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Abstract—The capability of using illuminators of opportunity
for target classification is of great interest to the radar com-
munity. In particular the alternative use of Global Navigation
Satellite System (GNSS) has recently initiated a number of studies
that aim to exploit this source of illumination for passive radar.
We recently introduced the concept of a GNSS based passive
radar for extraction of micro-Doppler signatures from helicopter
rotor blades with the aim of identify these kind of targets. In
this paper we present the experimental validation of our concept
with real data from two different models of helicopter.

Index Terms—Passive Radar, Global Navigation Satellite Sys-
tem, micro-Doppler, forward scattering enhancement, experimen-
tal analysis.

I. INTRODUCTION

In recent years a big interest has been placed on the capa-

bility of using illuminators of opportunity for radar purposes.

Possible illuminators are systems deployed generally for com-

munication purposes, for example Digital Video Broadcasting-

Terrestrial (DVB-T), FM Radio, Wi-fi, Mobile Phone Net-

works, Global Navigation Satellite Systems (GNSS). A system

exploiting the energy transmitted from these non-cooperative

transmitters is called Passive Bistatic Radar and has been

successfully investigated in different configurations and using

different sources of illumination. This kind of technology

has several advantages thus opening to many applications for

civilian and military purposes. Exploiting an existing source

of RF energy the system can be cheaper, stealthier, frequency

allocation free and provide the capability to have information

in portion of the spectrum unavailable in the past [1]. Recently

this topic has seen the interest growing with an extensive

work carried by the radar community. Real demonstrators

[2], [3] have been built to prove the real applicability of this

technology. A wide set of possible illuminators of opportunity

have been evaluated [4], [5], [6], [7]. Moreover a set of more

advanced radar techniques have been proved in this field such

as through the wall radar [8], SAR and ISAR imaging [9], [10],

reliable detection [11], [12] and Automatic Target Recognition

[13].

We recently investigated the possibility to exploit the GNSS

as an illuminator of opportunity to measure the micro-Doppler

signature of helicopter rotor blades exploiting the favourable

geometry and relatively low carrier frequency [14]. Micro-

motions present in a target, such as vibrations due to the

engine or a rotating antenna introduces non stationary Doppler

modulations named micro-Doppler [15]. These may be ex-

tracted from both monostatic and bistatic radar providing some

interesting advantages in the bistatic case [15], [16], [17].The

use of micro-Doppler for target classification has been deeply

investigated in recent years [18], and it can be now considered

a technology ready to be deployed in commercial devices [19].

Of particular interest in the paper is the analysis of the effect

from the rotating rotor blades of an helicopter since the effect

on the radar returns depends on the characteristics of the rotor

like the blade rotating velocity, blade length and the number

of blades [15], [20]. Helicopters parameters of helicopter rotor

blades were estimated in [21] with an algorithm based on

the Radon transform. This algorithm was tested on real data

and shown to be accurate and able to recognize different

helicopters, while in [22] the return of an helicopter in a DVB-

T based passive radar was analysed.

To deal with the problem of the extraction of the micro-

Doppler signature of the rotor blades from the bulk return of

the helicopter fuselage, clutter and direct signal interference in

[23] we proposed the use of the Singular Spectrum Analysis

(SSA) as tool to select the non stationary components belong-

ing to the return of interest.

In this paper we report the experimental validation of the

concept described in [14], providing an analysis of the returns

from 2 different helicopters and showing the micro-Doppler

signatures achieved after the SSA based extraction method

[23]. The experimental results demonstrate the effectiveness

of such a system for helicopter identification.

The remainder of paper is organized as follows. Section

II summarizes the concept of the PBR presented in [14].

Section III describes the main receiver characteristics and the

experiments, while Section IV presents the results showing the

obtained micro-Doppler signatures from 2 helicopters. Section

V concludes the paper.

II. BISTATIC GNSS RADAR SYSTEM GEOMETRY AND

SIGNAL MODEL

The acquisition geometry of the passive bistatic radar pro-

posed in [14] is shown in Figure 1. The transmitter is one of

the GNSS transmitters visible from the receiver. RT and RR

are the transmitter to target and the receiver to target ranges



respectively. The angle β is the solid bistatic angle defined

as the solid angle between the transmitter, the target and the

receiver [24].

The principal transmitted signal from the GNSS satellite

Figure 1: Proposed bistatic passive radar geometry with the

GNSS illuminator.

is a Code Division Multiple Access code consisting of a

Pseudo Random Noise (PRN) sequence, in particular for the

GPS constellation that is exploited in this work, the sequence

consists of a C/A code. The received radar return after the

cross correlation with the replica of the PRN signal is [14]:

src(τ, η) =A0pr

(

τ −
RR(η)

c

)

exp

{

−j
2πf0R(η)

c

}

(1)

where f0 is the carrier frequency, c is the speed of light, pr(τ)
is the range envelope where the time reference is triggered

to the direct signal received from the transmitter, A0 is the

amplitude of the scattered signal, τ is the variable representing

the fast time of the received signal, while η represents the

slow time of the acquisition of the different echoed PRN

sequences and R(η) is the bistatic target range. This slow

time is required because the dynamics of the micro-motion

is slower than the dynamics of the signal used to perform

ranging. This is also the reason why the cross-correlation of

the C/A sequence can be performed without affecting the

micro-Doppler analysis. However the signal model requires

to be modified in the presence of target micro-motions where

phase modulation of the signal is introduced.

In the application considered in this paper the receiver is

a platform on ground. This kind of configuration allows

us to obtain easily a near forward scattering configuration.

The target is a helicopter approaching the Line Of Sight

(LOS) between the transmitter and the receiver. It means

that the bistatic angle β is close to 180◦ where forward

Figure 2: Geometry of the rotating blades seen from the

bistatic radar.

scattering enhancement can be obtained [24]. This particular

geometry is required in order to exploit the forward scattering

enhancement increasing the radar cross section of the rotor

blades. Further details about the power budget analysis can

be found in [14].

Figure 2 shows a view of the geometry of the rotor blades

relative to the bistatic geometry. The rotating plane of the rotor

blade is parallel and orthogonal to the line of sight between

the transmitter and the receiver. Vtip is the velocity vector of

the tip of the rotor blade and δ is the angle between Vtip and

the bisector of the bistatic angle β. The angles β and δ are two

important factors that influences the micro-Doppler signature

of the target in a bistatic geometry [15].

The model of the received signal in (1) must consider also the

effect of the micro-motion as follows:

src(τ, η) =A1(η)pr

(

τ −
RR(η)

c

)

(2)

exp {−j(ΦR(η) + ΦmD(η))}

where ΦR = 2πf0R(η)/c is the phase of the target containing

the constant motion and ΦmD(η) is the phase modulation due

to the micro-motions of the target and can be expressed as

[15]:

ΦmD(η) = −
2π

λ

Lb

2
cos

(

β

2

)

cos(δ) cos(Ωη + θ0) (3)

where Lb is the length of the rotor blade, Ω is the angular

rotation rate and θ0 is the initial rotating phase. The product

cos
(

β

2

)

cos(δ) is the factor that takes into consideration the

bistatic geometry [15].

The amplitude of the received echo is also affected by the

rotation of the blade and may be written as:

A1(η) = A0sinc

(

2π

λ

Lb

2
cos

(

β

2

)

cos(δ) cos(Ωη + θ0)

)

(4)

Assuming that a rotor has N blades they will have N different

initial phases θk = θ0 + k2π/N with k = 0, 1, 2, ..., N − 1.



The total received signal from the N blades will be the sum

of the modulated signal from each blade, from (2), (3) and (4)

it can be written as:

stot(τ, η) =

N−1
∑

k=0

A1k
(η)pr

(

τ −
R(η)

c

)

(5)

exp {−j(ΦR(η) + ΦmDk
(η))}

The expression is similar to the signal model in [15] but it is

adapted for the specific proposed system. The micro-Doppler

shift can be obtained for each blade from (3) as:

fmDk
(η) =

1

4π

d

dη
ΦmD(η) =

Lb

2λ
Ω cos

(

β

2

)

cos(δ)[− sin(θk) sin(Ωη)+

+ cos(θk) cos(Ωη)] (6)

Equation (6) represents the expression of the expected

micro-Doppler signature for a rotor blade of an helicopter of

length Lb with a rotation rate Ω, it can be used then to obtain

the features of the rotating blade from the micro-Doppler

signature.

III. EXPERIMENTAL SETUP AND ACQUISITIONS

In this section the experimental setup and the real data

acquisitions are desctribed.

In order to acquire the data a 2 channel GPS receiver was

designed with on board computing capabilities. As described

in [14] a high gain antenna is required in order to be able to

achieve acceptable detection ranges. For this reason an active

GPS antenna was selected, the selected PCTEL 3978D-DH is

shown in Figure 3, this antenna has a gain of 40 dB and 0.05
dB of noise figure of the Low Noise Amplifier.

Figure 3: PCTEL 3978D-DH GPS Antenna

The self-built receiver, shown in Figure 4, uses an LNA

(Low Noise Amplifier) front end before a downconversion

chip containing an LNA, clock generation, mixer and anti-

imaging filters delivering an IF frequency of 4 MHz. The

IF frequency is digitised using an 8bit ADC (Analogue to

Digital Convertor) using a sampling rate of 16.369 MHz.

The digitised signal is buffered in a Xilinx Spartan 6 FPGA

before it is transferred over USB using a Cypress EZUSB

chip. The host software runs on Linux reading data from the

USB bus using libusb and writing to a binary file. This binary

Figure 4: Developed Receiver

file is then easily read and parsed in MATLAB.

The real data acquisitions were performed in proximity of,

Cumbernauld Airport in Scotland. The satellites visible at the

time of acquisition [25] (with reference to their PRN codes)

were: 5, 10, 15, 26 and 28. Measurements were obtained

with two different helicopters flying in the area and used for

pilot training purposes. For this reason the helicopters were

following a set path of taking off performing a circuit of the

airport and landing. The two helicopters used were a small

two seat Robinson R22 and a larger four seat Robinson R44,

both use two bladed main and tail rotors [26]. The R22 has a

main rotor repetition of 8.5 RPS (Rotations Per Second), the

tail rotor has a repetition rate of 53.3 RPS. The motor rotor

blades are 3.84 m in length and the tail rotor has a length of

0.53m. The R44 main rotor has a rotation rate of 6.8 RPS

with a blade length of 5.03 m. The tail rotor has a repetition

rate of 40.5 RPS with a blade length of 0.74 m.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained from the real

data acquired while the R22 and R44 helicopters were flying

approaching and landing to Cumbernauld Airport.

To process the data the GPS satellite showing the best bistatic

geometry (i.e. providing forward scattering enhancement) was

selected using the real time information on the position of the

GPS satellites, at the time of acquisition [25]. Considering the

flight path of the helicopters, satellite number 26 was identified

as the one providing the best geometry, considering the flight

path of the helicopters. Notice that the selection of the best

geometry can be performed by the receiver in an operative

scenario, for example a specific selection can be used if the

interest is to monitor a given area or all the available satellites

can be used to cover most of the possible directions.

The received signals are then cross-correlated with the C/A

sequence of the selected satellite. In order to remove the direct

signal and the other signal components (i.e. fuselage return)

the Singular Value Decomposition technique proposed in [23]

is used.

In Figure 5 the spectrogram of the extracted micro-Doppler

signature of the main rotor of the R44 is shown. By measuring

the interval between two flashes it is possible to extract an

interval of 0.0735 s leading to 13.6 flashes per seconds. The

signature shows that an even number of blades are present



in the rotor, thus the 13.6 flashes per second correspond to

6.8 RPS for a 2 bladed helicopter. This value matches the

characteristics of the main rotor of the R44 helicopter.

Figure 5: Micro-Doppler Signature of the main rotor of the

R44 Helicopter

The same processing has been applied to the returns col-

lected while the R22 was flying. The spectrogram shown in

Figure 6, results less clear than the one shown in Figure

5. However from the top of the spectrogram the periodic

component due to the flash of the tip of the blade is visible.

The separation between two consecutive flashes is 0.0599s

leading to 16.69 flashes per second. Assuming 2 blades in the

rotor this leads to 8.34 RPS in agreement with the possible

values of RPS around 8.5 RPS reported in the pilot manual

of the R22 helicopter [26].

Figure 6: Micro-Doppler Signature of the main rotor of the

R22 Helicopter

V. CONCLUSIONS

This paper presented the experimental validation of the

concept proposed in [14]. The capability of extracting micro-

Doppler signatures of main rotor of helicopters exploiting

GNSS signals of opportunity has been demonstrated through

the acquisition of real signals from 2 helicopters flying in

the Cumbernauld Airport area. The results demonstrate that

in the near forward scattering regime the main rotor returns

can be detected and that the micro-Doppler signature can be

used for helicopters identification. Further development will

see the exploitation of the echoes with multiple PRNS at the

same time, and the investigation of the best strategy for the

signature extraction and classification, including sparse and

model based approaches.
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