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Abstract

We derive a theoretical model for the Rayleigh—Taylor (RT)-like instability for a thin foil accelerated
by an intense laser, taking into account finite-wavelength effects in the laser wave field. These finite-
wavelength effects lead to the diffraction of the electromagnetic wave off the periodic structures arising
from the instability of the foil, which significantly modifies the growth rate of the RT-like instability
when the perturbations on the foil have wavenumbers comparable to or larger than the laser
wavenumber. In particular, the growth rate has alocal maximum at a perturbation wavenumber
approximately equal to the laser wavenumber. The standard RT instability, arising from a pressure
difference between the two sides of a foil, is approximately recovered for perturbation wavenumbers
smaller than the laser wavenumber. Differences in the results for circular and linear polarization of the
laser light are pointed out. The model has significance for radiation pressure acceleration of thin foils,
where RT-like instabilities are significant obstacles.

1. Introduction

The Rayleigh—Taylor (RT) instability, or RT-like instabilities [ 1], is one of the main obstacles preventing greater
success of the radiation pressure acceleration scheme in accelerating thin foils of ions by intense lasers [2—8] and
hindering the achievement of inertial confinement fusion via laser compression of fuel pellets [9]. For thin foils,
it was suggested that the use of a properly tailored laser pulse with a sharp intensity rise [2] or super-Gaussian
beams [4, 8] can stabilize the foil, whereas for thicker targets, it was shown that the RT-like instability in the hole-
boring radiation pressure acceleration is suppressed by using an elliptically polarized laser [ 10]. A kinetic theory
has also been proposed for a target with distributed electron and ion densities [11]. Although the RT instability
was originally associated with a heavier fluid on top of a lighter fluid in a gravitational field [ 12, 13], similar
instabilities occur for plasmas confined by magnetic fields (e.g. [20]) and when a thin foil is accelerated by the
pressure difference between the two sides of the foil [1, 2]. The growth rate of the RT instability for laser-
accelerated plasma is typically proportional to \/E , where gis the acceleration and k the wavenumber of the
surface perturbation. This predicts that the instability grows indefinitely for large wavenumbers, whereas in
some experiments and simulations, the RT instability gives rise to structures with a spatial periodicity
comparable to the laser wavelength [7]. The assumption of a constant normal pressure force is reasonable as
long as the perturbations of the foil are relatively small and when the length scales of the perturbations are much
larger than the wavelength of the laser [2]. However, laser light has a finite wavelength and is scattered off the
periodic structures, leading to a diffraction pattern in the electromagnetic (EM) field. For this case, the ‘pressure’
picture can be expected to be only approximate for monochromatic laser light. Theoretical investigations of the
instabilities resulting from the scattering of EM waves off plasma surface perturbations include the RT instability
of an over-dense plasma layer [14] using a magnetohydrodynamic-like model for the plasma, and the scattering
off surface plasma waves[ 15, 16] where the electron dynamics is an important source of the instability. The mode
coupling of large-amplitude surface plasma waves is also of general interest in plasma columns [17]. The aim of
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this paper is to solve the scattering problem and to derive a model for the instability of an ultra-thin perfectly
conducting foil accelerated by the radiation pressure of a finite-wavelength intense laser.

2. Theoretical model

We assume that the laser interacts with a foil where the electron density is much higher than the critical density
so that no laser light penetrates the foil. For simplicity, we assume an initially planar foil in the x—y plane, with
normal incidence of a plane wave laser light propagating in the positive z-direction. This assumption is
reasonable also near the center of alaser pulse with a finite width if the spot is at least a few laser wavelengths wide
and the laser pulse contains a significant number of laser periods. In this case, we can carry out a stability analysis
based on a Fourier decomposition of the problem in space and time. With smaller spot sizes comparable to the
laser wavelength and/or shorter pulses (such as the lambda cubed regime), more advanced methods need to be
employed, for example, based on the decomposition of a laser beam in terms of Laguerre—Gaussian modes.

We carry out the calculations in a frame moving with the velocity of the unperturbed foil. In this frame, the
dynamics of the initially small-amplitude perturbations of the foil are non-relativistic. The results obtained in
the moving frame can later be Lorentz transformed into the laboratory frame, but here we will assume for
simplicity that the speed of the foil is non-relativistic. The velocity v of the foil relative to the accelerated frame is
governed by the momentum equation

0 0 d A
M|—+vw—+v,—|v=F - Mg,z, 1
(at o yay) %o W

where M (x, y, t)is the surface mass density, g, = F /M, is the acceleration of the unperturbed foil in the z-
direction, M, is the unperturbed areal mass density of the foil, |y = 2Iy/c is the radiation pressure force, I, is the
incident laser intensity, and cis the speed of light in a vacuum. The force F is due to the space- and time-
dependent EM field acting on the foil. For an unperturbed foil, with M = M, the force F would be exactly
canceled by the inertial force —M,g, Z,butdueto perturbations in the foil, the forces are not exactly canceled,
which leads to the RT-like instability. The mass density is governed by the continuity equation

dﬂ N G(MVX> N ()(ny)
ot 0x dy

=0. (2)

The foil surface can be parameterized as S (x, y, z, t) = z — n(x, y, t) = 0, where r; is the surface elevation of
the foil in the z-direction. The velocity and surface elevation are connected through the kinematic condition

L/

. Vs, 3
o 3)

Equations (1)—(3) are completed by initial conditions onyandon Mandv atz = 7.

First we notice that the assumption of a constant radiation pressure force Fy acting perpendicularly to the
surface on one side of the foil [1, 2] wouldleadtoF = F) VS in equation (1) and to a ‘standard’ RT instability
with the growth rate \/g(Tk . Here we will instead determine F by taking into account that the electric and
magnetic fields E and B evolve in time according to Maxwell’s equations, obeying boundary conditions at the foil
surface as well as radiating boundary conditions far away from the foil. We assume that the foil is perfectly
conducting, and therefore the electric field parallel to the surface and the magnetic field perpendicular to the
surface are zero in a system (denoted by primed variables) moving with the same velocity as the surface, with the
boundary conditions expressedasE’ X VS = 0andB’ - VS = 0 atz = #. Assuming non-relativistic velocities
in the moving frame, the magnetic and electric fields are Galilei transformed from the system moving with the
foil surface (primed variables) to the accelerated frame (unprimed variables) asE’ = E + v X Band
B’ =B — v x E/c?* ~ B.(Theterm —v x E/c?will contribute to the boundary conditions only with terms of
order v?/c? compared with unity and is therefore neglected.) This gives [17, 18]

B-VS=0 (4)

for the magnetic field, whereas for the electric field we have
0=FXVS=E+vXB)XVS=EX VS—v(B-VS)+ B(v: VS),whereB - VS = 0and
v - VS = on/ot, giving

Ex vs+B2 =0 (5)
ot

atz = 7.
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The force acting on the surface can be calculated using the EM volume force [19]
f=v-&—eoiExB, (6)
ot

where

1 1 1
cjj = €O(EiEj - 55,]}32) + M—(B,BJ - 551132) (7)
0

is the Maxwell stress tensor in component form, ;; represents the unit tensor, € is the electric permittivity ina
vacuum, and g, = 1 / (€9c?) is the magnetic permeability in a vacuum. Integrating f fromz = — e toy + ¢,
assuming thatE and B are zero for z > n andlettinge — 0, gives the EM area force

F = -6 - VS — ¢E X Bon/ot, which, using the boundary conditions (4) and (5), simplifies to

2
F= 1| B _ v, (8)
2\ uo

It should be emphasized that in equation (8), E and B are the total electric and magnetic fields at the foil surface,
to be determined hereafter.

3. Stability analysis

We here give details of a stability analysis of the theoretical model, resulting in the following dispersion relations
(20) and (21) for the RT-like instability for circular and linear polarizations of a laser.
Perturbing and linearizing the system of equations (1)—(3) and (8) around the equilibrium solutionv = 0,
n=0,M= MyS=zE = Ey(t),and B = By (), gives
0* (o 07 1 0*(By-B
o o(i Lo 0B,

B Mo 0t2

— = —eoEo - Ei1 ), (9)
ot M| axr | o2 o om0 1)

where the subscript 1 denotes small-amplitude first-order perturbations. For circularly polarized light, the
zeroth-order EM force is

1 B¢
Fo=—| =% — ¢E2|, (10)
2\ o

whereas for linearly polarized light a time averaging over one laser period removes second harmonics and
reduces F, by a factor of 2 for the given amplitudes By and E,. Equation (9) is completed by finding the
dependence of E; and By on #,. The general form of equation (9) is that of a mode-coupling equation, where the
low-frequency perturbations of the foil are driven by the coupling (beating) between the large-amplitude EM
wave (Bg, E¢) and its small-amplitude sidebands (B, E;).

Writing out the components of the boundary conditions (4) and (5) gives

B, -2 _p 2 _y, (11)
ox oy
0 0

E, +EZ +B.% =y, (12)
ay ot

and

o o

E.+E,— —B,— =0, 13
“ox ot (13)

atz = 5. Anincident EM wave will be reflected by the foil, and perturbations in the foil surface will lead to the
refraction of the wave. The electric and magnetic fields can be writtenE = E;y + E, andB = B;; + B,, whereE;
and B, are the fields of the incident wave and E, and B, fields of the reflected wave. In what follows, we show
details of the calculations for a circularly polarized incident wave and at the end state only the final result for a
linearly polarized wave. More details of the derivations will be given elsewhere. For an incident right-hand
circularly polarized EM wave propagating in the z-direction, we have

A
€ ~ .
Ei= EEioela" + c.c (14)
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and

A
B, = %B\ioem" + c.c., (15)

where€ = % + iy describes the polarization, X and § are unit vectors in the x- and y-directions, 8; = koz — wot
is the phase of the incident wave, kg is the incident wavenumber, wg = ck is the frequency, and E;, = icBj. For
linearly polarized light with the electric field along the x-axis, we instead have E;y = (X/2) Eo exp (i6;) + c.c.,
By = (y/ 2)By exp (i6;) + c.c., and E;o = cBiy. We next assume small perturbations of the surface, so

n(x, y, t) = n(x, y, t),where| V ||| < 1. (This implies small wave steepness| Vi;;| < land that|n, V| <« 1
whenactingonE andB.) ThenE,_, = Eg ,=¢ + Ei,=0 + 7, (0E(/0z),-¢ and

B,—, = Bg,—0 + Bi =0 + 1,(0Bo/0z),—0, Where|E;| < |E¢|and|B,| < |By|. Atz=0,wehaved; = 6, = —wyt.
WritingE, = E,e®/2 + c.c.andB, = B,e®/2 + c.c., and linearizing the boundary conditions (11)—(13), we
have,atz=0,

~ ~ O ~ O ~ (0 0

rzl — erﬂ — Pry0 ’/h B nl +1 nl (16)

Ox ay 0x ay

~ aEryO ~ a”h ~ a’71
E., + + Biyo— = Bjp| i -—1 17
m T oz x0 o i0 oM o (17)

and
aEer N a’/ll =~ . 0771

E,x + — B, ,o— = —1Bj| iwon; — — |- 18
1T oz 0 o 0 oM o (18)

To the zeroth-order, the boundary conditions at the foil surface z= 0 are that the electric field parallel to the
foilis zero, Eq = 0,and therefore E,; = —E;o; and it follows from Maxwell’s equations that B,y = + Bjpatz=0.
Since Ey = 0 and By = 2By in equations (9) and (10), it is apparent that the foil is accelerated by the magnetic
pressure of the EM field. The unidirectional wave equations 0E,¢/0t — cOE,¢/dz = 0 and

0B,/0t — cOB,o/0z = 0 of the reflected wave have the boundary conditionsE, = —(&/2) Ejei®® + c.c.,and

B, = (Q/Z)B\Oeigﬂ(t) + c.c.atz=0, with the solutionsE,, = —(/e\/Z)I’E\Oei‘% ") + c.c.and

B, = (e/ 2)Bipei®") 4 ¢.c., where the retarded time ¢’ is obtained from ¢’ = £ with& = z + ct. It follows that
E,o = —eE l0)=i01) and B, = eB eifo(t)=i00(t) Usmgdt /0z = 1/cand Ejy = icBjo, we have

E.ol,=0 = —1ecBi0,B,0 l=0 = eBiO,aErO/az l=0 = —ea)oBio, and()B,O/az l=0 = —1eko By, which is used in
equations (16)—(18).

We assume a four-wave model in which the EM wave is scattered into two EM sidebands off the ripples in the
foil surface so thatﬁ,l = E,H exp (—iwt + ikex + ik,y + ik;42) + ﬁ:l_ exp (iw*t — ikyx — ik,y — ik,_*z),
B, = B,i, exp (—iwt + ik,x + ikyy + ik,4z) + B),_exp (iw*t — ik,x — ik,y — ik;_z),and
n = 1, exp (—iwt + ik,x + ik,y) + 7, exp (iw*t — ik,x — ik, y). The vacuum wave equations for the
scattered light, 0°E,1/0t? — ¢2V ?E,; = 0and 0’B,,/dt> — ¢*V ?*B,; = 0, then give the dispersion relation

(iw+ck0)2 —cz(kf+kzzi) =0, (19)

where kf = kf + kyz. Equation (19) has the solutionsk,, = F+/ (ko + w/c)* — kf , where the branches of the
square root are chosen such thatimag(k,.) < 0 forimag(w) > 0. This gives radiating boundary conditions with
waves propagating out from the foil and vanishing atz = —oo, which is consistent with the model. For ko > &,
the scattered wave is diffracted and propagates out from the foil at an angle ¢ to the negative z-axis, given by

sin ¢ ~ k) /kq, whereas fork, < k, the scattered wave is evanescent and decays rapidly with the distance from
the foil. Separating wave modes proportional to exp (—iwt + ik.x + ik,y)andexp (iw*t — ik.x — ik,y), the
boundary conditions (16)—(18) yield the Fourier coefficients B4 = 2By (ik, — k)i,

Bpi— = 2By (ikx + ky)ﬁpﬁryu = 2iBjo(wo + @)}, By = —2iBjy (0o — @)y, Epa s = 2Bjg (o + w)ij;,and
E_ = 21’3\15 (wg — w)ij,. From the divergence condition V - E, = 0 to the left of the foil, we obtain

E,i. = —2By(w + o) (ky + iky)ﬁl/szr andE,,;_ = —21/3\1-:)(500 - w)(ky — ik),)ﬁl/kz_,and from the x- and
y-components of Faraday’slawoB,/0t = —V X E,, we have B,y 4 = —Ziﬁo(kf + kZZJr - ikxky)ﬁl/kﬁ,
Br),H = 2Bjo (k2 + k2, + ikck )nl/kH,Bm_ = —2iBy (kf + k2 + ikxky)ﬁl/kz_, and

~

By = —2Bj (k2 + k2 — ikeky) 7, /..
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We next insert these results into equation (9) and separate terms proportional toexp (—iwt + ik.x + ik, y)

and/orexp (iw*t — ik,x — ik, ). This gives the dispersion relation for the RT-like instability for circularly
polarized incident laser light,
gy ki + 2k
Wt — 2 k 2 _ i 0 L z+
g() 1 2 ; kzt

, (20)

wherek... is given by the solutions to equation (19), and g, = F/M,. An analogous calculation for linearly
polarized light withE;y = (x/2) Epo exp (i6;) + c.c.,Bjp = (y/2) B exp (i6;) + c.c.,and Ej = By yields the
dispersion relation
ki+k?
o — g7k} = iw’g, Y = (21)
e

kzi
>

Equations (20) and (21) are the main results of this paper.

4. Discussion and numerical results

The dispersion relations (20) and (21) have one positive imaginary root® = iw;, which gives rise to a purely
growing instability with growth rate w;. If the right-hand sides of equations (20) and (21) are neglected, we
recover the standard RT instability with the growth rate w; = /g, k1 . Two real-valued roots also exist which give
rise to oscillatory solutions, similar to the case of the standard RT instability [1]. To compare with experiments
and simulations, we note first that a critical dimensionless parameter of the system is the normalized
acceleration g, / (c%*ky), which can be expressed in terms of commonly used laser—plasma parameters as
go/(czko ) = 20 (Z;m./m;)(n,/n,) aoz/(ko d), where Z; is the charge state of the ions, m, and m; are the electron
and ion mass, n,/n,, is the ratio of the electron density to the critical density, aq = eE;o/ (m,cwq ) is the
normalized laser amplitude, d is the foil thickness, and the coefficient 6 = 1/2 for linearly polarized light and

o = 1for circularly polarized light. For example, Yan et al [3] used circularly polarized light (¢ = 1) in their
simulations to study the radiation pressure acceleration of a proton H* foil (Z;=1,m; = 1836m,) with

no/ne = 10,kod = 0.63,anday = 5, givinggo/(czk) ~ 4.3 x 1073. On the other hand, Palmer et al 7] used
linearly polarized light (6 = 1/2) in their experimental and simulation study of the RT instability of a carbon
CS* foil (Z,;=6,m; ~ 12 x 1836 X m,) withn,/n., = 10* andkyd = 0.03. Using their valuesa, = 10 and

ao = 20 gives g, /(c%) ~ 9.1 X 107 and3.6 x 1073, respectively.

Figure 1 shows the growth rates of the instability for a typical value g, / (c’*k) = 3 x 1072, For the case of
circularly polarized light, it is noticeable from figures 1(a) and (b) that the growth rate of the instability is close to
that of the standard RT instability fork, < kg, hasa sharply peaked maximum atk; = kj, and hasalower
growth rate than the standard RT instability fork; > 1.5k,. For linearly polarized light, we see in figures 1(c)
and (d) that the instability is strongly anisotropic, with a larger growth rate for perturbation wavenumbers in the
x-direction, parallel to the electric field and perpendicular to the magnetic field of the incident EM wave. This
may be because it is energetically easier to move and rearrange than to bend magnetic field lines. Similar
situations often occur in plasmas confined by a non-oscillatory magnetic field and give rise to RT-like
instabilities, such as the gravitational and flute instabilities [20], where the perturbation wavenumbers of the
fastest-growing unstable waves are at angles almost perpendicular to the magnetic field. Recent experiments and
simulations [7] show that the RT instability gives rise to structures with wavelengths about the same as the laser
wavelength, which is consistent with figure 1 and is attributed to laser diffraction effects [7]. On the other hand,
the numerical simulations in [16] revealed that in the case of P-polarization, strong electron heating occurred
and the surface rippling can be ‘washed out’ by the quiver motion of the electrons, which might diminish the
importance of the instability. As seen in figure 1, the RT-like instability has also a large growth rate fork; > ko,
where the instability can be expected to saturate nonlinearly by forming small-scale structures but without
disrupting the foil. The most severe instability isatk, & ko, which leads to the disruption of the foil and to the
broadening of the energy spectrum [6]. We notice that in [16] an infinite growth rate is predicted when the
perturbation wavenumber in the foil equals the laser wavenumber. This is due to the assumption of space and
time harmonic scattered electromagnetic field (see their equations (1) and (2)), leading to the excitation of a
resonant standing surface wave. Taking into account the exponential growth in time of the scattered wave due to
the RT-like instability avoids the singularity, and the growth rate becomes well defined when the perturbation
wavenumber in the foil equals the laser wavenumber. A scheme tailored to reduce the maximum of the growth
rateatk; = ko of the RT-like instability may potentially make laser-driven radiation pressure acceleration
schemes more tractable.
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Figure 1. The normalized growth rate @ /@, of the instability for (a), (b) circularly polarized waves as obtained from equation (20)
and (¢), (d) linearly polarized waves as obtained from equation (21). (a), (c) Color plots of the growth rate as a function of (k,/ko,

k, / ko). (b), (d) Line plots of the growth rate (solid lines). A comparison is made with the standard Rayleigh—Taylor instability (dashed
line).
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