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Abstract

Wederive a theoreticalmodel for the Rayleigh–Taylor (RT)‐like instability for a thin foil accelerated

by an intense laser, taking into account finite-wavelength effects in the laser wave field. Thesefinite-

wavelength effects lead to the diffraction of the electromagnetic wave off the periodic structures arising

from the instability of the foil, which significantlymodifies the growth rate of the RT-like instability

when the perturbations on the foil havewavenumbers comparable to or larger than the laser

wavenumber. In particular, the growth rate has a localmaximumat a perturbationwavenumber

approximately equal to the laser wavenumber. The standardRT instability, arising from a pressure

difference between the two sides of a foil, is approximately recovered for perturbationwavenumbers

smaller than the laser wavenumber. Differences in the results for circular and linear polarization of the

laser light are pointed out. Themodel has significance for radiation pressure acceleration of thin foils,

where RT-like instabilities are significant obstacles.

1. Introduction

TheRayleigh–Taylor (RT) instability, or RT-like instabilities [1], is one of themain obstacles preventing greater

success of the radiation pressure acceleration scheme in accelerating thin foils of ions by intense lasers [2–8] and

hindering the achievement of inertial confinement fusion via laser compression of fuel pellets [9]. For thin foils,

it was suggested that the use of a properly tailored laser pulse with a sharp intensity rise [2] or super-Gaussian

beams [4, 8] can stabilize the foil, whereas for thicker targets, it was shown that the RT-like instability in the hole-

boring radiation pressure acceleration is suppressed by using an elliptically polarized laser [10]. A kinetic theory

has also been proposed for a target with distributed electron and ion densities [11]. Although the RT instability

was originally associatedwith a heavierfluid on top of a lighterfluid in a gravitational field [12, 13], similar

instabilities occur for plasmas confined bymagnetic fields (e.g. [20]) andwhen a thin foil is accelerated by the

pressure difference between the two sides of the foil [1, 2]. The growth rate of the RT instability for laser-

accelerated plasma is typically proportional to gk , where g is the acceleration and k thewavenumber of the

surface perturbation. This predicts that the instability grows indefinitely for largewavenumbers, whereas in

some experiments and simulations, the RT instability gives rise to structures with a spatial periodicity

comparable to the laserwavelength [7]. The assumption of a constant normal pressure force is reasonable as

long as the perturbations of the foil are relatively small andwhen the length scales of the perturbations aremuch

larger than thewavelength of the laser [2].However, laser light has afinite wavelength and is scattered off the

periodic structures, leading to a diffraction pattern in the electromagnetic (EM) field. For this case, the ‘pressure’

picture can be expected to be only approximate formonochromatic laser light. Theoretical investigations of the

instabilities resulting from the scattering of EMwaves off plasma surface perturbations include theRT instability

of an over-dense plasma layer [14] using amagnetohydrodynamic-likemodel for the plasma, and the scattering

off surface plasmawaves[15, 16] where the electron dynamics is an important source of the instability. Themode

coupling of large-amplitude surface plasmawaves is also of general interest in plasma columns [17]. The aimof
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this paper is to solve the scattering problem and to derive amodel for the instability of an ultra-thin perfectly

conducting foil accelerated by the radiation pressure of a finite-wavelength intense laser.

2. Theoreticalmodel

Weassume that the laser interacts with a foil where the electron density ismuch higher than the critical density

so that no laser light penetrates the foil. For simplicity, we assume an initially planar foil in the x–y plane, with

normal incidence of a planewave laser light propagating in the positive z-direction. This assumption is

reasonable also near the center of a laser pulsewith afinite width if the spot is at least a few laser wavelengths wide

and the laser pulse contains a significant number of laser periods. In this case, we can carry out a stability analysis

based on a Fourier decomposition of the problem in space and time.With smaller spot sizes comparable to the

laserwavelength and/or shorter pulses (such as the lambda cubed regime),more advancedmethods need to be

employed, for example, based on the decomposition of a laser beam in terms of Laguerre–Gaussianmodes.

We carry out the calculations in a framemovingwith the velocity of the unperturbed foil. In this frame, the

dynamics of the initially small-amplitude perturbations of the foil are non-relativistic. The results obtained in

themoving frame can later be Lorentz transformed into the laboratory frame, but herewewill assume for

simplicity that the speed of the foil is non-relativistic. The velocity v of the foil relative to the accelerated frame is

governed by themomentum equation

∂

∂
+

∂

∂
+

∂

∂
= −M
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whereM x y t( , , ) is the surfacemass density, =g F M0 0 0 is the acceleration of the unperturbed foil in the z-

direction,M0 is the unperturbed arealmass density of the foil, =F I c20 0 is the radiation pressure force, I0 is the

incident laser intensity, and c is the speed of light in a vacuum. The forceF is due to the space- and time-

dependent EMfield acting on the foil. For an unperturbed foil, with =M M0, the forceF would be exactly

canceled by the inertial force−M g ẑ0 0 , but due to perturbations in the foil, the forces are not exactly canceled,

which leads to theRT-like instability. Themass density is governed by the continuity equation
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The foil surface can be parameterized as η= − =S x y z t z x y t( , , , ) ( , , ) 0, where η is the surface elevation of

the foil in the z-direction. The velocity and surface elevation are connected through the kinematic condition


η∂

∂
=

t
Sv · . (3)

Equations (1)–(3) are completed by initial conditions on η and onM and v at η=z .

First we notice that the assumption of a constant radiation pressure force F0 acting perpendicularly to the

surface on one side of the foil [1, 2] would lead to = F SF 0 in equation (1) and to a ‘standard’RT instability

with the growth rate g k0 . Here wewill instead determineF by taking into account that the electric and

magnetic fieldsE andB evolve in time according toMaxwell’s equations, obeying boundary conditions at the foil

surface as well as radiating boundary conditions far away from the foil.We assume that the foil is perfectly

conducting, and therefore the electric field parallel to the surface and themagnetic field perpendicular to the

surface are zero in a system (denoted by primed variables)movingwith the same velocity as the surface, with the

boundary conditions expressed as ′ × =SE 0 and ′ =SB · 0 at η=z . Assuming non-relativistic velocities

in themoving frame, themagnetic and electric fields areGalilei transformed from the systemmovingwith the

foil surface (primed variables) to the accelerated frame (unprimed variables) as ′ = + ×E E v B and

′ = − × ≈cB B v E B2 . (The term − × cv E 2 will contribute to the boundary conditions only with terms of

order v c2 2 comparedwith unity and is therefore neglected.) This gives [17, 18]

 =SB · 0 (4)

for themagnetic field, whereas for the electric fieldwe have

    = ′ × = + × × = × − +S S S S SE E v B E v B B v0 ( ) ( · ) ( · ), where  =SB · 0 and

 η= ∂ ∂S tv · , giving


η

× +
∂

∂
=S

t
E B 0 (5)

at η=z .
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The force acting on the surface can be calculated using the EMvolume force [19]

 σ ϵ= −
∂

∂
×

t
f E B· ¯̄ , (6)0

where

σ ϵ δ
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δ= − + −E E E B B B
1

2

1 1

2
(7)ij i j ij i j ij0

2

0

2⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

is theMaxwell stress tensor in component form, δij represents the unit tensor,ϵ0 is the electric permittivity in a

vacuum, and μ ϵ= c1 ( )0 0
2 is themagnetic permeability in a vacuum. Integrating f from η ε= −z to η ε+ ,

assuming thatE andB are zero for η>z and lettingε → 0, gives the EMarea force

σ ϵ η= − − × ∂ ∂S tF E B¯̄ · 0 , which, using the boundary conditions (4) and (5), simplifies to


μ

ϵ= −
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It should be emphasized that in equation (8),E andB are the total electric andmagnetic fields at the foil surface,

to be determined hereafter.

3. Stability analysis

Wehere give details of a stability analysis of the theoreticalmodel, resulting in the following dispersion relations

(20) and (21) for the RT-like instability for circular and linear polarizations of a laser.

Perturbing and linearizing the systemof equations (1)–(3) and (8) around the equilibrium solution =v 0,

η = 0, =M M0, S= z, = tE E ( )0 , and = tB B ( )0 , gives
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where the subscript 1 denotes small-amplitude first-order perturbations. For circularly polarized light, the

zeroth-order EM force is

μ
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whereas for linearly polarized light a time averaging over one laser period removes second harmonics and

reduces F0 by a factor of 2 for the given amplitudesB0 and E0. Equation (9) is completed by finding the

dependence ofE1 andB1onη1. The general formof equation (9) is that of amode-coupling equation, where the

low-frequency perturbations of the foil are driven by the coupling (beating) between the large-amplitude EM

wave (B0,E0) and its small-amplitude sidebands (B1,E1).

Writing out the components of the boundary conditions (4) and (5) gives

η η
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B

t
0, (13)x z y

at η=z . An incident EMwavewill be reflected by the foil, and perturbations in the foil surfacewill lead to the

refraction of thewave. The electric andmagnetic fields can bewritten = +E E Ei r0 and = +B B Bi r0 , whereEi0

andBi0 are thefields of the incident wave andEr andBr fields of the reflectedwave. Inwhat follows, we show

details of the calculations for a circularly polarized incident wave and at the end state only the final result for a

linearly polarizedwave.More details of the derivationswill be given elsewhere. For an incident right-hand

circularly polarized EMwave propagating in the z-direction, we have

= +θEE
ê

2
e c.c. (14)i i0 0

i i
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and

= +θBB
ê

2
e c.c., (15)i i0 0

i i

where = + ie x y^ describes the polarization,x andy are unit vectors in the x- and y-directions,θ ω= −k z ti 0 0

is the phase of the incident wave, k0 is the incident wavenumber,ω = ck0 0 is the frequency, and = E cBii i0 0. For

linearly polarized light with the electric field along the x-axis, we instead have θ= + EE x( 2) exp (i )i i i0 0 c.c.,

θ= + BB y( 2) exp (i )i i i0 0 c.c., and = E cBi i0 0.We next assume small perturbations of the surface, so
η η=x y t x y t( , , ) ( , , )1 , where  η∣ ∣∣ ∣ ≪ 11 . (This implies small wave steepness η∣ ∣ ≪ 11 and that η∣ ∣ ≪ 11

when acting onE andB.) Then η≈ + + ∂ ∂η= = = =zE E E E( )z z z z0, 0 1, 0 1 0 0 and

η≈ + + ∂ ∂η= = = =zB B B B( )z z z z0, 0 1, 0 1 0 0, where∣ ∣ ≪ ∣ ∣E E1 0 and∣ ∣ ≪ ∣ ∣B B1 0 . At z=0,we haveθ θ ω= = − ti 0 0 .

Writing = +
∼ θE E e 2r r

i 0 c.c. and = +
∼ θB B e 2r r

i 0 c.c., and linearizing the boundary conditions (11)–(13), we

have, at z=0,
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To the zeroth-order, the boundary conditions at the foil surface z=0 are that the electric field parallel to the

foil is zero, =E 00 , and therefore = −E Er i0 0; and it follows fromMaxwell’s equations that = +B Br i0 0 at z=0.

Since =E 00 and =B B2 i0 0 in equations (9) and (10), it is apparent that the foil is accelerated by themagnetic

pressure of the EMfield. The unidirectional wave equations∂ ∂ − ∂ ∂ =t c zE E 0r r0 0 and

∂ ∂ − ∂ ∂ =t c zB B 0r r0 0 of the reflectedwave have the boundary conditions = − +θEE e(̂ 2) e c.c.r i
t

0 0
i ( )0 , and

= +θBB e(̂ 2) e c.c.r i
t

0 0
i ( )0 at z= 0,with the solutions = − +θ ′EE e(̂ 2) e c.c.r i

t
0 0

i ( )0 and

= +θ ′BB e(̂ 2) e c.c.r i
t

0 0
i ( )0 , where the retarded time t′ is obtained from ξ′ =ct withξ = +z ct . It follows that

= −
∼ θ θ′ −EE ê er i

t t
0 0

i ( ) i ( )0 0 and =
∼ θ θ′ −BB ê e .r i

t t
0 0

i ( ) i ( )0 0 Using∂ ′ ∂ =t z c1 and = E cBii i0 0, we have

∣ = −
∼

=
cBE eîr z i0 0 0, ∣ =

∼
=

BB êr z i0 0 0, ω∂ ∂ ∣ = −
∼

=
z BE ê ,r z i0 0 0 0 and∂ ∂ ∣ = −

∼
=

z k BB eîr z i0 0 0 0, which is used in

equations (16)–(18).

We assume a four-wavemodel inwhich the EMwave is scattered into two EM sidebands off the ripples in the

foil surface so that ω ω= − + + + + − − −
∼

+ + − −
 t k x k y k z t k x k y k zE E Eexp ( i i i i ) exp (i * i i i * )r r x y z r x y z1 1 1

* ,

ω ω= − + + + + − − −
∼
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* * , and

η η ω η ω= − + + + − − t k x k y t k x k yexp ( i i i ) exp (i * i i )x y x y1 1 1
* . The vacuumwave equations for the

scattered light, ∂ ∂ − =t cE E 0r r
2

1
2 2 2

1 and ∂ ∂ − =t cB B 0r r
2

1
2 2 2

1 , then give the dispersion relation

ω± + − + =⊥ ±( ) ( )ck c k k 0, (19)z0
2 2 2 2

where = +⊥k k kx y
2 2 2. Equation (19) has the solutions ω= ∓ ± −± ⊥k k c k( )z 0

2 2 , where the branches of the

square root are chosen such that <±kimag( ) 0z for ω >imag( ) 0. This gives radiating boundary conditions with

waves propagating out from the foil and vanishing at = −∞z , which is consistent with themodel. For > ⊥k k0 ,

the scatteredwave is diffracted and propagates out from the foil at an angleφ to the negative z-axis, given by

φ ≈ ⊥k ksin 0, whereas for < ⊥k k0 the scatteredwave is evanescent and decays rapidly with the distance from

the foil. Separating wavemodes proportional to ω− + +t k x k yexp ( i i i )x y and ω − −t k x k yexp (i * i i )x y , the

boundary conditions (16)–(18) yield the Fourier coefficients η= −+  B B k k2 (i )rz i x y1 0 1,

η= +−  B B k k2 (i )rz i x y1 0
*

1, ω ω η= ++  E B2i ( )ry i1 0 0 1, ω ω η= − −−  E B2i ( )ry i1 0
*

0 1, ω ω η= ++  E B2 ( )rx i1 0 0 1, and

ω ω η= −−  E B2 ( )rx i1 0
*

0 1. From the divergence condition =E· 0r to the left of the foil, we obtain

ω ω η= − + ++ + E B k k k2 ( )( i )rz i x y z1 0 0 1 and ω ω η= − − −− − E B k k k2 ( )( i )rz i x y z1 0
*

0 1 , and from the x- and

y-components of Faraday’s law ∂ ∂ = − ×tB Er r , we have η= − + −+ + + B B k k k k k2i ( i )rx i y z x y z1 0
2 2

1 ,

η= + ++ + + B B k k k k k2 ( i )ry i x z x y z1 0
2 2

1 , η= − + +− − − B B k k k k k2i ( i )rx i y z x y z1 0
* 2 2

1 , and

η= − + −− − − B B k k k k k2 ( i )ry i x z x y z1 0
* 2 2

1 .
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Wenext insert these results into equation (9) and separate terms proportional to ω− + +t k x k yexp ( i i i )x y

and/or ω − −t k x k yexp (i * i i )x y . This gives the dispersion relation for the RT-like instability for circularly

polarized incident laser light,

∑ω
ω

− =
+

⊥

+ −

⊥ ±

±

g k
g k k

k
i

2

2
, (20)

z

z

4
0
2 2

2
0

,

2 2

where ±kz is given by the solutions to equation (19), and =g F M0 0 0. An analogous calculation for linearly

polarized light with θ= + EE x( 2) exp (i )i i i0 0 c.c., θ= + BB y( 2) exp (i )i i i0 0 c.c., and = E cBi i0 0 yields the

dispersion relation

∑ω ω− =
+

⊥

+ −

±

±

g k g
k k

k
i . (21)

x z

z

4
0
2 2 2

0

,

2 2

Equations (20) and (21) are themain results of this paper.

4.Discussion andnumerical results

The dispersion relations (20) and (21) have one positive imaginary rootω ω= i I , which gives rise to a purely

growing instability with growth rateωI . If the right-hand sides of equations (20) and (21) are neglected, we

recover the standard RT instability with the growth rateω = ⊥g kI 0 . Two real-valued roots also exist which give

rise to oscillatory solutions, similar to the case of the standard RT instability [1]. To compare with experiments

and simulations, we notefirst that a critical dimensionless parameter of the system is the normalized

acceleration g c k( )0
2

0 , which can be expressed in terms of commonly used laser–plasma parameters as

σ=g c k Z m m n n a k d( ) 2 ( )( ) ( )i e i cr e0
2

0 0
2

0 , whereZi is the charge state of the ions,me andmi are the electron

and ionmass,n ne cr is the ratio of the electron density to the critical density, ω=a eE m c( )i e0 0 0 is the

normalized laser amplitude, d is the foil thickness, and the coefficientσ = 1 2 for linearly polarized light and

σ = 1 for circularly polarized light. For example, Yan et al [3] used circularly polarized light (σ = 1) in their

simulations to study the radiation pressure acceleration of a proton +H foil (Zi=1, =m m1836i e) with

=n n 10cr0 , =k d 0.630 , and =a 50 , giving ≈ × −g c k( ) 4.3 100
2 3. On the other hand, Palmer et al [7] used

linearly polarized light (σ = 1 2) in their experimental and simulation study of the RT instability of a carbon
+C6 foil (Z i=6, ≈ × ×m m12 1836i e) with =n n 10e cr

3 and =k d 0.030 . Using their values =a 100 and

=a 200 gives ≈ × −g c k( ) 9.1 100
2 4 and × −3.6 10 3, respectively.

Figure 1 shows the growth rates of the instability for a typical value = × −g c k( ) 3 100
2 3. For the case of

circularly polarized light, it is noticeable from figures 1(a) and (b) that the growth rate of the instability is close to

that of the standard RT instability for <⊥k k0, has a sharply peakedmaximumat ≈⊥k k0, and has a lower

growth rate than the standard RT instability for ≳⊥k k1.5 0. For linearly polarized light, we see infigures 1(c)

and (d) that the instability is strongly anisotropic, with a larger growth rate for perturbationwavenumbers in the

x-direction, parallel to the electricfield and perpendicular to themagnetic field of the incident EMwave. This

may be because it is energetically easier tomove and rearrange than to bendmagnetic field lines. Similar

situations often occur in plasmas confined by a non-oscillatorymagnetic field and give rise to RT-like

instabilities, such as the gravitational and flute instabilities [20], where the perturbationwavenumbers of the

fastest-growing unstable waves are at angles almost perpendicular to themagnetic field. Recent experiments and

simulations [7] show that the RT instability gives rise to structures withwavelengths about the same as the laser

wavelength, which is consistent with figure 1 and is attributed to laser diffraction effects [7]. On the other hand,

the numerical simulations in [16] revealed that in the case of P-polarization, strong electron heating occurred

and the surface rippling can be ‘washed out’ by the quivermotion of the electrons, whichmight diminish the

importance of the instability. As seen infigure 1, the RT-like instability has also a large growth rate for ≫⊥k k0,

where the instability can be expected to saturate nonlinearly by forming small-scale structures but without

disrupting the foil. Themost severe instability is at ≈⊥k k0, which leads to the disruption of the foil and to the

broadening of the energy spectrum [6].We notice that in [16] an infinite growth rate is predictedwhen the

perturbationwavenumber in the foil equals the laserwavenumber. This is due to the assumption of space and

time harmonic scattered electromagnetic field (see their equations (1) and (2)), leading to the excitation of a

resonant standing surface wave. Taking into account the exponential growth in time of the scatteredwave due to

the RT-like instability avoids the singularity, and the growth rate becomeswell definedwhen the perturbation

wavenumber in the foil equals the laser wavenumber. A scheme tailored to reduce themaximumof the growth

rate at ≈⊥k k0 of the RT-like instabilitymay potentiallymake laser-driven radiation pressure acceleration

schemesmore tractable.
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