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Abstract 

Surface roughness is a result of the cutting parameters such as: cutting speed, feed per tooth and 
the axial depth of cut, also the tool’s geometry, tool’s wear vibrations, etc. Moreover, the surface 
finish influences mechanical properties such as fatigue behaviour, wear, corrosion, lubrication 
and electrical conductivity and the combination of cutting parameters influence the power 
consumption during the machining process affecting the environment. The research reported 
herein is focused mainly on searching for an optimum combination of cutting parameters to obtain 
a low value of surface roughness and minimize energy consumption when milling an austenitic 
stainless steel in different cutting environments. The experiments were conducted on a Siemens 
840D Bridgeport Vertical Machining Centre 610XP2. The selection of this workpiece material was 
based on it’s widely applications in cutlery, surgical instruments, industrial equipment and in the 
automotive and aerospace industry due to its high corrosion resistance and high strength 
characteristics. The results show that the dry cutting environment is the best option in terms of 
power consumption and surface roughness values to conduct the milling of an austenitic stainless 
steel under the selected cutting parameters.   

1. INTRODUCTION 

Metal machining processes generates heat due to tool friction, increasing tool wear and as a 

consequence reducing the tool life. Despite the fact that the use of cutting fluids benefits the 

cutting process as they remove heat more rapidly, some conventional cutting fluids are ineffective 

in controlling the high cutting temperature and the rapid tool wear as well as knowing how they 

deteriorate the environment. Due to the fact of pollution caused by cutting fluids in terms of 

recycling, disposal, works health issues, etc. the use of dry machining has increase in the 

workshops, however it can lead to reduce tool life and poor part quality. In order to avoid these 



  

 

problems flood-cooling methods can be used to enable efficient cutting of metals.  

In order to lead to a conscious, clean and eco-friendly environment cryogenic cooling has showed 

great benefits as there is no need to recycle and/or disposal the cutting fluids. Based on the theory 

of cryogenic hardening, the field of cryogenics cutting (below -180 oC) advanced during the World 

War II when scientist found that besides contributing to an eco-environment, metals showed 

excellent wear resistance at frozen stage, better surface finish and improved tool life when 

comparing it to a dry cutting process The cooling process usually uses liquid nitrogen as is a fluid 

which can cause rapid freezing, it absorbs the heat from the cutting process and it becomes part 

of the air as it evaporates into nitrogen gas (79% of the air is composed by nitrogen). Other fluids 

commonly used are liquid helium and liquid CO2. (Paul et al 2001). 

Researchers Hong and Broomer in 2000 conducted a cryogenic study when machining 304 

stainless steel at V= 3.05 - 3.82 m/s. They concluded that despites the benefits of an eco-friendly 

environment when using cryogenic machining, the liquid nitrogen produced an increased on the 

cutting forces and a reduced of tool life when machining this steel. However the process improved 

when injecting a small amount of liquid nitrogen to the chip-tool interface. In 2008 Khan and 

Ahmed, compared the effects on tool life when using conventional cooling and cryogenic cooling 

when turning 304 stainless steel, where the results showed an increase of tool life of more than 

four times when using cryogenic cooling, also it was found to be more effective at higher cutting 

speeds. 

Advantages of cryogenic machining over dry machining were also studied by Kalyan et al 2008. In 

this case they studied the tool wear and the cutting forces generated during the cryogenic turning 

of 202 stainless steel. Their experiments showed an advantage of using cryogenic machining 

over dry machining as a decrease of 37% of the tool flank wear and 14.83% of the cutting forces 

were obtained.  

In 2011, Nalbant and Yildiz, studied the effect of cryogenic cooling when milling in different 

directions a 304 stainless steel. In their studies they did not observe an advantage of using 

cryogenic machining against dry machining as they obtained almost 8% of increase on the cutting 

forces when using cryogenic machining. Also it was highlighted that conventional milling yield the 

best results in terms of tool failure under both type of machining processes. 

Bermingham et al. in 2011 studied the tool life, the cutting forces and the chip morphology when 

cryogenic turning titanium, Ti-6Al-4V. They concluded that a better tool performance was 

obtained when using cryogenic coolant and the main cutting forces decreased with this 

application. Also cryogenic coolant produced changes to the chip morphology and tool-chip 

contact length. Despite not having a significant effect on the chips thickness and the distance 



 

between serrations it appeared that this process has an effect on the tool-chip contact length and 

the primary shear band angle. 

The influence of cryogenic cooling on surface integrity was studied by Umbrello et al in 2012. In 

their studies an AISI 52100 steel was turned with cubic boron nitride tools with chamfered and 

horned geometries. The results showed that cryogenic machining offers a potential benefit for 

surface integrity (improved of the surface roughness) enhancement for improved product life. 

Depending on materials mechanical, physical and chemical properties they are easier or more 

difficult to machine. The stainless steel has been defined as a difficult-to-machine ferrous alloy 

(Shokrani A et al, 2012), basically due to its low thermal conductivity, where the heat generated 

during the cutting process concentrates in the cutting zone producing diffusion as main tool wear 

mechanisms as well as Built Up Edge (BUE) formation, this last increases the machining 

instability producing chipping on the cutting edge and poor surface quality. 

With regards quantities of coolant, special attention should be given as a large amount can have a 

negative effect on the machinability and tool life by unfavourable cooling, which prevents heat 

softening of the workpiece material  (Astakhov,V.P. 2006). 

Based on all these reviews, the aim of this research is to study the optimal combination of cutting 

parameters for a low power consumption and low value of surface roughness when face milling a 

303 austenitic stainless steel in different cutting environments such as: dry, flood coolant and 

cryogenic.  

2. EXPERIMENTAL PROCEDURE 

The importance in conducting this experiment is the contribution in the manufacturing field 

towards the eco-friendly machining of difficult-to-cut materials, through the application of different 

environments; as well as the possibilities of reducing power consumption and surface roughness 

based on an optimal combination of cutting parameters.  

 

2.1. Workpiece material 

303 annealed stainless steel bars of 65mm diameter and 120 mm length were pre-machined to 

120 x 55 x 32 ݉݉3 as show in Figure 1. 



  

 

 

Figure 1: Scheme of the workpiece geometry used in this study (units in ݉݉). 

 

Table 1 and Table 2 show the chemical composition and the mechanical properties of this 303 

stainless steel respectively. 

 

Table 1: Chemical composition of 303 stainless steel bars used for the experiments 

%C %Cr %Fe %Mn %Mo %Ni %P %Si %S 

<=0.15 18.0 69.0 <=2.0 <=0.6 9.0 <=0.2 <=1.0 >=0.15 

 

Table 2: Mechanical properties 303 stainless steel bars used for the experiments 

BHN ıu (MPa) ıy (MPa) 

160 620 240 

 

2.2. Tool characteristics 

A coated end mill and tool holder of  ்௢௢௟= 14 ݉݉ with 3 flutes was used for the climbing milling 

experiments, with the following code Guhring GTN 03872. This type of tool is recommended for 

the machining of stainless steel under different cutting environment. Figure 2 shows a scheme of 

the tool geometry. 



 

 

Figure 2. Scheme of the tool geometry 

 

 

2.3 Cutting parameters and machining process. 

Dry, Flood Coolant and Cryogenic (liquid nitrogen) were selected as cutting environment and the 

cutting speed and feed per tooth were the cutting parameters chosen for the study, since from 

previous research it was observed that these variables had the most influence on the surface 

roughness. Selected cutting parameters are shown in table 3. 

 

 

 

Table .3: Experiments cutting conditions 

Trial Environment ࢂ ሾ࢓Ȁ࢔࢏࢓ሿ ࡲ ሾ࢓࢓Ȁ࢔࢏࢓ሿ ࢠࢌ ሾ࢓࢓Ȁכ  ሿ࢓࢓ሾ ࢋࢇ ሿ࢓࢓ሾ ࢖ࢇ ሿࢎ࢚࢕࢕࢚ 
1  105 480.0 0.0670 3 11 
2  157 717.6 0.0670 3 11 
3 Dry 157 535.5 0.0500 3 11 
4  157 364.0 0.0335 3 11 
5  105 480.0 0.0670 3 11 
6  157 717.6 0.0670 3 11 
7 Flood Coolant 157 535.5 0.0500 3 11 
8  157 364.0 0.0335 3 11 

9  105 480.0 0.0670 3 11 
10  157 717.6 0.0670 3 11 
11 Cryogenic 157 535.5 0.0500 3 11 
12  157 364.0 0.0335 3 11 

 

 

 

 



  

 

Due to the restriction on the amount of material, the machining process was conducted based on 

the workpiece dimensions (120 x 55 x 32) and considering two trials per block, one in each side of 

the block. Five passes with ܽ݁ = 11݉݉ were used to cover the width of the workpiece (55 ݉݉). In 

order to guarantee that the vice was holding enough material, only a maximum depth of 18 ݉݉ 

could be reached, so three passes with ܽ3 = ݌ ݉݉ each were used to cover a 9 ݉݉ depth for a 

trial on side A and 9 ݉݉ depth for the trial on side B. By taking into account these two factors the 

total length of cut is 1800 ݉݉ (120 x 5 x 3) per trial. Once side A was machined the block was 

turned over and a new setup of experiments was conducted for side B. Figure 3 shows a scheme 

of the cutting process. 

 

Figure 3. Scheme of the cutting process. 

  

For the cryogenic machining the liquid nitrogen was delivered through a special nozzle designed 

for previous research and located close to the tool-workpiece interface (Dhokia et al 2012). A 

schematic setup of the cooling system is shown in Figure 4.  

 

 

Figure 4. Schematic setup for cryogenic machining (Dhokia et al 2012) 



 

 

2.4 Equipment characteristics 

A Siemens 840D Bridgeport Vertical Machining centre 610XP2 with a maximum spindle speed of 

 was used for the face milling operations. The tests were conducted under three ݉݌ݎ 8000

different cutting environments, dry, flood coolant and cryogenic (liquid nitrogen). Since the cutting 

length is small (1800=ܮ ݉݉) the tool wear is not considered as a criterion that will affect the result 

of the cutting process. 

 

2.5 Power consumption analysis 

In order to consider in the future the cost of cutting techniques and energy efficient process 

planning, the power consumption was registered using a Hioki 3169-20 Power Hitester. The 

collection data was fixed to a frequency of 50 ݖܪ with 1 second interval.  

 

2.6. Surface Integrity 

2.6.1 Roughness measurements 

The surface roughness was measured across the direction of the machined surface lay (feed 

direction) using a non-contact white lamp profilometer ProScan 2000. The roughness average 

value of each specimen was determined by measuring five points, located in the centre of the 

specimen, where maximum and minimum values were neglected. The idea of measuring the 

roughness at the workpiece centre was in order to make sure that the obtained values of surface 

roughness were not affected by possible vibrations due to the impact of the tool entering the 

workpiece. Then an average of these three values was used to represent the surface roughness 

value of the specimen (ܴܽ). Also the 2D surface roughness profile and 3D surface were obtained.  

 

2.6.2 Microstructure analysis 

The samples were prepared for metallographic study in order to analyse the microstructure of 

each sample machined under different cutting conditions. The samples were etched with a 

solution of ͳܱܰܪଷ͵ ൅ ͳ݈ܥܪ ൅ ͳܪଶܱ for a period of 2 ݉݅݊. Figure 5 shows a scheme of the 

samples preparation 



  

 

 

Figure 5. Scheme of metallographic preparation 
 

2.6.3 Microhardness tests 

In order to analyse possible changes in hardness below the machined surface, Vickers 

microhardness tests were conducted in each sample using a LECO M400 hardness equipment 

using a load of 50 ݃ for a period of 15 ݏ. 
 

2.7. Chip studies 

Once each trial was conducted the chips were collected in order to compare their appearance, 

morphology, etc.  A Jeol JSM6060LV was used for SEM images. Also a Sartorius analytic scale 

with an accuracy of 0.0001 ݃  was used to weigh the chips. 

 

2.8. Material Removal Rate 

The material removal rate was calculated for each of the trial in order to obtain the optimal 

combination of cutting parameters for the highest ܴܴܯ  without compromising the power 

consumption and surface roughness. In this case equation 1 was used. 

ܴܴܯ  ൌ  ሺܽ݌ כ ܽ݁ כ  ሻȀͳͲͲͲ (1)ܨ

Where: ܴܴܯǣ ܿ݉ଷȀ݉݅݊ ܽ݌Ǣ ݉݉ ܽ݁ǣ ݉݉ ܨǣ ݉݉Ȁ݉݅݊ 



 

3. RESULTS AND DISCUSSION 

Once experiments were concluded the following results were obtained. 

Table 4 show the average power consumption, the average surface roughness and the material 

removal rate obtained for the 303 stainless steel machined under different cutting conditions. 

 

Table 4. Average power consumption, average surface roughness and material removal rate 
obtained for the 303 stainless steel machined under different cutting conditions. 

Trial Environment ࢂ  ሾ࢓Ȁ࢔࢏࢓] 
 [ࢎ࢚࢕࢕࢚ Ȁ࢓࢓ሾ ࢠࢌ

 [࢓࢓ሾ ࢖ࢇ
ࡼ ሿ࢓࢓ሾ ࢋࢇ ࢇࡾ ሿࢃሾ כ  [࢔࢏࢓૜Ȁ࢓ࢉሾ ࡾࡾࡹ ሿ࢓ࣆሾ כ

1  105 0.0670 3 11 260 1.290 15.84 

2  157 0.0670 3 11 259 0.945 23.68 

3 Dry 157 0.0500 3 11 250 0.841 17.67 

4  157 0.0335 3 11 249 0.710 12.02 

5  105 0.0670 3 11 269 1.234 15.84 

6*  157 0.0670 3 11  - 23.68 

7 Flood coolant 157 0.0500 3 11 271 0.871 17.67 

8  157 0.0335 3 11 268 0.759 12.02 

9  105 0.0670 3 11 1510 1.180 15.84 

10  157 0.0670 3 11 1710 1.229 23.68 

11 Cryogenic 157 0.0500 3 11 1600 0.974 17.67 

12  157 0.0335 3 11 1500 0.932 12.02 

*No results are show for trial 6 due to technical problems during the execution 

 

3.1. Power consumption analysis 

As previously mentioned, while the machining process was conducted the power consumption 

was registered. Table 4 reports the average power consumption for each trial during the 

machining operation which takes into account the cutting time and dead time. 

 

3.1.1. Influence of the cutting speed on the average power consumption 

Figure 6 show the influence of the cutting speed on the average power consumption for 303 

stainless steel machined under different cutting conditions. As observed it seems that the cutting 

speed has a neglected effect on the power consumption under the studied cutting conditions 

when using a dry cutting environment. However, the situation is different when cutting in a 

cryogenic environment where it can be observed that the average power consumption increased 

when the cutting speed was increased. In this case an increase of 50% of the cutting speed (from 

105 ݉Ȁ݉݅݊ to 157 ݉Ȁ݉݅݊) produced an increase of 13% of the average power consumption 

(from 1510 ܹ to 1710 ܹ). This result is in agreement with previous research (Patel, 2012) 

 



  

 

 

Figure 6. Influence of the cutting speed on the average power consumption for 303 stainless steel 
machined with ݂0.067 =ݖ ݉݉Ȁ3 =݌ܽ ,݄ݐ݋݋ݐ ݉݉ and ܽ݁= 11 ݉݉. 

 
 
3.1.2. Influence of the feed on the average power consumption 

Figure 7 show the influence of the feed per tooth on the average power consumption for 303 

stainless steel machined under different cutting conditions. 

 

When analysing Figure 7 it is observed that once again in a dry and flood coolant environment the 

feed per tooth seems to have a neglected effect on the power consumption when working under 

the established experimental condition, however, when using the cryogenic environment it is 

observed that the average power consumption increases when increasing the feed per tooth. In 

this case an increase of 100% of the feed per tooth (from 0.0335 ݉݉Ȁ ݄ݐ݋݋ݐ to 0.0670 ݉݉Ȁ݄ݐ݋݋ݐ) produced an increase of 14% on the power consumption when cryogenic machining and 

4% when using a dry environment. This result is in agreement with previous research (Palter, 

2012). 

 

 

 

 

 

 



 

 

Figure 7. Influence of the feed per tooth on the average power consumption for 303 stainless steel 
machined with ܸ=157 ݉Ȁ݉݅݊, ܽ3 = ݌ ݉݉ and ܽ݁ = 11 ݉݉. 

 
 

The fact that the  power consumption of the machine tool becomes so high when using a 

cryogenic environment when compared to the dry and flood coolant environment is probably  due 

to a possible increase on the materials hardness as an effect of using super cold liquid nitrogen. 

This result is in agreement with previous research (Shokrani et al, 2012). 

 

3.2. Surface Integrity 

3.2.1. Surface Roughness 

Once the milling process was conducted the surface roughness was measured and the average 

roughness is reported in table 4. It must be highlighted that in general a difference of 20% was 

obtained between the minimum and the maximum value of surface roughness measured on the 

machined surface under the same cutting conditions. 

Table 5 show few examples of the average surface roughness, plan view, 2D profiles and 3D 

surface for 303 stainless steel bars machined under different cutting conditions. 

As observed from Table 5 the plan view, shows the normal trail left by the cutting tool on the 

machined surface, with clear defined feed marks, the 2D surface roughness profile obtained for 

each trial show a harmonic function, with any kind of irregularity that could lead to an imperfection 

on the machined surface. In general all the results indicate that apparently no defect on the tool 

(such as wear) or high enough vibrations were presented during the milling process. 



  

 

 

Table 5. Average surface roughness, plan view, 2D profiles and 3D surface for few 303 stainless 
steel bars machined under different cutting conditions 

T
ri

a
l 

ࢇࡾ  ሿ Plan View 2D profile 3D surface࢓ࣆሾ כ

1
 

D
ry

 

1.290 

 

8
 

F
lo

o
d

 c
o

o
la

n
t 

0.759 

 

 

 

1
2
 

C
ry

o
g

e
n

ic
 

0.932 

 

 

 

 

3.2.1.1.  Influence of the cutting speed on the surface roughness 

In Figure 8 the influence of the cutting speed on the surface roughness for 303 stainless steel 

machined under different cutting environments can be observed. 

When analysing the results for a dry cutting environment it can be observed that an increase of 

50% of the cutting speed (from 105 ݉Ȁ݉݅݊ to 157 ݉Ȁ݉݅݊) produced a decrease of 37% on the 

surface roughness (from 1.290 ݉ߤ to 0.945 ݉ߤ). This result is probably due to the fact that an 

increase of the cutting speed probably produces a suppression of built-up-edge formation in this 

range of cutting speed. In addition, an increase of cutting speed produces an increase of 



 

temperature in the cutting zone, this fact makes the material softener, the metal machines more 

plastically and consequently the efforts necessary for machining the workpiece decrease. 

 

Figure 8. Influence of the cutting speed on the surface roughness for 303 stainless steel 
machined with ݂0.067=ݖ ݉݉Ȁ3 = ݌ܽ ,݄ݐ݋݋ݐ ݉݉ and ܽ݁ = 11 ݉݉Ǥ 

 

When analysing the results corresponding to a cryogenic cutting environment it can be observed 

that an increase of 50% of the cutting speed (from 105 ݉Ȁ݉݅݊ to 157 ݉Ȁ݉݅݊) produced an 

increase of 4% on the surface roughness (from 1.180 ݉ߤ to 1.229 ݉ߤ), as previously mentioned 

probably due to a possible increase on the materials hardness as an effect of using super cold 

liquid nitrogen (Shokrani et al, 2012). As the increased in roughness was so small (4%), we can 

consider a neglected influence of the cutting speed when machining in a cryogenic environment 

under this cutting speed and feed per tooth under study as a difference of almost 20% between 

the minimum and the maximum value of roughness was obtained when measuring the roughness 

of each trial. Results obtained in cryogenic environment obtained higher values of roughness 

when compared with dry machining as well as an increased of roughness when increasing the 

cutting speed from 250 ݉Ȁ݉݅݊ (Yakup and Muammer 2008) 

 

3.2.1.2. Influence of the feed rate on the surface roughness 

In Figure 9 the influence of the feed per tooth on the surface roughness for 303 stainless steel 

machined under specific cutting conditions can be observed. When analysing Figure 9 the 

surface roughness increases when increasing the feed per tooth. This result is in agreement with 

previous research and is probably due to the fact that as the feed is increased the thickness of the 



  

 

chip also increases resulting in an increase of cutting forces. (Muñoz-Escalona and Maropoulos, 

2010, Shokrani et al 2012, Sureh Kumar Reddy, 2008) 

We can also observe that in general an increase of 100% of the feed per tooth from 0.0335 ݉݉Ȁ݄ݐ݋݋ݐ to 0.067 ݉݉Ȁ݄ݐ݋݋ݐ produced a general increased of 32% on the surface roughness 

when using either a dry or a cryogenic environment. 

 

Figure 9. Influence of the feed per tooth on the surface roughness for 303 stainless steel 
machined in different environments with ܸ=157 ݉Ȁ݉݅݊, ܽ3 = ݌ ݉݉ and ܽ݁ = 11 ݉݉ 

 

3.2.2. Microstructure analysis 

Once surface roughness measurements were conducted trials from dry and cryogenic 

environment were selected for microstructure analysis and the results are shown in Table 6. 

Table 6 shows SEM images of few trials showing the microstructure below the machined surface 

and at the centre of the specimen.  

 
As observed all the specimens showed elongated black spots and the EDAX analysis revealed 

that these correspond to the presence of sulphur as reported in Figure 10 EDAX image. This was 

expected as sulphur is added to this type of steel in order to improve their machinability as they 

tend to work harden very fast. All the samples revealed a normal equiaxed twinned austenitic 

grain structure as well as some slip bands just above the machined surface of specimens cut in 

dry and cryogenic environment. The formation of these slip bands is probably due to the plastic 

strain caused by the machining process when removing the material. 



 

Table 6. SEM images of microstructure 303 stainless steel obtained by side  milling 
under different cutting conditions 

 Dry ࢂ ൌ 105 ࢓Ȁࢠࢌ  ,࢔࢏࢓ ൌ 0.0670 ࢓࢓Ȁ࢚ࢎ࢚࢕࢕ 
(Trial 1) 

Dry ࢂ ൌ 157 ࢓Ȁࢠࢌ  ,࢔࢏࢓ ൌ 0.050 ࢓࢓Ȁ࢚ࢎ࢚࢕࢕ 
(Trial 3) 

Cryogenic ࢓ 157 =ࢂȀ࢔࢏࢓, 
 ࢎ࢚࢕࢕Ȁ࢚࢓࢓ 0.050 =ࢠࢌ 

(Trial 11) 
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Figure 10. a) Microstructure of 303 Stainless steel 50X b) Detail of elongated black spot and  
c) EDAX analysis  

 
 
 
 
 

Slip bands 

Sulphide 



  

 

 

3.2.3. Microhardness studies 

In order to analyze possible changes in hardness especially below the machined surface, Vickers 

microhardness tests were conducted in each sample using a LECO M400 hardness equipment 

using a load of 50 ݃ for a period of 15 ݏ. 
 

Figure 11 and 12 show the changes in microhardness from the machined surface towards the 

center of the specimen. The material bulk reported a value of 170 ܸܪ. As observed all the trials 

reported a higher value of hardness below the machined surface, between 20 ݉ߤ 40 – ݉ߤ and 

the hardness started to stabilize at around 100 ݉ߤ from the machined surface.  

 

Figure 11. Vicker hardness vs Distance from the machined surface for samples machined in a dry 
cutting environment under different cutting conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 12. Vicker hardness vs Distance from the machined surface for samples machined in a 

cryogenic cutting environment under different cutting conditions 
 
 

Figure 13 shows the changes in hardness from the machined surface towards the center of the 

specimen of samples machined in dry and cryogenic environment under the same cutting 

conditions. 

 

 
Figure 13. Vickers Hardness vs Distance from the machined surface for samples cut in  

dry and cryogenic environment under the same cutting conditions. 
 
 
 

 



  

 

As observed when analyzing this figure 10, specimen machined in a cryogenic environment 

achieved higher values of hardness below the machined surface compared to specimen 

machined in a dry environment.  This is probably due to strain hardness during the cutting process 

been more noticeable in the cryogenic environment due to a decrease of the cutting temperature. 

In the case of the dry environment probably the increase of temperature helped to soften the 

material easing the removal of material. 

 

3.4. Chip studies 

All the chips were collected after each cutting process and the results are observed in table 7. 

When analysing the chips it was observed that all the chips were short. The chips obtained from 

dry machining presented a yellow appearance while cryogenic chips presented a white 

appearance, this is probably due to the difference in temperature between each environment. 

 

Table 7. Example of 303 stainless steel chips obtained when milling in dry and cryogenic cutting 
environment under different cutting conditions 

  

                                                X20                                                  X20 
Dry environment 

V= 105 m/min, fz= 0.0670 mm/tooth 
(Trial 1) 

Cryogenic environment 
V= 157 m/min, fz= 0.050mm/tooth 

(Trial 11) 
 

The chip cross section morphology was analyzed using a JEOL JSM6060LV SEM .Table 8 show 

these images. 

 As observed when comparing chips obtained in dry and cryogenic environment, cut under the 

same cutting conditions (trial 1 and trial 9 respectively)  it can be observed a serrated formation 

when using a cryogenic environment, like if the chips were torn from the workpiece material. This 

is probably due to an increase of hardness due to the cryogenic environment. The increase of 

hardness produces an increase of the cutting forces. This result matches with the power 

consumption results, where a 600% of increase of this value was observed when using a 

cryogenic environment compared to the dry environment. This result is in agree with previous 

research (Patwari et.al 2010) 



 

 

Table 8. SEM images of 303 stainless steel chips at magnification of X200 obtained from chip 
cross section -side milling in dry and cryogenic cutting environment at ܸ=105 ݉Ȁ݉݅݊ and ݂0.067=ݖ ݉݉Ȁ݄ݐ݋݋ݐ 

  

                                                                       

Trial 1 

                                                                      

Trial 9 

 

Chips were also unfolded and the results are shown in Table 9. It must be highlighted that three 

attempts were made to unfold the chips and the results showed that the chips obtained from a dry 

environment could be unfold easily and 100%, however this was not the case for the chips 

obtained from a cryogenic environment were in the case of trial 9 they were impossible to unfold 

and for trial 11 chips tend to fracture making them impossible to unfold 100%. 

 

Table 9. SEM images of unfolded 303 stainless steel chips obtained by side milling  
under different cutting conditions 

Dry. Trial 1 ࢓ 105 =ࢂȀ࢓࢓ 0.0670 =ࢠࢌ ,࢔࢏࢓Ȁ࢚ࢎ࢚࢕࢕ 

Dry. Trial 3 ࢓ 157 =ࢂȀ࢓࢓ 0.050 =ࢠࢌ ,࢔࢏࢓Ȁ࢚ࢎ࢚࢕࢕ 

Cryogenic. Trial 11 ࢓ 157 =ࢂȀ࢓࢓ 0.050 =ࢠࢌ ,࢔࢏࢓Ȁ࢚ࢎ࢚࢕࢕ 

  
 

Note: Trial 9 (cryogenic) is not shown as the chip was impossible to unfold 

As observed from Table 9, a bigger separation between shear planes is observed in trial 1 when 

compared with trial 3 where a difference of 25% of the feed per tooth was used. 



  

 

Finally the chips were weighed and in general all the values kept constant for the same cutting 

conditions. Table 10 shows these results. Also it can be mentioned that a decrease of 25% of the 

feed per tooth (݂0.067 =ݖ ݉݉Ȁ݄ݐ݋݋ݐ to ݂0.05=ݖ ݉݉Ȁ݄ݐ݋݋ݐ) produced a decrease of 25% of the 

chip weight from 0.0162 ݃ to 0.0127 ݃. 

 

Table 10. Average weight of 303 stainless steel chips milled under different cutting conditions. 

Trial Environment ࢂ ሾ࢓Ȁ࢔࢏࢓ሿ ࢠࢌ ሾ࢓࢓Ȁ ࢚ࢎ࢚࢕࢕ሿ ࢖ࢇ ሾ࢓࢓ሿ ࢋࢇ ሾ࢓࢓ሿ ࢃ ሾࢍሿ 
1 Dry 105 0.0670 3 11 0.0162 

9 Cryogenic 105 0.0670 3 11 0.0159 

3 Dry 157 0.0500 3 11 0.0127 

11 Cryogenic 157 0.0500 3 11 0.0127 

 

3.3. Material Removal Rate, MRR 

As known the ܴܴܯ increases proportional to the increase of cutting speed and feed per tooth. 

When analysing Figure 14, which illustrates the results given by Table 4, it is observed that the 

combination of cutting parameters used for trials 2, 6 and 10 achieved the highest material 

removal rate. This represents a 49% increased of ܴܴܯ when compared to trials 1, 5 and 9 which 

cutting speed is 50% lower, but also a 97% of increase in ܴܴܯ when compared to trial 4, 8 and 12 

which feed per tooth is 50% smaller. So it is observed that the feed rate has 100% more influence 

on the ܴܴܯ when compared to the cutting speed parameter. 

 

Figure 14. Material Removal Rate for 303 stainless steel under different cutting conditions 

 

 



 

An increase on the ܴܴܯ means more material can be cut in a shorter time and this is achieved by 

increasing the cutting speed and the feed rate. To do this in an economical way depends on many 

areas related to metal cutting namely the machine tool, the cutting tool, the cutting fluid and the 

materials. With regards machine tools, it is necessary to increase the power and accuracy. The 

increase of power to remove more material in a shorter time increases the heat generation near 

the cutting edge of the tool, and the power consumed in metal cutting is largely converted into 

heat. This heat is dissipated by the four systems processing the material: the cutting tool, the 

workpiece, the chip formed and the cutting fluid, (Bacci 1999) 

 

3.3.1. Influence of the Material Removal Rate on the Power consumption and the Surface 

Roughness 

Figure 15 and 16 show the influence of the material removal rate on the average power 

consumption and surface roughness respectively when face milling 303 stainless steel under 

different cutting environment 

 

Figure 15. Influence of the material removal rate on the power consumption when machining in 
different cutting environments 



  

 

 

Figure 16. Influence of the material removal rate on the surface roughness when machining in 
different cutting environments 

 

 

As observed from figure 15 as the material removal increases the power consumption increases 

as the cutting forces are increased, been more noticeable when cutting in a cryogenic 

environment. When analysing Figure 16 as the material removal increase the surface roughness 

improves achieving better results when using a dry cutting environment. 

 

4. CONCLUSIONS 

-  After analyzing the results of 303 stainless steel machined under different cutting environments 

it can be concluded that under the specified cutting parameters the dry environment is more 

suitable for the machining process as the surface roughness, power consumption and materials 

microhardness achieved the lowest results. 

- A proper combination of cutting parameters can achieve low values of power consumption and 

surface roughness instead of changing the cutting parameters individually 

- Overall the optimal combination of cutting parameters are ܸ= 157 ݉Ȁ݉݅݊  and ݂ݖ ൌ 0.050 ݉݉Ȁ݄ݐ݋݋ݐ (corresponding to Trial 3, dry environment.) as a low value of power consumption, 

surface roughness and microhardness was obtained as well as a high ܴܴܯ  

- It was observed an increase of 15% of the microhardness near the machined surface when 

using a cryogenic environment compared to the dry environment. 



 

- There were no noticeable changes on microhardness when changing the cutting speed or the 

feed per tooth, however all the specimens hardness started to stabilized at 100 ݉ߤ from the 

machined surface  

- The power consumption was increased in almost 600% when using a cryogenic environment 

compared to dry and flood coolant when machining under the same cutting conditions 

-Chips obtained from a cryogenic environment presented a more serrated shape in the cross 

sectional area when compared to chips from a dry environment 

5. FUTURE RESEARCH 

Authors would like to extend this research by analysing the consequences of cutting 

environments together with cutting parameters on the residual stresses generated during the 

milling operation. 
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