified as a potential element to design large reconfiguration manoeuvres

using natural motions. Moreover, like the two-body problem, the choice of parameters may condition the stability

of some of the equilibria and has been identified as a critical design factor. Future works will address the stability

analysis of the equilibria as well as bifurcation studies of the system’s dynamics based on the variation of the system’s

parameters.
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