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ABSTRACT

We Ðnd a new heat source term for hot coronal loops and include it in the energy equation. This term
requires the loop to be hotter than the ambient corona and depends on the combined e†ect of electron
Ñuid shear and the temperature gradient. Under certain circumstances, the shear drives the heat up the
radial temperature gradient into a cross section of the magnetic Ñux tube from which it leaves by radi-
ation and by conduction down the axial temperature gradient in the usual manner. The heat source is
thus a surface term applied over the whole of the loop rather than a volume-distributed term, and its
strength is proportional to the cube of the temperature. We apply it to the usual scaling law and obtain
an expression for the radius of the Ñux tube for thermal equilibrium to hold. The temperature distribu-
tion around the plasma loop is determined and compared with recent observations and is found to be in
satisfactory agreement with them.

Subject headings : MHD È plasmas È Sun: corona

1. INTRODUCTION

A central problem with modeling the hot coronal plasma
loops, which may reach heights of 50,000 km or more, is
that of Ðnding how they are heated. These loops sometimes
persist for days, which is long enough to validate steady
state models ; hence, losses due to thermal conduction and
radiation need to be balanced by a supply of thermal
energy, but Ðnding a convincing heating mechanism has
proved elusive. In most theories, it is assumed that the
energy comes from regions below the photosphere, with the
magnetic Ðeld playing an important role in the transport
and dissipation of this energy. But since all of the coronal
energy must in some way or another Ðnd its way from these
regions, this is almost self-evident. Our present concern is
not with the problem of heating the whole corona but with
the heating of the hot plasma loops, some of which can be
orders of magnitude hotter than the ambient plasma. Bray
et al. (1991) give a useful brief survey based on WentzelÏs
(1981) review.

Zirker (1993) reviews the basic suggested mechanismsÈ
wave heating, turbulence, electric currents, and
reconnectionÈand concludes that all are possible. The
upward propagation of MHD waves generated by foot-
point motions is one of the mechanisms proposed for the
heating of loops. Apart from fast MHD waves, which
cannot penetrate the corona, the slow modes and the Alfve� n
modes can deposit energy into the loops, especially if mode
coupling is included in the process. If it were assumed that
the dissipation of waves propagating up from the photo-
sphere energy were responsible for the heating, this energy
would be supplied close to the base of the loops. Heyvaerts
& Priest (1983) have considered the possibility that stand-
ing waves already present in the loops and being reÑected at
the footpoints could heat the loops by the phase mixing that
is inevitable in strong temperature gradients, a process that
would result in a distribution of heating along the whole of
the loop. Foukal & Hinata (1977) believe that there could
be another mechanism for heating loops, suggesting that

such structures are not heated irreversibly but that the
observed radiation losses could be balanced by extracting
energy from a nearby reservoir. In fact, this speculation
agrees with the model that we shall describe in this paper
(the ““ reservoir ÏÏ being the corona in the neighborhood of
the loop) ; although as with all heat transport, the process is
not strictly irreversible.

Joule heating is a mechanism that has received much
attention, but it is found that an enormous total current and
large poloidal Ðeld result unless the plasma loop is frag-
mented into a large number of Ðlaments. The dissipation
occurs in boundary strips of width where j isd

B
\ B(k

0
j),

the current density, B is the magnetic Ðeld strength, and k
0

is the permeability. (We have adopted SI units unless indi-
cated otherwise.) If electron drift speeds reach the ion sound
speed, j attains its maximum value in which case thej

m
,

strips are typically less than a kilometer wide (d
B

D 3.5
] 104B ; see eq. [18]). Ion-acoustic waves are generated,
which in turn scatter and heat the electrons (Hinata 1979).
However, the scattering amounts to an increase in the elec-
tron collision frequency and hence to an increase in the
electrical resistivity, which reduces the current and hence
switches o† the instability. The drift speed can now increase
to the limit again, so conditions switch back and forth
between weak turbulence and classical conditions, keeping
the process in marginal stability.

The ohmic heating rate occurs in a volumeg j
m
2 2nRL d

B
,

where R is the radius of the Ñux loop and L is its length, and
it can therefore balance a radiation loss rate of L D

per unit volume. At the typical value of T \ 106g j
m
2(2d

B
/R)

K, we Ðnd that W m~3 and L D 10~4 W m~3g j
m
2 D 10~3

(see eq. [23]), so for ohmic heating to be marginally
adequateÈwe are ignoring conduction losses, which would
make the situation worseÈwe must have WeR \ 20d

B
.

therefore need a mechanism capable of fragmenting the Ñux
tube into threads of less than about 20 km in radius.
Another kind of fragmentation that could resolve the
problem of ohmic heating is to suppose that current sheets

941



942 ASHBOURN, WOODS, & BINGHAM Vol. 553

form in the Ñux tube. For example, one could image nested
annuli in each of which the magnetic Ðeld orientation is
di†erent from its neighboring shells. While this would cer-
tainly enlarge the volume of the ohmically heated regions,
the nested Ðeld structure would be difficult to generate even
by swirling motions at the footpoints of the loops, and there
is the added difficulty that the heating rate would be too
slow. Bray et al. (1991) give an account of the model and
provide a number of references.

Another much favored and related dissipative process is
the reconnection of sheared Ðeld lines with the aid of the
tearing-mode instability, provided this occurs in a plasma
Ñow strongly converging toward the neutral points in the
magnetic Ðeld, a process known as ““ Ñux pileup.ÏÏ The diffi-
culty with this model is that for the rate of heating to reach
the values implied by observation, the Ñow must con-
vergence with velocities of at least 1% of the speed,Alfve� n
which in loops with a Ðeld of about 100 G is D3 ] 103 km
s~1. Litvinenko (1999) observes that the actual rate of
pileup, which is limited by either the plasma or the magnetic
pressure in the pileup region, is some 3 orders of magnitude
too small to explain the most powerful Ñares but allows that
the rate may be sufficient to provide a steady source of
energy to heat the persisting coronal loops. However, to
require the existence of two distinct heating mechanisms
depending on the rate of change of the observed phenomena
is unconvincing, since while there may be isolated instances
of plasma Ñows capable of compressing opposing Ðeld lines
at speeds of 30 km s~1, as a general phenomenon high in
the corona, it seems unlikely.

If s denotes the distance measured along a loop, then the
temperature distribution, T (s), can be deduced from obser-
vations ; Priest et al. (1998) have used such observations to
deduce an important characteristic of the heating process,
at least for certain types of loops. When they adopted a
standard model of a loop and supplied the heat with (a) a
maximum at the bottom of the loop that is decaying expo-
nentially over a distance a small fraction of the length of the
loop, (b) a heat source at the loop summit, and (c) heating
uniformly distributed over the loop, they found modest
agreement between the theory and the observations for case
b and better still agreement with case c, whereas case a was
statistically very unlikely. Neupert, Nakagawa, & Rust
(1975) concluded from their observations that models in
which energy is only supplied at the base of a Ñux tube were
inappropriate for loops over active regions ; thus, the obser-
vations would seem to be consistent with a distributed
heating source that has a maximum at the summit, a pro-
perty of the mechanism that we shall advance below.
However, recent studies of active region loops observed
with the Transition Region and Coronal Explorer (T RACE)
by Aschwanden, Nightingale, & Alexander (2000) appear to
give strong support for a heat source concentrated near the
bottom of the loop, but as the authors point out, their
collection of loops are both cooler and larger than those
considered by Priest et al. (1998).

Galsgaard et al. (1999) used a numerical experiment to
generate Ñux braiding that in turn generated electric current
concentrations and Joule heating. They found that they
were able to obtain good approximations to each of the
three types of heating described above, and with the con-
straint that the total heating was the same in each case, they
obtained a number of similar distributions with small varia-
tions in the magnitude of the temperature at the summit of

the loop. These changes depended on the type of boundary
conditions applied at each end of the loop and on the choice
of the distribution of heating along the loop. Unfortunately,
the temperature variations were only a little larger than the
errors in present observations, so as a means of discrimi-
nating between various heating mechanisms, their use is
inconclusive.

Any heating mechanism must meet the overall energy
constraint, namely, that the energy it supplies the whole
loop at least equals the energy lost by radiation. This can be
represented by W m~2, where is the heat Ñux thatQ

b
Q

b
must be fed into the base of the loop, although the actual
heating mechanism need not have this physical origin.
Svestka et al. (1977) give an observational estimate of Q

b
\

7 ] 102 W m~2.
There is one important feature of a loop that dis-

tinguishes it from other coronal structures, namely, its Ðnite
total length 2L . In models of plasma loops, it is usually
assumed that the pressure p in the loop is constant and that
the maximum temperature of the loop, occurs at theT

m
,

apex of the loop ; it was demonstrated by Rosner, Tucker, &
Vaiana (1978) and by Craig, McClymont, & Underwood
(1978) that a relationship must exist between the length of a
loop and its thermodynamic properties. One form of this
relationship, known as a scaling law, is where apL \ aT

m
a ,

and a are constants depending on which radiation and
heating laws are adopted. But while a satisfactory approx-
imation to the radiation rate is known, at present the
heating rate can only be a matter of speculation. It is the
aim of this paper to Ðll this gap in the theory and as far as
possible to test the outcome against observations.

The active region loops observed with T RACE appear to
have an almost isothermal appearance, and to explain these
Reale & Peres (2000) proposed that a coronal loop is
actually a synthesis of many loop threads, each of which
satisÐes a steady state scaling law of the Rosner et al. (1978)
type (the RTV theory). By adopting a logarithmic distribu-
tion of the maximum temperatures of the threads, they were
able to model these near-isothermal T RACE loops. Asch-
wanden et al. (2000) adopted this model too and extended it
to analyze their observations of a collection of large, rela-
tively cool loops. They found that it was necessary to heat
the threads near their base in order to bring their semi-
empirical theory into agreement with the observations, and
in an extension of this work, Aschwanden, Schrijver, &
Alexander (2001) have calculated a large number of hydro-
static solutions appropriate for large loops, from which they
show that only nonuniform heating concentrated near the
base of the loop was consistent with the observations.

2. THE SECOND-ORDER HEATING MECHANISM, WITH NO

MAGNETIC FIELD

First, we shall deal with the case when there is no mag-
netic Ðeld, since the result can then easily be extended to
cover the case of a strong magnetic Ðeld. When the
Chapman-Enskog expansion in powers of the Knudsen
number v is applied to BoltzmannÏs kinetic equation, the
resulting formula for the heat Ñux vector q takes the form

where is the classical Fourierq \ q
1

] q
2

] O(v3), q
1

expression and is the second-order heatq
1

\ [i$T q
2

Ñux, which for a neutral gas is usually attributed to Burnett
(1935a, 1935b). Starting from we Ðrst give a physicalq

1
,

derivation of and then extend the theory to magneto-q
2

plasmas. For a full treatment, see Woods (1993, 1996).
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We shall adopt the following notations : D \ L/Lt ] ¿ Æ $

for the material time derivative, for the deviator of thee5
symmetric part e of the velocity gradient tensor $v, and

for the material derivative in a frameD*q
1

\ Dq
1

[ X Â q
1

convected with the Ñuid and spinning with an angular
velocity (This spin is necessary to remove allX \ 1

2
$ Â ¿.

ordered particle motions from the Ñuid element under con-
sideration.) Our Ðrst step is to show that in the absence of a
magnetic Ðeld,

qD*q ] q \ q
1

[ qe Æ q
1

] O(v3) (q
1

\ [i$T ) , (1)

where q is the microscopic relaxation timeÈusually the col-
lision interval between particles of the species, electrons, or
ions under consideration.

Let P denote the local thermodynamic system in which
we wish to determine the di†usion of heat. Di†usion is the
transport of a property by the purely random component of
molecular motion. We separate di†usion from convection
by noting that unlike convection, di†usion is independent of
the choice of reference frame in which the Ñuid velocity is
measured ; thus, ““ frame indi†erence ÏÏ is the essential pro-
perty that distinguishes di†usion from convection. Not only
must P be moving with the Ñuid velocity to eliminate all¿
ordered particle motions from P, it must also have the
acceleration and spin of the Ñuid element in question. The
heat Ñux vector q must be determined relative to P. It is also
important to distinguish between energy Ñux, which does
not involve collisions, and heat Ñux, which does. With the
former, changing conditions at P plays no part, whereas
with heat, collisions in P transform energy Ñux into heat.
The ratio of the particle collision interval q to the timescale
T for appreciable changes in the macroscopic variables,
namely, the Knudsen number v, plays a dominant role in
transport, and for the theory to be valid here, we require
that v > 1.

In the laboratory frame, the system P has an angular
velocity therefore, the rate of change of aX \ 1

2
$ Â ¿ ;

vector A in P is given by D*A 4 DA [ X Â A. The only
frame-indi†erent vectorial terms that we can form using
$T , the Ñuid velocity and the frame-indi†erent operators¿
D* and $, are D*$T and e Æ $T . Thus, we know what terms
should appear in and it remains to determine the mecha-q

2
,

nism that produces them. The Ðrst-order Ñux has aq
1

special role in the theory. Being proportional to $T , it
depends on distant boundary conditions, where heat is sup-
plied or removed from the system. With these conditions
held constant, is the ““ equilibrium ÏÏ value ofq

1
q \ q

1
] q

2] . . . , with being a perturbation that is due to timeq
2

delays, as we shall explain below.
Let k denote an inÐnitesimal vector, about a mean free

path in length, which is embedded in the thermodynamic
system P. As P accelerates and spins relative to the labor-
atory frame, so does k. This vector therefore tags the system
P in which the heat Ñux q is measured, its size and orienta-
tion being arbitrary. Thus, k is a generic tag representing
the environment P in which q is generated, and since q is the
collisional deposition of energy, there is a delay time of a
collision interval q between changes in P and the response
in q. As P is represented by the tag k, for a given value of q
at time t, it is necessary to characterize the environment by
the value of k at a time q earlier than the present time.

Let denote the value of k at time (t [ q), then thekq
relative heat Ñux is deÐned by

m 4 q Æ kq B q Æ (k [ qD*k) , (2)

the approximation following from a Taylor expansion. The
changes in q of interest are those relative to P and can be
deduced from an expression giving the rate of change of m.
In the absence of collisions, m would be constant ; collisions
tend to drive m toward its equilibrium value of m

1
4 q

1
Æ kq.

To simplify the model, we shall sort the collisions into
groups, spaced at intervals of q along the trajectory of P,
with m changing abruptly into at the end of each interval.m

1
Of course, such synchronous behavior is unreal but does
not violate the essential physics. (A continuous version of
the process is readily devised.) We may picture the property
m as being swept along with the local thermodynamic
system P, persisting in value for a time q and then being
changed to by collisions. Suppose that at a time t, colli-m

1
sions have momentarily restored m to its equilibrium value

then in the absence of further collisions its magnitudem
1
(t),

will persist until time (t ] q) when it becomes the relative
Ñux m(t ] q), at which instant collisions change it to

Thus,m
1
(t ] q).

m
1
(t) \ m(t ] q) \ m(t) ] qDm ] O(v3) . (3)

As m is proportional to q, it is an O(v) term; the operator qD
is O(v), making qDm a second-order term.

The error in the second form of m given in equation (2) is
O(v3), and therefore, since D is the same as D* when applied
to a scalar, equation (3) can be written as

qD*[q Æ (k [ qD*k)] ] q Æ (k [ qD*k)

\ q
1

Æ (k [ qD*k) ] O(v3)

or

(qD*q ] q) Æ k \ q
1

Æ (k [ qD*k) ] O(v3) . (4)

If we consider a short material line element dx, namely,
one that is convected with the Ñuid, then the rate of change
of dx is the di†erence between the velocities at the two ends
of the element. Hence, In the mechanismD(dx) \ dx Æ $¿.
described above, k is a vector like dx. Therefore, by the
expansion where$¿ \ e [ X Â 1 \ e5 [ X Â 1 ] 1

3
$ Æ ¿1,

1 is the unit tensor, we get Dk \ k Æ $¿ \ k Æ e [ k Â X.
Thus, Dk [ X Â k 4 D*k \ k Æ e is the rate of change of k

in the frame of the thermodynamic system P. Therefore, as e

is a symmetric tensor, k [ qD*k \ (1 [ qe) Æ k, allowing
equation (4) to be written as

(qD*q ] q) Æ k \ q
1

Æ (1 [ qe) Æ k ] O(v3) ,

and as this holds for all choices of k, we arrive at equation
(1).

3. THE SECOND-ORDER HEATING MECHANISM, WITH

MAGNETIC FIELD

We shall next generalize equation (1) to the case of a
magnetoplasma. The charged particles circulate about the
Ðeld lines with an angular velocity of where is the[u

c
b, u

c
cyclotron frequency and b is unit vector parallel to the mag-
netic Ðeld B. Therefore, in a frame that accelerates and spins
with the Ñuid and also gyrates with the particles, the total
rate of change of the heat Ñux q is given by

q5 \ Dq [ X Â q ] u
c
b Â q . (5)

In order to calculate di†usion, it is essential to eliminate all
ordered motions from the particles in the thermodynamic
system P. In a neutral gas, this is achieved by requiring P to
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accelerate and spin with the Ñuid element. In a magneto-
plasma, by the same principle, it is necessary to allow for the
collective motion of the particles about the lines of force ;
hence, from equation (5), it follows that in a magneto-
plasma, equation (1) becomes

qDq ] (- [ qX) Â q ] q \ q
1
(0) [ qe Æ q

1
(0) , (6)

where

q
1
(0) 4 [i$T , i \ 5k

B
pq/2m, - 4 u

c
qb ;

is BoltzmannÏs constant, and m is the particle mass.k
B
Setting we can rearrange equationq \ q

1
] q

2
] O(v3),

(6) as

qD*q
1

] - Â (q
1

] q
2
) ] q

1
] q

2
\ q

1
(0) [ qe Æ q

1(0) ,

and separating this into Ðrst- and second-order terms, we
get

- Â q
1

] q
1

\ q
1
(0), - Â q

2
] q

2
\ [qe Æ q

1(0) [ qD*q
1

.

(7)

The solution of the Ðrst of equations (7) is

q
1

\ k Æ q
1(0) ,

k 4 bb [
-

1 ] -2
b Â 1 ]

1

1 ] -2
(1 [ bb) . (8)

Similarly,

q
2

\ [qk Æ e Æ q
1
(0) [ qk Æ D*(k Æ q

1
(0)) . (9)

With strong magnetic Ðelds (- ? 1) and no parallel gra-
dients, k B [b Â 1/-, thus allowing us to reduce equation
(9) to

q
2

\ [qk Æ e Æ q
1
(0) B [qk Æ e5 Æ q

1
(0) \

q

-
b Â e5 Æ q

1
(0) .

Hence, our Ðnal expression is

q
2

\ [
5k

B
p

2QB
qb Â e5 Æ $T , (10)

where Q is the particle electric charge. It applies to both the
ion and electron gases and was Ðrst derived by a mean free
path argument (Woods 1983).

We shall apply the theory to the case of a cylindrical
magnetoplasma, with a strong, helical magnetic Ðeld, B \

where is the triad of unit vectors. It willB
z
zü ] Bh hü , (rü , hü , zü )

be assumed that conditions are independent of the axial and
azimuthal variables. Then where the prime$T \ rü T @,
denotes the radial derivative and the radial component of
the second-order heat Ñux follows from equation (10) :

Q
r
4 rü Æ q

2
\

5k
B

p

2QB
q
2

HT @ , (11)

where H 4 b Â rü Æ e5 Æ rü .
For the unit vector parallel to B, we have b \ b

z
zü

where B is the Ðeld strength.] bh hü (b
z
\ B

z
/B, bh \ Bh/B),

The radial velocity of either the ion or electron Ñuid isv
r

suppressed by the strong Ðeld to values much less than
either the azimuthal component or the axial componentvh

With axial symmetry and uniform conditions along thev
z
.

axis, we Ðnd that

$¿ \ vh@ rü hü [
vh
r

hürü ] v
z
@ rü zü ,

whence

H \ 1
2
(vh@ [ vh/r)bz

[ 1
2
v
z
@ bh . (12)

Unlike the case with Ðrst-order heat Ñux, the radial heat
Ñux in the electron gas is much larger than that in the ion
gas. From equation (12) as applied to the electron gas
(Q \ [e), the radial heat Ñux is

Q
e,r

\ [
5k

B
p
e

2eB
q
e2

H
e
T

e
@
C

H
e
\

1

2
r(v

eh/r)@bz
[

1

2
v
e,z
@ bh

D
.

(13)

The assumption that the electron and ion Ñuids have
roughly the same momentum, i.e., that v P m~1, allows us
to simplify the expression for the current density, namely,

to and writej \ en
e
(¿

i
[ ¿

e
) j \ [en

e
¿
e
,

H
e
\ [

1

2

C
r
A jh

ren
e

B@
b
z
[
A jr

en
e

B@
bh
D

.

Assuming equilibrium and negligible pressure, we have
which allows us to reduce the formula for0 \ jh B

z
[ j

z
Bh,

toH
e

H
e
\ [

k
0

j2

2en
e
B

]
j sin 2/

2en
e
r

, (14)

where / is the angle between b and It now follows fromzü .
equation (11) that the second-order radial heat Ñux is given
by

Q
e,r

\
5k

B
p
e
q
ene

(2en
e
B)2

k
0

j[ j [ B sin 2//(k
0

r)]T @ . (15)

4. APPLICATION TO A CORONAL PLASMA LOOP

In cylindrical geometry, the total radial heat Ñux q
r

follows by adding the second-order heat Ñux given by equa-
tion (15) to the standard expression for the Ðrst-order cross-
Ðeld heat Ñux in the ion gas. (The cross-Ðeld Ñux in the
electron gas can be ignored.) To simplify the account, we
shall assume that which means that the magneticd

B
/r > 1,

Ðeld changes over a distance that is small compared with
the radius measured from the center of the Ñux tube (see
Fig. 1). We Ðnd that

q
r
\
C5k

B
p
e
n
e
q
e

(2en
e
B)2

k
0

j2
D LT

Lr
[
A2k

B
p
i
m

i
e2B2q

i

B LT

Lr
, (16)

where the second term follows from BraginskiiÏs treatment
of the Ðrst-order transport in a magnetoplasma (Braginskii
1965). Let LT /Lr [ 0, so that the Ñux tube (called a
““ thread ÏÏ below) is hotter than the ambient coronal plasma.
From equation (1), we Ðnd that the heat will Ñow inward
provided that

5n
e
2 q

e
q
i

8n
e
3 m

i

k
0

j2 [ 1

or

j [ j
cr

, j
cr

4 2.16 ] 10~17 ln "(n
e
/T )3@2 , (17)
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FIG. 1.ÈTemperature and magnetic Ðeld proÐles

where

ln " \ 16.33 ] 1.5 ln T [ 0.5 ln n
e

is the Coulomb logarithm. In the following, we shall set
ln " \ 20, which is a close approximation in all the ther-
modynamic conditions involved.

The maximum possible value for the current density, say,
will occur when the electrons stream past the ions at thej

m
,

ion sound speed and the ion-acoustic instability sets in (see,
e.g., Krall & Trivelpiece 1973, p. 477). Since the heating
mechanism described above directly involves the electrons
and since the rate at which the ions and electrons reach
thermal equilibrium is relatively slow, we expect the insta-
bility to switch on when

j
m

\ en
e
(k

B
T /m

i
)1@2 B 1.46 ] 10~17P/T 1@2 (P 4 n

e
T ) .

(18)

In hot loops, Bray et al. (1991, p. 157) give the typical values
of T \ 2 ] 106 K and m~3, for whichn

e
\ 5 ] 1015 j

cr
\

5.4 ] 10~2 A m~2 and A m~2, so heatj
m

\ 2.24 ] 102
could Ñow into the hot loops. On the other hand, with cool
loops (e.g., T \ 2.1 ] 104 K and m~3),n

e
\ 5.6 ] 1016

A m~2 and A m~2, so thatj
cr

\ 1.88 ] 103 j
m

\ 1.13 ] 102
the Ñow of heat up the radial temperature gradient is not
possible.

The transition layer between the chromosphere and the
corona has a temperature range of about 104È106 K in the
middle of which (at T B 105 K) there is an abrupt change in
the transport properties (Mariska 1992). We shall label this
singularity M and measure the distance s along a thread
upward from M. On the assumption that the magnetic Ðeld
lies parallel to the axis of the thread, the heat is transported
mainly by the electron gas, and, except in the neighborhood
of M, its Ñux is given by (Braginskii 1965)

q
s
\ [i

LT

Ls
,

i \ 3.16(k
B
2/m

e
)Tn

e
q
e
\ i

0
T 5@2 (i

0
B 9.09 ] 10~12) .

(19)

(Near M, observations of the di†erential emission measure
suggest that turbulence modiÐes i to something like i \

with Li/LT B 0 at M.)i
0

T 5@2 ] i
2

T ~5@2,
If the condition in equation (17) is well satisÐed, the radial

heat Ñux is given by

q
r

\
5k

B
p
e
n
e
q
e

(2en
e
B)2

k
0

j2
LT

Lr

\
2.031 ] 103T 5@2

n
e
ln "

1

d
B
2

LT

Lr

A
d
B

4
B

k
0

j
m

B
. (20)

In this case, the thermal energy will tend to ““ pile up ÏÏ in the
neighborhood of r \ R, as indicated in Figure 1, since at the
top of the magnetic Ðeld proÐle where the current falls to
zero, the heat Ñux will tend to reverse in direction, which
will result in a local thermal instability. However, a tem-
perature gradient will develop on the inside, and when this
is steep enough, it will drive the heat further inward to heat
the thread. But should it be the case that the inside (positive)
temperature gradient is situated where a sufficiently strong
current is Ñowing, the e†ect will be for the heat to Ñow
outward from the inside, making the temperature peak
stronger and leaving the thread with a cool core.

As the electrical conductivity is proportional to T 3@2,
another e†ect of this local heating will be to concentrate the
electric current in the region of the temperature peak, and
ohmic heating will further increase the peak so that besides
the thermal instability, there will be an associated current
instability, and the current will increase to its maximum
value given by equation (18). Since the temperature and
electric current peaks will closely coincide, we can write

for the temperature gradient scale length (see Fig.d
T

B d
B

1), where, by equation (18),

1

d
B

\
k
0

j
m

B
\

1.84 ] 10~23P

BT 1@2
.

Hence, with equation (20) can be writtenLT /Lr B [T /d
B
,

as

q
r
\ [

i
1

P2T 3

ln "B3
(i

1
\ 1.25 ] 10~65) , (21)

where the B~3 dependence is a consequence of the three
gradients involved in the second-order transport. The
equivalent axial heating at the loop base (see ° 1) is Q

b
\

With the values of P \ 2.17 ] 1021 K m~3,(2L /R)q
r
.

ln " \ 20, R/L D 0.05, T \ 2 ] 106 K, and B \ 2 ] 10~2
T (see Bray et al. 1991, p. 280), we Ðnd that Q

b
D 1.2 ] 102

W m~2, which is the value (7 ] 102 W m~2) measured by1
6

Svestka et al. (1977), but in view of the uncertainties in the
values of B and the aspect ratio R/L , it appears that our
mechanism could produce sufficient heating. In fact, with
B \ 100 G, the agreement between theory and observation
is close. We also note from equation (21) that so theq

r
P n

e
2,

fact that the loops are rather denser than the ambient
coronal enhances the inward Ñow of heat.

The heat supplied to the loop comes from the ambient
corona, but we have not addressed the problem of how the
corona itself gets heated. There will some dissipation due to
the transport of heat across the magnetic Ðeld, but at this
stage we accept that the required thermal energy near the
boundary of the loop is derived from the radiation and
conduction of energy from the more distant corona. The
energy density of the corona is about an order of magnitude
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less than that in the loop, but its volume is vastly greater, so
it is an adequate reservoir for our purpose. Its heating is a
separate problem, our model being concerned just with the
redistribution of this energy between loops and coronal
plasma. Another point is that we have assumed the tem-
perature of the loop to be greater than that of the corona.
However, only a small di†erence is required to trigger the
thermal instability, and once it starts growing, the tem-
perature di†erence will increase, requiring energy to Ñow
toward the loop from more distant coronal plasmas. We
also note the possibility that if the loop is at a lower tem-
perature than the ambient corona, the thermal instability
will remove heat from the loop and cool it further, so long
as the condition in equation (17) remains satisÐed. We hope
to pursue the question of cool loops in a later paper.

5. ENERGY EQUATION FOR A MAGNETIC THREAD

The energy balance for the unit length of the disk shown
in Figure 1 is

L

Lt
(nR2ou) \ [

L

Ls
(nR2q

s
) ] nR2(H [ L) ,

where o is the density, u is the speciÐc energy, L is the rate
of energy loss per unit volume of the thread due to radi-
ation, and H is the corresponding heating rate. In our case,
H is not a volume-distributed energy supply but a surface
term like in a delta-function distribution at r \ R.[Lq

s
/Ls

Energy is supplied radially to the disk at the rate of
which is equivalent to a heating rate per unit[2nRq

r
,

volume of [2q
r
/R.

We shall assume that the only sources of heating are due
to the inward radial conduction described above and ohmic
dissipation, so that

H \ [2
q
r

R
] g j2(2d

B
/R) (g \

0.51m
e

e2n
e
q
e

B 65.8 ln "T ~3@2) .

(22)

Evaluating the two terms in equation (22) for a typical
thread, we Ðnd that the ohmic-heating term is negligible
compared with the heating due to the inward radial Ñux ;
hence, we shall omit it.

For L, we shall assume that the plasma in the thread
(mainly hydrogen and helium) is singly and fully ionized ;
thus, if is the number density of the radiating elements,n

p

L \ n
e
n
p
Q(T ) \ P2Q(T )/T 2 (P 4 n

e
T ) ,

where the function Q(T ) is determined from theory. We
shall adopt the approximation Q(T ) \ aT c and select the
constants a and c so that L \ 2 ] 10~2 W m~3 at T \ 105
K and L \ 2 ] 10~5 W m~3 at T \ 5 ] 106 K, which are
the values for the canonical hot loop model (see Bray et al.
1991, p. 280). The electron pressure for this model is p

e
\

Pa, whence P B 2.17 ] 1021 K m~3.n
e
k
B

T \ 3 ] 10~2
Thus, we Ðnd that

L \ aP2T c~2

(a B 1.43 ] 10~33, c B [0.306, P B 2.17 ] 1021) . (23)

Let denote the axial magnetic Ðeld and let us supposeB
s

that this is proportional to the total Ðeld B, then, by conser-
vation of the magnetic Ñux along the loop, is con-nR2B

s
stant, whence where is a referenceX 4 B/B

0
P 1/R2, B

0
value of the Ðeld.

The energy equation now takes the form

X
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Aou

X

B
\ X
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Ai

X

LT

Ls

B
]

2i
1

P2T 3

R ln "B3
[ aP2T c~2 .

(24)

The Ðrst two right-hand terms represent the convergence of
heat in an element of the thread due to radial and axial
conduction, and the last term is the loss of heat due to
radiation. In the absence of a theory for the change in B
along the Ñux tube, we shall assume that s \ 1. With
ou \ (3/2)p, where p is the total pressure, which at any
instant is assumed to have a constant value throughout the
loop,1 we can write equation (24) as

3

2
i

LT
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Lp

Lt
\

L

Ls

A
i

LT

Ls

B2
] 2i(H

0
T b [ aP2T c~2)

LT

Ls
,

(25)

where

H
0

\
2i

1
P2

R ln "B3
, b \ 3 . (26)

6. THE SCALING LAW

In Figure 2, we have sketched a coronal loop, which we
have approximated by a segment of a torus with minor
radius R and length 2L . We have one obvious boundary
condition, namely, that at s \ L where T has its maximum
value the gradient LT /Ls is zero. Therefore, integratingT

m
,

the steady state form of equation (25) with the help of equa-
tion (19), we obtain

1

2
i
0

T 5
ALT

Ls

B2
\

H
0

b ] 7/2
(T

m
b`7@2 [ T b`7@2)

[
aP2

c ] 3/2
(T

m
c`3@2 [ T c`3@2) . (27)

To obtain a scaling law, i.e., to impose a constraint on the
parameters, we need a further boundary condition. The sim-

1 Although this assumption is commonly adopted, it should be
remarked that it is not valid for large loops, which may extend over several
hydrostatic scale heights.

FIG. 2.ÈSymmetrical coronal loop
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FIG. 3.ÈTemperature distributions

plest choice is to suppose that there is a temperature T
0

>

at which the term on the left of equation (27) is negligibleT
m

and can be omitted, which amounts to assuming that there
is no conductive heat Ñux from the bottom of the loop (see,
e.g., Bray et al. 1991). However, this requires a value of T

0
that falls in the low transition region where there is great
uncertainty about both the thermal conductivity i and the
radiation function (Mariska 1992). Another approach is to
choose a much higher value for and to evaluate equationT

0
(27) numerically, which is likely to be reasonably accurate in
the upper transition zone. Hood & Priest (1979) followed
this method, but with an empirical heating function pro-
portional to the density, while Roberts & Frankenthal
(1980) avoided the difficulty by neglecting radiation
altogether.

Since our present purpose is to see how our new heating
function compares with observation and the empirical pro-
posals previously adopted, we shall follow the simplest
model that yields a scaling law and set the left-hand side of
equation (27) equal to zero when which thenT \ T

0
> T

m
,

requires that

H
0

\ aP2
b ] 7/2

c ] 3/2
T

m
c~b~2 . (28)

Now equation (27) yields

LT

Ls
\
C 2aP2

i
0
(c ] 3/2)

D1@2
T (1@2)c~7@4

C
1 [

A T

T
m

Bb~c`2D1@2
.

(29)
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,

and as g B 0 at s \ 0, the integral of equation (29) yields
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where B(z, w) \ !(z)!(w)/!(z ] w) is the beta function and

I
x
(z, w) \

1

B(z, w)

P
0

x
tz~1(1 [ t)w~1dt

is the incomplete beta function.

At s \ L , equation (30) yields the scaling law relating L
and (see, e.g., Bray et al. 1991),T

m
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where
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From equations (26) and (28),

2i
1

R ln "B3
\

b ] 7/2

c ] 3/2
aT

m
c~b~2 ; (32)

hence,

R \
c ] 3/2

b ] 7/2

2i
1

a ln "

T
m
5~c
B3

\ 1.61 ] 10~34T
m
5.306 B~3 .

(33)

Typically, K and B \ 150 G, whence R \ 128T
m

\ 2 ] 106
km. In this case, the total magnetic Ñux is ' \
nR2B \ 4.2 ] 108 Wb, which incidentally is close to the
smallest observable element of magnetic Ñux and which
Wang, Zirin, & Shi (1985) Ðnd is in the range of 108È
1.4 ] 109 Wb. An alternative expression for R follows on
eliminating B in favor of ' :

R \ 2.58 ] 106'0.6T
m
~1.06 . (34)

This is just the radius of a single thread, an assembly of
which would be required to make up a typical hot plasma
loop.

Following Galsgaard et al. (1999), we might hope to be
able to discriminate between di†erent heating models by
comparing the temperature distribution each model gener-
ates with observation. From equations (30) and (32), we get

s/L \ I
g

A
l,

1

2

B

[g \ (T /T
m
)2.306`b, l \ 2.903/(2.306 ] b)] . (35)

Figure 3 shows the distributions obtained with three values
of b, but the distinction between b \ 3 (our theory), b \ 0
(uniform heating), and b \ [1 (heating is greatest at the
base of the loop) is less than the observation errors for the
10 points plotted in the Ðgure, which are those reported by
Priest et al. (1998). (In plotting these points, we have
assumed the loop to be symmetrical and folded the points
falling into s [ L back into the range 0 \ s \ L .) It appears
that our theory is marginally favored by the observations,
but unfortunately the temperature distribution is too insen-
sitive to the method of heating for a clear check on the
theory.

7. CONCLUSIONS

We have introduced a method of heating plasma loops
that depends on second-order heat transport across strong
magnetic Ðelds, a process that results in heat Ñowing up the
temperature gradient. The energy is taken from the thermal
energy in the ambient coronal plasma, so the theory does
not immediately provide a solution for the problem of
coronal heating. It does o†er an explanation as to why
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some loops are much hotter than the corona and why cool
loops are sometimes closely associated with hot loops. The
heating rate is sufficient to balance the energy losses due to
radiation and conduction along the plasma loop. We have
found agreement with the observations of the temperature
distribution along a small hot loop, but inaccuracies in
these observations make it difficult for us to make clear

distinctions between the various modes of heating that have
been proposed. Thus, more observations are required to test
the theory, which should next be extended to apply to the
large cool loops studied by Aschwanden et al. (2000).
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Hodgkin Fellowship.
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