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Abstract

The aims of this work are to develop an efficient modeling method for es-
tablishing dynamic output probability density function (PDF) models using
measurement data and to investigate predictive control strategies for con-
trolling the full shape of output PDF rather than the key moments. Using
the rational square-root (RSR) B-spline approximation, a new modeling al-
gorithm is proposed in which the actual weights are used instead of the
pseudo weights in the weights dynamic model. This replacement can reduce
computational load effectively in data-based modeling of a high-dimensional
output PDF model. The use of the actual weights in modeling and control
has been verified by stability analysis. A predictive PDF model is then con-
structed based on which predictive control algorithms are established with
the purpose to drive the output PDF towards the desired target PDF over the
control process. An analytical solution is obtained for the non-constrained
predictive PDF control. For the constrained predictive control, the optimal
solution is achieved via solving a constrained nonlinear optimization problem.
The integrated method of data-based modeling and predictive PDF control
is applied to closed-loop control of molecular weight distribution (MWD) in
an exemplar styrene polymerization process, through which the modeling ef-
ficiency and the merits of predictive control over standard PDF control are
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demonstrated and discussed.

Keywords: Probability density function (PDF), B-spline approximation,
parameter estimation, model predictive control (MPC), molecular weight
distribution (MWD)

1. Introduction

Polymers are materials composed of macromolecules with different chain
lengths, and the macromolecular architectures govern the properties of poly-
mers such as thermal properties, stress−strain properties, impact resistance,
strength, and hardness that affect end-use applications [1, 2]. The molecular
weight distribution (MWD) is a major index featuring molecular and compo-
sitional characteristics of a polymer, therefore is one of the most important
variables to be controlled in industrial polymerization processes. Compared
with most control systems that aim to drive the output variables to follow
desired set points in time domain, the shaping of MWD is much more com-
plicated in modeling and controller design since the term to be controlled
is a distribution function that needs to follow a target distribution. The
lack of on-line measurement of MWD is another main problem in closed-loop
control of polymerization reactions. Sensors like infrared and Raman scat-
tering, mainly measure monomer conversion, not polymer molecular weight.
Soft measurement of MWD through mathematical modeling is still the pri-
mary means to provide online information on MWD for control purposes.
Mathematical models of MWD developed based on reaction mechanisms are
normally nonlinear and of high dimensions. In the past decades, a number of
methods have been developed for MWD control in polymerization processes
[3, 4, 5, 6, 7, 8, 9, 10, 11]. An earlier review on modeling and optimization
of particulate polymerization processes is given in [12].

Like MWD control in polymerization processes, many other industrial
processes also have the problems that the product quality to be controlled
is closely linked to output variables that need to follow certain distribution
patterns, for example, particle size distribution (PSD) control in polymeriza-
tion processes [13, 14, 15, 16], pulp fibre length distribution control in paper
industries [17], particulate process control in powder industries [18, 19], crys-
tal size distribution (CSD) control in crystallization processes [20, 21, 22],
crystal size and shape distribution control of protein crystal aggregation in
biopharmaceutical production [23], flame temperature distribution control
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in furnace systems [24, 25], power PDF control in nuclear research reactors
[26], and bubble size distribution control in flotation processes [27], to name
a few. To tackle the control problems for such systems, the idea of output
stochastic distribution control (SDC) or output PDF control has been pro-
posed, in which the full shape of the output distribution is directly controlled
[28, 29, 30, 31, 32]. Unlike mean-and-variance control and other moment-
based control, output PDF control can be applied to systems with output
function of arbitrary distribution shape and subject to non-Gaussian noise
terms. The purpose of output PDF control is to drive the output PDF to-
wards the desired target PDF over the control process. It is fundamentally
difficult to control the output distribution with a limited number of control
inputs. In this work, we hope to make progress to tackle this challenging
task from both modeling and control point of view.

Developing a general dynamic model to describe output PDF as a func-
tion of control input is the first step towards closed-loop control. Developing
a reliable output PDF model from measurement data of control input and
output distribution for any practical systems is a very challenging task. B-
spline models are often used in output PDF approximation. The major ad-
vantage of a B-spline PDF model is the decoupling of time domain and PDF
definition domain in formulation. Several B-spline based PDF models are
developed, among them the simplest one is the linear B-spline PDF model,
where the output PDF is approximated by B-spline basis functions linearly
combined together, that is , γ(y, u) =

∑n

i=1 ωi(u)Bi(y), where γ(y, u) is the
output PDF defined in a bounded region [a, b]; y ∈ [a, b] is an independent
variable in the probability distribution space (note y is not used to describe
the system output as normally appeared in control literature). u is the con-
trol input. Bi(y)(i = 1 · · ·n) are the B-spline basis functions defined in a
specific range. ωi(u) is the weight associated with Bi(y). n is the number
of basis functions used, increasing which will improve approximation accu-
racy but cost more computational efforts. Considering the example of MWD
modeling in a polymerization process, y can be used to stand for the chain
length, u is the manipulated variable such as the ratio of monomer and cata-
lyst flows, γ(y, u) is the MWD to be controlled. Linear B-spline models have
been used in our earlier studies of MWD modeling and closed-loop control
system design [8, 33].

One numerical issue of a linear B-spline model is that the weights can
sometimes be negative in calculation, which is not acceptable for a PDF. An
alternative square-root model is developed to address this issue [34]. The
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integration constraint of
∫

γ(y, u)dy = 1 must always apply for any PDFs
in its definition domain. To cope with this integration constraint, a rational
B-spline model is proposed [35]. Combining the square-root model and the
rational B-spline model together, the so-called rational square-root (RSR) B-
spline model is developed [36], which guarantees both the non-negativeness
nature of a PDF and the integration constraint.

√

γ (y, u) =

∑n

i=1 ωi(u)Bi (y)
√

∑n

i,j=1 ωiωj

∫ b

a
Bi (y)Bj (y) dy

(1)

In this work, the RSR B-spline PDF model is further investigated so as to
improve the computational efficiency in the data-based modeling procedure.
It is one of our major aims to develop an efficient modeling algorithm for
establishing dynamic output PDF models using data of control input and
output PDF. This is significantly different from most existing works in output
PDF control that were developed based on assumed models.

Model predictive control (MPC) is a well-established advanced control
technique and has been widely accepted in industry since its early develop-
ment in late seventies. It is a family of control methods that make explicit use
of process models to predict system output at a future horizon. The sequence
of future control signals are calculated by minimizing a performance index, at
each time instance, and only the first control signal of the sequence is applied
to the process. A receding strategy is applied to repeat the model prediction
and optimal control design at all control intervals. Introductions on linear
and nonlinear MPC can be found from a number of review articles such as
[37, 38, 39]. Applying MPC to output PDF control systems, however, is
rather difficult since it is the time-varying distribution to be controlled other
than a variable. There are only a few works dealing with shaping of MWD
through MPC strategy. In [40], an MPC method is proposed to control the
MWD and PSD in free-radical emulsion copolymerization indirectly through
controlling key parameters such as average radius, particle size polydispersity
index (PSPI), number-average molecular weight, and monomer conversion.
In [41], the low-order moments of MWD in styrene polymerization in a CSTR
is controlled by MPC with constraints on control input. In [11], predictive
control is employed to achieve desired trends in average composition and
molecular weight drift in copolymerization. None of the above work directly
controls a full MWD with MPC, only certain features relevant to MWD are
controlled. In our earlier work, a non-constrained MPC was attempted for
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MWD control [42]. In this work, it is aimed to develop a predictive control
scheme to control the full shape of MWD by considering control constraints.

The rest of this paper is organized as follows. In Section 2, a new mod-
eling algorithm is proposed which employs the rational square-root (RSR)
B-spline model for output PDF approximation. The rationale of using the
actual weights instead of the pseudo weights is discussed with a strict stabil-
ity analysis. A predictive PDF model is established in Section 3, based on
which two predictive PDF control strategies are developed in Section 4. Sim-
ulation study of an exemplar MWD control system in styrene polymerization
is carried out in Section 5 to evaluate the modeling efficiency and the control
performances under different strategies. Conclusions are given in Section 6.

2. Data-based model development using RSR B-spline PDF ap-

proximation

2.1. RSR B-spline model for output PDF approximation

An output PDF control system is normally a nonlinear dynamic system,
for which a nonlinear dynamic weights model is expected. However, due to
the distribution characteristic in output, development of a nonlinear output
PDF model using input data and output PDF data is extremely difficult.
A reasonable assumption can be made that near the operating point, there
is no essential difference between the linear weights dynamic models in [17]
and the nonlinear weights models in [32] with Lipschitz assumptions. In this
work, linear dynamics in weights are considered and the discrete-time RSR
B-spline PDF model can be represented as follows:

V (k + 1) = AV (k) + Bu(k) (2)
√

γ(y, k) =
C(y)V (k)

√

V T(k)EV (k)
(3)

where

C(y) = [B1(y), B2(y), · · · , Bn(y)] (4)

E =

∫ b

a

CT(y)C(y)dy (5)

A and B are matrices of proper dimensions, k is the sampling time. The n
B-spline basis functions in C(y) cannot all be zeros simultaneously, therefore
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matrix E is invertible. Here V (k) = [ω1(k), ω2(k), · · · , ωn(k)]
T is called the

pseudo weights vector in the RSR B-spline model since it cannot be uniquely
determined from γ(y, k). The actual weights vector is defined as [36]

Vr(k) =
V (k)

√

V T(k)EV (k)
. (6)

It is apparent that Vr(k)
TEVr(k) = 1 for all k.

To establish a complete dynamic model as in (2)-(3) using the data of
control input and output PDF, one needs to calculate V (k) to obtain the
PDF approximation weights at each time k, and estimate all parameters in
A and B to establish the weights dynamics. It can be seen from (3) that the
pseudo weights vector is difficult to be determined since the model regarding
V (k) is nonlinear and also V (k) is not unique, however, the actual weights
vector, Vr(k), can be uniquely calculated from the PDF function γ(y, k) as
explained in the following.

Left multiplying CT(y) to both sides of (3) and then taking integration
for y on both sides leads to

∫ b

a

CT(y)
√

γ(y, k)dy =

∫ b

a

CT(y)C(y)dyVr(k) = EVr(k) (7)

As discussed earlier E is invertible, therefore the actual weights vector can
be calculated from the output PDF by

Vr(k) = E−1

∫ b

a

CT(y)
√

γ(y, k)dy (8)

While it is impossible to uniquely determine the pseudo weights, V (k),
from an output PDF, a straightforward solution to calculate the B-spline
actual weights, Vr(k), is provided in (8). The rationale of using Vr(k) in
replacing V (k) is further discussed in the next section.

2.2. Feasibility analysis on the use of actual weights

Denoting e(k) = V (k) − Vg, where Vg is the vector of the actual weights
corresponding to the desired PDF γg(y), i.e. V

T
g EVg = 1, the following error

dynamic system can be established for model (2)-(3):

e(k + 1) = Ae(k) + Bu(k) + AVg − Vg. (9)
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The purpose of controller design is to choose a control sequence u(k) such
that the system’s output PDF follows a pre-specified continuous PDF γg(y)
as close as possible. Here γg(y) is also defined on [a, b] and is independent of
u(k). This is equivalent to choosing an augmented controller

ū(k) = (BTB)−1BT(A− I)Vg + u(k), (10)

such that
√

γ(y, ū(k)) follows
√

γg(y) as close as possible. As a result, ū(k)
can be designed in the form of output feedback control for the error dynamic
system (9),

ū(k) = Kǫ(k),

ǫ(k) =

∫ b

a

(

√

γ(y, ū(k))−
√

γg(y)

)

dy

= Σ0(Vr(k)− Vg) (11)

where Σ0 =
∫ b

a
C(y)dy.

The following Lemma is presented for stability analysis of controller (11)
in which the actual weights vector is used.

Lemma 1. For a function f(α, β) =
√
αTEα −

√

βTEβ,E > 0, there is a

ρ with ‖ρ‖ ≤ λmax(E)√
λmin(E)

such that

‖f(α, β)‖ ≤ ρ ‖‖α‖ − ‖β‖‖
where ‖ · ‖ is Euclidean norm. λmax(E) and λmin(E) are the absolute maxi-
mum and minimum eigenvalue of E, respectively.

Proof.

‖f(α, β)‖ =

∥

∥

∥

∥

∥

αTEα− βTEβ√
αTEα +

√

βTEβ

∥

∥

∥

∥

∥

≤ ‖E‖
∥

∥(α− β)T(α + β)
∥

∥

∥

∥

∥

√
αTEα +

√

βTEβ
∥

∥

∥

≤ λmax(E)
∥

∥(α− β)T(α + β)
∥

∥

√

λmin(E)
∥

∥

∥

√
αTα +

√

βTβ
∥

∥

∥

= ρ ‖‖α‖ − ‖β‖‖
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The feedback controller (11) is formulated on the actual weights and has
the following stability Theorem.

Theorem 1. Selecting

K = L
√

V T
g EVg (12)

if there is an L so that A+BLΣT
0 is Hurwitz, then the asymptotical stability

of the error dynamic system (9) can be guaranteed by feedback control (11).

Proof. Substituting (12) into (11), we have

ǫ(k) =
Σ0e(k)

√

V T
g EVg

+
Σ0V (k)Λ1
√

V T
g EVg

,

where Λ1 =
√

V T
g EVg

V T(k)EV (k)
− 1, and the error dynamic can be written as

e(k + 1) = Ae(k) + BL
√

V T
g EVgǫ(k)

= (A+BLΣ0)e(k) + BLΣ0V (k)Λ1.

Since G = A + BLΣT
0 is Hurwitz, there exists a unique positive definite

symmetrical matrix P that satisfies the following Lyapunov equation

GTPG− P = −I. (13)

Choose the following Lyapunov function

π(e(k)) = eT(k)Pe(k), (14)

then

∆π = π(e(k + 1))− π(e(k))

= −‖e(k)‖2 + 2eT(k)GTPBLΣ0V (k)Λ1

+(BLΣ0V (k)Λ1)
T P (BLΣ0V (k)Λ1)

≤ −‖e(k)‖2 + 2

∥

∥GTPBLΣ0

∥

∥λ ‖e(k)‖2
√

λmin(E)

+
‖PBLΣ0‖2 λ2 ‖e(k)‖2

λmin(E)
.
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Moreover, if

‖L‖ ≤ (−µ1 +
√

µ2
1 + 4ν)

√

λmin(E)

2ν

where µ1 =
∥

∥GTPBΣ0

∥

∥ ρ and ν = ‖PBΣ0‖2 ρ2, then ∆π ≤ 0, which means
this feedback control system is asymptotically stable.

From Theorem 1, it is known that if matrix G is Hurwitz, there exists
an output feedback controller that is based on the actual weights. Therefore,
when V (k) in the controller is replaced by the actual weights, this controller
can be taken as a special output feedback controller. In other words, when an
output PDF model satisfies the condition that G being stable, at each control
interval, the actual weights can be used to replace the pseudo weights. This
supports our idea of using the actual weights to construct the RSR B-spline
PDF model for controller design.

2.3. Parameterization algorithm for data-based PDF modeling

Using the actual weights, the following output PDF system is proposed.

Vr(k + 1) = ĀVr(k) + B̄u(k) (15)
√

γ(y, k) = C(y)Vr(k) (16)

Ā and B̄ are matrices of the same dimensions as A and B in (2). For the
same input, this model can be regarded as ’practically equivalent’ to model
(2)-(3), i.e., in the transient process, the output error between these two
models are within an acceptable small range, and in the steady state, their
output values are the same. The use of ’practically equivalent model’ or
’characteristic model’ in real engineering control systems was proposed and
discussed in [43]. In the rest of the paper, the new RSR B-spline model in
(15)-(16) will be used in parameter estimation and controller design.

Denote
f(y, k) =

√

γ(y, k) (17)

as a function representing the output PDF at each time k. From (15)-(16),
the function of output PDF can be written as

f(y, k) = C(y)Vr(k)

= C(y)(I − z−1Ā)−1B̄u(k − 1). (18)
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Expanding (18) brings the parameterized model

f(y, k) = a1f(y, k − 1) + · · ·+ anf(y, k − n)

+ C(y)D0u(k − 1) + C(y)D1u(k − 2) + · · ·
+ C(y)Dn−1u(k − n) (19)

Note each Di(i = 0, · · · , n − 1) is an n-dimensional vector which can be
written as Di = [di1, di2, . . . , din]

T.
Let

ψ(y, k) = [f(y, k − 1), · · · , f(y, k − n),

u(k − 1)B1(y), · · · , u(k − 1)Bn(y), · · · ,
u(k − n)B1(y), · · · , u(k − n)Bn(y)]

T,

and write the vector of parameters as

θ = [a1, · · · , an, d01, · · · , d0n, d11, · · · ,
d1n, · · · , d(n−1)1, · · · , d(n−1)n]

T,

equation (19) can be rewritten into a compact form as

f(y, k) = θTψ(y, k). (20)

When n basis functions are used in the PDF approximation, the total number
of parameters to be estimated in θ is n× (n+ 1). This suggests that model
(20) is normally of high dimension in an output PDF control system.

Given the B-spline basis functions, least-square algorithms can be applied
to recover the parameters in θ when the data of control input and output
PDF is collected. Due to the large number of parameters included in the
modeling, the following double-loop recursive least-square (RLS) algorithm
is used to estimate θ by screening the PDF definition domain of [a, b] for y
(inner loop, indexed by i) and going through the time domain for k (outer
loop):

θ̂(i, k) = θ̂(i− 1, k) +
P (i− 1, k)ψ(y(i), k)ε(i, k)

1 + ψT(y(i), k)P (i− 1, k)ψ(y(i), k)
(21)

ε(i, k) = f(y(i), k)− θT(i− 1, k)ψ(y(i), k) (22)

P (i, k) =

(

I − P (i− 1, k)ψ(y(i), k)ψT(y(i), k)

1 + ψT(y(i), k)P (i− 1, k)ψ(y(i), k)

)

P (i− 1, k) (23)
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The initial value of the RLS algorithm is set to be θ̂(0, 0) = θ0, P (0, 0) =
103−6In(n+1), P (0, k) = P (M, k− 1) and θ̂(0, k) = θ̂(M, k− 1) for k ≥ 1. M
is the total number of samplings in the region of [a, b].

The procedures for establishing the RSR B-spline PDF model can be
summarized as follows.

S0: Initialize relevant terms at k = 0. Define data set {y(i)}, i = 1, · · · ,M ,
in the definition interval [a, b] for y. Set k = 1 for the recursive opera-
tion.

S1: At sampling time k, collect the input data u(k) and the output PDF
data γ(y(i), k).

S2: Calculate f(y(i), k) following (17).

S3: Estimate θ using the RLS algorithm in (21)-(23) for i = 1 · · ·M .

S4: Increase k to k + 1, repeat S1–S3 until the end of the calculation.

The parameterized input-output model (19) can be used for output PDF
control in general cases. However, this model is inadequate for predictive
PDF control since there is no prediction function provided. In the next sec-
tion, a predictive PDF model will be constructed to facilitate the development
of predictive PDF control strategies.

3. Construction of predictive PDF model

Equation (19) can be written as

f(y, k) =
n

∑

i=1

aif(y, k − i) +
n−1
∑

j=0

C(y)Dju(k − j − 1). (24)

Introducing the back-shift operator z−1, denote

α(z−1) = 1−
n

∑

i=1

aiz
−i, β(z−1, y) = C(y)

n−1
∑

j=0

Djz
−j, (25)

equation (24) can be represented as

α(z−1)f(y, k) = β(z−1, y)u(k − 1). (26)

The following Diophantine equation is introduced to construct the pre-
dictive PDF model

1 = Gq(z
−1)α(z−1) +Hq(z

−1)z−q, (27)
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where q is the index for model prediction steps, and

Gq(z
−1) = 1 +

q−1
∑

i=1

gq,iz
−i, Hq(z

−1) =
n−1
∑

j=0

hq,jz
−j. (28)

Multiplying Gq(z
−1) to both sides of (26) and taking into account the Dio-

phantine equation (27), we have

f(y, k + q) = Hq(z
−1)f(y, k) +Gq(z

−1)β(z−1, y)u(k + q − 1). (29)

Define

Sq(z
−1, y) = Gq(z

−1)β(z−1, y) = C(y)

n−1+q−1
∑

i=0

sq,iz
−i, (30)

and write

C̄(y) =











C(y) 0 · · · 0
0 C(y) · · · 0
...

... · · · ...
0 0 · · · C(y)











.

When taking q = 1, 2, · · · , p (p is the model predictive horizon), the multi-
step predictive PDF model in (29) can be written into the following matrix
format

Π(y, k, p) = Ĥf(y, k) + Ω(y)U(k) + Φ(y)η(k), (31)
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where

Π(y, k, p) =











f(y, k + 1)
f(y, k + 2)

...
f(y, k + p)











, Ĥ =











H1(z
−1)

H2(z
−1)

...
Hp(z

−1)











,

Ω(y) = C̄(y)











s1,0 0 · · · 0
s2,1 s2,0 · · · 0
...

... · · · ...
sp,p−1 sp,p−2 · · · sp,p−l











,

Φ(y) = C̄(y)











s1,1 s1,2 · · · s1,n−1

s2,2 s2,3 · · · s2,n−1+1
...

... · · · ...
sp,p sp,p+1 · · · sp,n−1+p−1











,

U(k) =











u(k)
u(k + 1)

...
u(k + l − 1)











, η(k) =











u(k − 1)
u(k − 2)

...
u(k − n+ 1)











.

l (l ≤ p) is the predictive control horizon. Equation (31) gives a compact
format of the predictive output PDF model.

The coefficients in the Diophantine equation can be obtained by recursive
development [44]. Here only the results are provided (detailed derivation can
be found in many literature of standard MPC algorithms). With the initial
setting of

1 = G1(z
−1)α(z−1) +H1(z

−1)z−1 (32)

where G1(z
−1) = g1,0 = 1 and H1(z

−1) = z (1− α(z−1)), the coefficients
in Gq(z

−1) is calculated by gq+1,i = gq,i. The coefficients in Hq(z
−1) are
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calculated as follows for q = 1, · · · , p.

hq,0 = gq+1,q

hq+1,0 = hq,1 + gq+1,qα1 = hq,1 + hq,0α1

hq+1,1 = hq,2 + gq+1,qα2 = hq,2 + hq,0α2

...

hq+1,n−2 = hq,n−1 + gq+1,qαn−1 = hq,n−1 + hq,0αn−1

hq+1,n−1 = gq+1,qαn = hq,0αn (33)

Similarly, the coefficients in Sq(z
−1, y) can be calculated recursively as fol-

lows.

sq+1,i = sq,i + hq,0Di−q

sq+1,n−1+q = hq,0Dn−1 (34)

where i = 0, 1, . . . , n + q − 2, and Dm = 0 when m < 0. The initial settings
are s1,i = Di for i = 0, · · · , n− 1.

Guidance on the selection of model predictive horizon, p, and control
predictive horizon, l, can be found in many MPC literature. In principle, the
selection of p and l needs to balance several performance requirements such as
computational load, dynamic tracking performance, stability and robustness.

4. Predictive PDF controller design

In this section, predictive PDF control algorithms with and without con-
trol constraints are developed, respectively, based on the predictive PDF
model (31). These MPC algorithms will be compared with a standard PDF
controller, the latter is also briefed in the following.

4.1. Standard output PDF control

A general PDF control target is to drive the output PDF to follow the
desired distribution. Using the following performance function

J0(u(k)) =

∫ b

a

(

√

γ(y, k)−
√

γg(y)

)2

dy +Q0u
2(k) (35)
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where γg(y) is the target distribution, Q0 is a weighting factor for control
input, the optimal control input u at time k is obtained by taking dJ

du
= 0 to

give [17]

u(k) =

∫ b

a
C(y)D0g(y, k)dy

∫ b

a
(C(y)D0)

2 dy +Q0

(36)

where

g(y, k) = −
n

∑

i=2

aif(y, k − i+ 1)− C(y)Di−1u(k − i+ 1)

+
√

γg(y)− a1f(y, k). (37)

When the input-output model is established, at each time k, the controller
design procedures can be summarized as follows.

S1: Formulate g(y, k) as in (37) using the parameterized PDF model (19).

S2: Calculate
∫ b

a
C(y)D0g(y, k)dy and

∫ b

a
(C(y)D0)

2dy.
S3: Obtain the optimal control input u(k) with (36).

4.2. Non-constrained predictive PDF control

The following performance index is formulated in the first predictive PDF
control algorithm

J(U(k)) =

∫ b

a

[Π(y, k, p)− Γ(y)]T[Π(y, k, p)− Γ(y)]dy

+UT(k)QU(k) (38)

where Γ = [
√

γg(y), · · · ,
√

γg(y)]
T is the target PDF vector, Q is the weight-

ing matrix for control input.
Taking (31) into (38) and denoting

ξ(y, k) = Ĥf(y, k) + Φ(y)η(k) (39)

as the known term at time k, the optimization solution to (38) is derived
from dJ

dU
= 0 as follows:

U(k) = −
(
∫ b

a

ΩT(y)Ω(y)dy +Q

)−1

·
(
∫ b

a

ΩT(y)(ξ(y, k)− Γ(y))dy

)

.

(40)

Equation (40) gives an analytical solution for the l-step predictive controller
when no constraints are considered in the optimization.
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4.3. Constrained predictive PDF control

Various constraints exist in real control systems such as upper and lower
bounds of control input, varying rate in control input and output constraints.
Failure in handling control constraints may lead to actuator saturation that
will delay required control actions and decrease control performance. Con-
strained MPC is therefore widely needed in process control to prevent the
manipulated variables from getting saturated or output going out of specific
bounds.

Bounded constraints on control input are considered in this section to
address actuator saturation or other operational constraints on manipulated
variables. To simplify the discussion, constant upper and lower bounds are
set for control input as umin ≤ u(k) ≤ umax. Using the same predictive
model as in (31) and the same quadratic performance function as in (38),
the constrained MPC for output PDF control can be written as the following
optimization problem:

J(U(k)) =

∫ b

a

[Π(y, k, p)− Γ(y)]T[Π(y, k, p)− Γ(y)]dy

+UT(k)QU(k)

s.t. Umin � U(k) � Umax (41)

where Umax = [umax, · · · , umax]
T ∈ R

l×1 and Umin = [umin, · · · , umin]
T ∈ R

l×1

are vectors of upper and lower bounds, respectively.
The above predictive controller design with constraints is a nonlinear pro-

gramming optimization problem, which do not have an analytical solution in
general. Optimization methods like quadratic programming (QP), sequen-
tial quadratic programming (SQP), sequential unconstrained minimization
technique, etc., can be applied to get the optimal solution. It can be seen
from (41) and (38) that the two predictive control algorithms have the same
optimization performance index, but the way to get the optimal solution
is different since the constraints on control input are handled differently in
these two algorithms.

5. Simulation study of MWD shaping using predictive PDF control

In this section, simulation studies on MWD shaping of a lab-scaled styrene
polymerization process is carried out using the new RSR B-spline modeling
and the two predictive PDF control algorithms.
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Figure 1: The sketch of the example polymerization system with predictive PDF control

5.1. Dynamic model of MWD

Consider a styrene polymerization process taking place in a semi-batch
continuous stirring tank reactor (CSTR) (Fig. 1). The input flow F to the
tank is the sum flow rate of the monomer (FM) and the initiator (FI). The
monomer and the initiator are fed into the reactor with a ratio of C =
FM/(FI + FM), which is used as the control input. The output is the MWD
of the produced polymer. In the simulation, the sum flow rate F is kept
constant, only the ratio C between the monomer and the initiator is adjusted.

The free radical polymerization mechanisms are considered which include
initiation, chain propagation, chain transfer to monomer, and termination
by combination. Under the framework of population balance, the generation
function technique is used to derive the leading moments for MWD model,
which are later developed into a parameterized model in the form of a Schultz-
Zimm distribution. Full modeling details can be found from the authors’
previous work [8]. The major ordinary differential equations (ODEs) are
provided in the following to support the dynamic MWD description.

The concentration equations for initiator, I, and monomer, M , are de-
scribed as

dI

dt
=

F

V
(I0 − I)−KdI (42)

dM

dt
=

F

V
(M0 −M)− 2KiI − (Kp +Ktrm)Mψ0 (43)

where I0 andM0 are initial concentrations of initiator and monomer, respec-
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tively, in the input flow. Kd is the initiator decomposition rate constant, Ki

is the initiation rate constant, Kp is the propagation rate constant, and Ktrm

is the chain transfer rate constant. ψ0 is the total concentration of radicals.
Denote ψk =

∑+∞

j=1 j
kRj(k = 0, 1, 2) as the leading moments for radicals

and Zk =
∑+∞

j=2 j
kPj(k = 0, 1, 2) as the leading moments for dead polymer,

where Rj is the live polymer radical with chain length j and Pj is the dead
polymer with chain length j. The following ODEs are derived using the
generation function technique to give

dψ0

dt
= −F

V
ψ0 + 2KiI −Ktψ

2
0 (44)

dψ1

dt
= −F

V
ψ1 + 2KiI +Kpψ0M −Ktψ0ψ1 +KtrmM(ψ0 − ψ1) (45)

dψ2

dt
= −F

V
ψ2 + 2KiI +KpM(2ψ1 + ψ0)−Ktψ0ψ2 +KtrmM(ψ0 − ψ2)

(46)

where Kt is the termination rate constant. The ODEs for the leading mo-
ments of polymers, Z0, Z1, Z2, are derived to be

dZ0

dt
= −F

V
Z0 +KtrmMoψ0 +

Kt

2
ψ2
0 (47)

dZ1

dt
= −F

V
Z1 +KtrmMoψ1 +Ktψ0ψ1 (48)

dZ2

dt
= −F

V
Z2 +KtrmMoψ2 +Ktψ0ψ2 +Ktψ

2
1 (49)

Instead of using higher-order moments to describe MWD of styrene polymer-
ization product, a Schultz-Zimm distribution is regarded as an appropriate
distribution function that can be established from those leading moments of
polymer. A normalized Schultz-Zimme distribution function is defined by
[45]

f(n) =
hhnh−1 exp(−hn/Mn)

Mh
nΓ(h)

, (50)

where n ≥ 0 is the chain length, h is a parameter indicating the distribu-
tion breadth, Mn is the number average chain length which is defined as
Mn = Z1/Z0, Γ is the gamma function defined as Γ(h) =

∫

∞

0
nh−1e−ndn.

The Schultz-Zimm distribution reduces to the exponential Flory distribution
when h = 1, which is another commonly used distribution for MWD. The
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Table 1: MWD model parameters

Parameter Unit Value
Kd min−1 9.48× 1016exp(−30798.5/rT )
Ki L ·mol−1 ·min−1 0.6Kd

Kp L ·mol−1 ·min−1 6.306× 108exp(−7067.8/rT )
Ktrm L ·mol−1 ·min−1 1.386× 108exp(−12671.1/rT )
Kt L ·mol−1 ·min−1 3.765× 1010exp(−1680/rT )
V L 3.927
F L ·min−1 0.0286
T K 353
I0 mol · L−1 0.0106
M0 mol · L−1 4.81
r cal ·mol−1 ·K−1 1.987
C [0.3,0.7]

two parameters of the Schultz-Zimm distribution function can be calculated
by the leading moments of polymers as

h =
Z2

1

Z0Z2 − Z2
1

(51)

Mn = Z1/Z0 (52)

In summary, the dynamic MWD modeling includes the following two steps:

S1: Get Z0, Z1, Z2 from simultaneous integration of ODEs (42)-(49);

S2: Calculate h and Mn from (51) and (52), and formulate MWD by (50).

This first-principle model can be regarded as a soft sensor for MWD
measurement, from which the input-output data pairs can be produced for
B-spline PDF modeling. Model parameters are listed in Table 1. In this
simulation, the chain length of the polymer is from 1 to 2000. The ini-
tial conditions for ODEs in (42)-(49) are set up as follows: I(0) = 0.0020,
M(0) = 2.2620, ψ0(0) = 0.0000, ψ1(0) = 0.0000, ψ2(0) = 0.0079, Z0(0) =
0.0014, Z1(0) = 0.6240, Z2(0) = 425.8050. These initial condition values are
calculated from static model simulation at a given control ratio C.

A total number of 10 B-spline basis functions are used in the B-spline
approximation. Each B-spline function is a parabolic function represented
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Figure 2: MWDs from the first-principle model and the B-spline approximation model

as follows:

B(i, j) =

{

−2/w(i)2 · (j − y(i)− w(i)/2)2 + 1/2, y(i) ≥ j ≥ y(i) + w(i)
0, otherwise

where j = 1, 2, · · · , 2000 stands for the chain length of dead polymers in
MWD, and

y(i) = 1 + 200(i− 1), i = 1, 2, · · · , 10

w(i) =

{

220, i = 1, 2, · · · , 9
199, i = 10

Here i refers to the ith B-spline basis function, w is the parameter for B-
spline width. The double-loop RLS algorithm in Section 2.3 is applied to
estimate model parameters. Fig. 2(a) shows the 1500 sets of created MWD
data used for establishing the RSR B-spline PDF model. Fig. 2(b) illustrates
the B-spline modeling result regarding MWDs versus time and chain length.
The MWD modeling error, defined by γ1(y, k)− γ2(y, k) between two PDFs,
is illustrated in Fig. 3. The scale of Fig. 3 is two-order lower than the MWD
modeling data and this shows a good modeling quality.

5.2. Shaping of MWD by predictive output PDF control

The initial MWD and the desired target MWD are set to be the same
for the three control algorithms. The initial input level is set to be C = 0.5
and the initial MWD is determined accordingly at C = 0.5. The target
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Figure 3: MWD modeling error

distribution is set corresponding to a control level of C = 0.6. In all three
control algorithms, the performance indexes for optimization consist of two
terms, one for output PDF tracking performance and one for penalty of the
control cost weighted by a Q factor. The penalty term needs to be tuned
to achieve a balance between a good tracking performance and a low cost of
control.

We first apply the standard output PDF control to this system, in which
the weighting factor for control input is tuned to beQ0 = 0.0005. We then im-
plement the two predictive controllers by setting the model predictive horizon
to be p = 9, the control predictive horizon to be l = 5, and Q = 0.0106I5×5

for both controllers. For the constrained MPC, the upper and lower bounds
for control input are set to be C ∈ [0.3, 0.7]. An SQP algorithm is adopted
to solve the constrained nonlinear optimization problem and the fmincon()
function is used in Matlab simulation. In the standard control and the non-
constrained predictive control, a hard-bound of C ∈ [0.3, 0.7] is applied to the
control implementation considering the feasible operating conditions for this
system, i.e., a ’saturated’ C is applied whenever the calculated control input
is beyond this boundary domain. In order to compare the MWD tracking
performance for each control algorithm, the following performance index

Jt(k) =

∫ b

a

(

√

γ(y, k)−
√

γg(y)

)2

dy

is introduced to quantify the instantaneous distance between the output
MWD and the desired MWD.

With proper tunings, all three controllers demonstrate a function to drive
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Figure 4: Comparison of control input and tracking performance for 3 controllers (Q0 =
0.0005, Q = 0.0106)

the initial MWD to get closer towards the target MWD over the control pro-
cess. The control input profiles for the three controllers are shown in Fig.4(a)
and their tracking performances are illustrated in Fig. 4(b). The simulation
results show that the non-constrained MPC has the same solution as the con-
strained MPC when a hard bound is imposed on the control input (in Fig.4(a)
and Fig. 4(b), the curves corresponding to constrained and non-constrained
MPCs are completely overlapped). This consistency is not surprising since
in both cases the same level of constraints are considered, just handled in dif-
ferent manner. Fig. 5 illustrates MWDs at the initial state, the steady state
and the desired target state under the standard PDF control and the predic-
tive PDF controller, respectively. The dynamic evolution of MWDs under
the predictive control (constrained and non-constrained) is demonstrated in
Fig. 6.

Under the standard output PDF control, it can be seen that there is
a clear gap between the MWD at the steady state and the target MWD
(Fig. 5(a)), while this steady-state MWD tracking error is much smaller
(almost none) with predictive control. In Fig. 5(b), the final MWD curve
overlaps with the target PDF curve. The steady-state performance can also
be inspected from the control input profiles in Fig. 4(a), where for the two
predictive control algorithms the control input signals almost reach the target
level of C = 0.6, when convergent, but the standard control input stays away
from the target value at the steady state.

Taking the standard output PDF control, if we attempt to reduce the
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Figure 5: Initial, final and target MWDs under standard and predictive PDF control
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Figure 6: Dynamic evolution of MWDs under predictive control

23



0 200 400 600 800 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

 Time (min)

 R
a
ti
o
 C

(a) Control action

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

−3

 Chain length

 M
W

D

 

 

Target MWD

Initial MWD

Final MWD

(b) Initial, final and target MWDs

Figure 7: Standard output PDF control with Q0 = 0.00014

tracking error to the similar level that is achieved by predictive control, then
more efforts need to be put on the tracking part of the performance func-
tion (35), which means paying a larger price in control to achieve improved
tracking performance. To this end, Q0 is reduced from 0.005 to 0.00014, the
simulation results of standard control is shown in Fig. 7. It can be seen that
in this case, the MWD tracking error at steady state is reduced compared
with the results in Fig. 5(a), but the control signal has serious oscillations
and it takes a much longer time to reach the steady state.

As discussed in the design of all three output PDF controllers, the output
PDF tracking performance is of the major concern, but the cost of control
also needs to be considered for practical reasons. Compared with the stan-
dard output PDF control, the predictive control algorithms are more capable
to achieve a balance between a good tracking performance and a reasonable
control action. Also the constraints on control are included in the optimiza-
tion process of the constrained predictive PDF control.

6. Conclusion

In this work, model predictive PDF control is investigated to shape MWD
in a case study polymerization process through closed-loop feedback control.
A generic modeling algorithm is proposed which can be used to establish a
parameterized output PDF model using collected data from control input
and output PDF. The RSR B-spline model is employed to approximate the
output PDF, at each time instance, for the reason that it naturally satisfies
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constraints on positiveness and integration nature for a PDF, which outper-
forms three other commonly used B-spline models, i.e., linear, square root
and rational B-spline models. With the RSR B-spline model, the actual
weights instead of the pseudo weights are used in the data-based modeling
of a linear weight dynamic system, which avoids complex estimation of the
pseudo weights from output PDF and therefore largely simplifies the model-
ing procedure. The parameterized input-output model is further developed
into a predictive PDF model that has the function of predicting the full
output PDF over a future horizon.

Both non-constrained and constrained predictive control are developed
to drive the output PDF towards its target shape. For the non-constrained
MPC design, an analytical solution is obtained for a system with linear weight
dynamic, which is computationally convenient but may overlook possible sat-
uration in control actions. For constrained MPC design, a constrained non-
linear optimization problem needs to be solved, which is not a trivial task
for a control problem with a full shape expected in its output distribution.
The integrated modeling and predictive control scheme is applied to sim-
ulation study of an exemplar styrene polymerization process to implement
closed-loop MWD control. Simulation results demonstrate the effectiveness
of the proposed scheme and show the strength of predictive PDF control over
standard output PDF control.

The B-spline based modeling provides a general methodology to describe
output PDF control systems which can decouple time domain and space
domain (or PDF definition domain) efficiently. The space-varying charac-
teristic of the output PDF is approximated by a nonlinear B-spline neural
network and the time-varying nature is depicted by a weight dynamic model.
Modeling such a system using measurement data is thus a very challenging
task since both the static B-spline approximation and the dynamic weights
development need to be conducted in the same scheme. In this work, we
attempt to explore data-based modeling techniques for output PDF control
systems. The ’measurement data’ used in simulation study are produced
from a first-principle MWD model that we developed in a previous work.
To our knowledge, no other work on data-based modeling of output PDF
systems from industrial systems or simulation has been reported.

Currently a linear weight dynamic model is used which is an approxima-
tion to a nonlinear system. Development of nonlinear dynamic models for
output PDF systems based on measurement data will be more difficult, but
not impossible especially when the nonlinear dynamics can be parameterized.
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In addition to B-spline modeling, alternative solutions for output PDF mod-
eling could be direct use of output PDF calculated from partial differential
equations, estimation of output PDF by unscented Kalman filter, etc.

While MPC shed a light on tackling the output PDF control problem,
problems like how to tune the MPC parameters to improve the control per-
formance and how to solve the constrained nonlinear optimization effectively
need to be further investigated. Since the predictive PDF controller is non-
structured and gradient-based, the analysis of closed-loop stability is difficult
to perform. Future work on development of structured controllers for output
PDF control is under investigation. The fundamental challenge of controlling
a full distribution dynamically using a few control inputs remains an open
problem for further exploration.
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