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Improved entropic uncertainty relations and information exclusion relations

Patrick J. Coles1 and Marco Piani2

1Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117543 Singapore
2Institute for Quantum Computing and Department of Physics and Astronomy,

University of Waterloo, N2L3G1 Waterloo, Ontario, Canada

The uncertainty principle can be expressed in entropic terms, also taking into account the role
of entanglement in reducing uncertainty. The information exclusion principle bounds instead the
correlations that can exist between the outcomes of incompatible measurements on one physical
system, and a second reference system. We provide a more stringent formulation of both the un-
certainty principle and the information exclusion principle, with direct applications for, e.g., the
security analysis of quantum key distribution, entanglement estimation, and quantum communica-
tion. We also highlight a fundamental distinction between the complementarity of observables in
terms of uncertainty and in terms of information.

I. INTRODUCTION

A fundamental trait of quantum mechanics is the
unavoidable uncertainty associated with measuring in-
compatible observables, i.e., the so-called uncertainty
principle, which dates back to Heisenberg [1]. Ken-
nard [2] formalised Heisenberg’s original ideas in an un-
certainty relation involving the products of standard de-
viations of the position y and momentum py observ-
ables, with the well-known inequality ∆y∆py ⩾ ℏ/2.
Robertson [3] generalised this to arbitrary Hermitian ob-
servables X and Z and found the uncertainty relation
∆X∆Z ⩾

1
2 |⟨ψ|[X,Z]|ψ⟩|. From a conceptual point of

view, though, standard deviation is an inadequate mea-
sure of uncertainty, when the latter is understood in
terms of (lack of) knowledge of “which outcome” of a
measurement, rather than in terms of the value of the
outcome. Also, the right-hand side (r.h.s.) of Robert-
son’s relation gives a trivial bound for states |ψ⟩ that
have zero expectation of the commutator, even if |ψ⟩ is
not a common eigenstate of X and Z. It has thus been
proposed to use the entropy of the probability distribu-
tion of the outcomes as the measure of uncertainty [38].
The best known entropic uncertainty relation is prob-

ably the one by Maassen and Uffink [4]. They proved
that, for any state ρA of a quantum system A with a
finite dimension d = dim(HA), it holds

H(X) +H(Z) ⩾ qMU, (1)

where X = {|xj⟩} and Z = {|zk⟩} indicate here or-
thonormal bases on HA, and H(X) = −∑j p

x
j log p

x
j

is the Shannon entropy of the probability distribution
{pxj = ⟨xj |ρA|xj⟩} (similarly for H(Z)). The r.h.s. of
(1) measures the strength of the knowledge tradeoff: the
sum of the “ignorance” (as measured by entropy) about
X and Z cannot be smaller than

qMU = log(1/cmax), cmax = max
j,k

cjk, cjk = |⟨xj |zk⟩|2.
(2)

One has qMU = 0 (i.e., cmax = 1) if and only if (iff)
X and Z share a basis element, while qMU is maximal,

qMU = log d (i.e., cmax = 1/d), iff X and Z are fully
complementary, with cjk = 1/d for all j, k.

The uncertainty principle inspired the original pro-
posal for quantum cryptography [5]. However, the un-
certainty relations known at the time did not take into
account the possibility for an eavesdropper to have quan-
tum correlations, i.e., entanglement [6], with the system
being measured. Hence, those relations could not be di-
rectly used to prove cryptographic security. Berta et al.
[7] filled such a gap, generalizing the uncertainty relation
(1) to take into account the possible use of a quantum
memory. The latter would allow Bob, who is supposed
to have access to a quantum system B that may be en-
tangled to Alice’s system A, to violate (1) [7]. Berta et
al. showed that nonetheless, for any bipartite state ρAB ,
Bob’s uncertainty about the result of measurements in
the X and Z bases on Alice’s system is bounded by

H(X|B) +H(Z|B) ⩾ qMU +H(A|B), (3)

where H(A|B) = H(ρAB) − H(ρB) is the conditional
von Neumann entropy, with H(σ) = −Tr(σ log σ) the
von Neumann entropy, and ρB the reduced state of ρAB
on B. H(X|B) can be interpreted as Bob’s ignorance
about the result of Alice’s measurement of X on A,
given that Bob has access to the system B (similarly
for H(Z|B)) [39]. The two terms H(X|B) and H(Z|B)
are non-negative since they represent classical uncer-
tainties, but H(A|B) can be negative if ρAB is entan-
gled [6], so that the effect of entanglement is to weaken
the knowledge tradeoff. While equation (3) reduces to
(1) when B is a trivial system, if AB are maximally en-

tangled, ρAB = |φ⟩⟨φ|, |φ⟩ = (1/
√
d)
∑
i |i⟩|i⟩, we have

H(A|B) = − log d ⩽ −qMU independently of X and Z,
and the r.h.s. of (3) gives a trivial bound on Bob’s uncer-
tainty. The generality of (3) opens up a range of appli-
cations, e.g., in entanglement witnessing [7–9] and in the
security analysis of quantum key distribution [10, 11].
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A. Summary of results

One main result of this article is to improve the bound
in (3) by replacing qMU with a larger parameter al-
most always strictly greater than qMU. Another result is
the improvement of Hall’s “information exclusion prin-
ciple” [12], which regards the mutual information be-
tween the outcomes of measurements on one physical
system, and a second system correlated with the first
system. Mutual information is a measure of correlations,
and is the central quantity in, e.g., communication the-
ory [13]. It quantifies the number of bits of information
gained—equivalently, the reduction of ignorance—about
X when given access to Y , and can indeed be defined
as I(X :Y ) = H(X) − H(X|Y ). Hall’s idea was essen-
tially to reformulate the uncertainty principle in terms
of mutual information, as follows. Let X and Z be two
orthonormal bases on system A, and let Y be a classical
register that may be correlated to A. Then

I(X :Y ) + I(Z :Y ) ⩽ rH, rH = log(d2 · cmax). (4)

Hall’s bound says that one cannot probe the register Y in
order to obtain complete information about both the X
and Z observables, if these two observables have a small
value of cmax (defined in (2)). Bounds on the sum of
complementary information terms have been called in-
formation exclusion relations [12, 14, 15]. They have not
been studied as much as uncertainty relations [40], and
the best known information exclusion relation, Eq. (4),
is actually not a very strong bound, as pointed out by
Grudka et al. [16]. Grudka et al. have attempted to rem-
edy this by conjecturing a stronger information exclusion
relation. They found numerical evidence, and proved an-
alytically in some special cases, that

I(X :Y ) + I(Z :Y ) ⩽ rG, rG = log


d ·

∑

d largest

cjk


 ,

(5)
with the sum over the largest d terms of the matrix [cjk]
(again, see (2)). Since

∑
d largest cjk ⩽ d · cmax , we

have rG ⩽ rH (potentially with strict inequality) and, if
true, (5) would be an improvement over Hall’s bound. In
what follows we shall actually prove a stronger version of
Grudka et al.’s conjecture. Furthermore we will extend
it to the much more general case of quantum memory,
where Y is replaced by a general quantum system.
Besides improving both the uncertainty relation (3)

and the information exclusion relation (4), this article
provides the insight that the complementarity of uncer-
tainty (i.e., a limit on the knowledge about the outcomes
of complementary observables) and the complementarity
of information (i.e., a limit on the correlations between
the outcomes of complementary observables and some ex-
ternal system) differ both conceptually and practically.
Hence, from the quantitative point of view, we should
not expect to have the same complementarity factor ap-
pearing in uncertainty relations and information exclu-

sion relations. What makes Hall’s bound weak is the use
in (4) of the same parameter cmax as in (1).

In what follows, we first give a simplified presentation
of our results in Secs. II and III and then discuss their
implications in Secs. IV and V. We then give a more de-
tailed presentation, discussing the generalisation of our
results for arbitrary positive operator valued measures
(POVMs) in Sec. VI, and giving more details on our
state-independent approach in Sec. VII. The main tech-
nical proofs are given in the Appendix.

II. IMPROVED UNCERTAINTY RELATION

Our main technical result is an entropic uncertainty
relation that, much like (3), accounts for the possible re-
duction of Bob’s uncertainty about Alice’s system thanks
to the entanglement between systems A and B. Be-
fore presenting our strongest result, we focus on a simple
corollary that gives intuition about the nature of our im-
provement (see Appendix A3 for the proof).

Corollary 1. For any bipartite state ρAB, and any or-
thonormal bases X = {|xj⟩} and Z = {|zk⟩} on HA,

H(X|B) +H(Z|B) ⩾ q′ +H(A|B), (6)

where H(X|B) = H(ρXB) − H(ρB), with ρXB = (X ⊗
I)(ρAB) and X (·) = ∑

j |xj⟩⟨xj |(·)|xj⟩⟨xj | (similarly for

H(Z|B)), and

q′ = qMU +
1

2
(1−√

cmax) log
cmax

c2
, (7)

where c2 is the second largest entry of the matrix [cjk].

Notice that, for small cmax, like in the case of almost
complementary X and Z, one has q′ ≈ log(1/

√
cmaxc2)—

to be compared with qMU = log(1/cmax). So our bound
nicely captures the importance of both cmax and c2, i.e.,
takes into account more information about the relation
between the two bases. Clearly q′ ⩾ qMU in general. Fur-

thermore q′ > qMU iff there is exactly one pair (ĵ, k̂) such
that cmax = cĵk̂, with cmax < 1. In the special case where

the system A is a qubit, it is immediate to check that nec-
essarily cmax = c2, hence q

′ = qMU. However, for d ⩾ 3,
we have q′ > qMU for almost all pairs of bases (X,Z). In-
deed, in d ⩾ 3 a typical unitary—seen here as the unitary
that connects the two bases, i.e.,X = {|xj⟩} = {U |zj⟩}—
has c2 < cmax < 1, see Sec. VIIB. We remark that, even
for the simple improvement provided by Corollary 1, the
gap between q′ and qMU can become arbitrarily large. In
Sec. VIIC, we give an example where the gap q′ − qMU

diverges as the logarithm of the dimension d of A [41].
We now state our main technical result, from which

all of our other relations follow (see Appendix A1 for
the proof). We first replace the bound qMU in (3) with
a state-dependent bound q(ρA), and then define a new
state-independent bound.
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Theorem 2. For any bipartite state ρAB, and any or-
thonormal bases X = {|xj⟩} and Z = {|zk⟩} on HA,

H(X|B) +H(Z|B) ⩾ q(ρA) +H(A|B), (8)

where, from cjk in (2), we define

q(ρA) = max{q(ρA, X, Z), q(ρA, Z,X)}, (9a)

q(ρA, X, Z) =
∑

j

pxj log(1/max
k

cjk), (9b)

q(ρA, Z,X) =
∑

k

pzk log(1/max
j
cjk). (9c)

Hence, the following state-independent bound holds:

H(X|B) +H(Z|B) ⩾ q +H(A|B), q = min
ρA

q(ρA).

(10)

It is clear that q(ρA) ⩾ qMU, since averaging over j or
k gives a larger value than minimising. For A a qubit
(d = 2), we have that maxk cjk is independent of j and
hence q(ρA) = qMU. But q(ρA) ⩾ q′ (see the proof of
Cor. 1), so that, for d ⩾ 3, q(ρA) ⩾ q′ > qMU for all
states, for almost all choices of X and Z. Hence the
lower bound q of (10) is an improvement over qMU. By
using the minimax theorem, see Sec. VIIA, we obtain

q = max
0⩽p⩽1

λmin[∆(p)], (11)

where λmin[·] denotes the minimum eigen-
value and ∆(p) = p∆XZ + (1 − p)∆ZX , with
∆XZ =

∑
j log(1/maxk cjk)|xj⟩⟨xj | and ∆ZX =∑

k log(1/maxj cjk)|zk⟩⟨zk|. Thus, computing q can be
done by finding the minimum eigenvalue of particu-
lar matrices, a straightforward numerical calculation.
Furthermore, by setting p = 1/2 in (11) one can get a
bound still certified to be at least as large as q′ ⩾ qMU.
In general, we have

q ⩾ λmin[∆(1/2)] ⩾ q′ ⩾ qMU.

Example 1. Let d = 3, Z = {|0⟩, |1⟩, |2⟩}, and X =
{U |0⟩, U |1⟩, U |2⟩}, with

U =

(
1/

√
3 1/

√
3 1/

√
3

1/
√
2 0 −1/

√
2

1/
√
6 −

√
2/3 1/

√
6

)
.

We have qMU = log(3/2) ≈ 0.58, q′ ≈ 0.62,
λmin[∆(1/2)] ≈ 0.64, and q ≈ 0.64. Furthermore, our
state-dependent bound is often much better than qMU:
if the reduced state is maximally mixed then q(11/3) =
(2/3) log 3 ≈ 1.06, while numerically averaging over all
pure states gives ⟨q(|ψ⟩)⟩|ψ⟩ ≈ 1.07.
Other attempts have been made to strengthen Eq. (3)

[17–19], or the less general relation Eq. (1) [20–22].
Refs. [21, 22] took a majorisation approach; however,
their bounds can be weaker than (1) when X and Z
have a large qMU value. Ref. [17] added a term to the

r.h.s. of (3) that depends on the quantum discord [23] of
the state ρAB ; that same term (see [17]) can be added
to the r.h.s. of our result (8) if one wishes. Ref. [18]
(Ch. 7) replaced qMU in (3) with a state-dependent bound
q̂(ρA), like we did in (8); however in their case they have
minρA q̂(ρA) = qMU, so unlike our result it does not lead
to a strengthened state-independent bound.

III. IMPROVED INFORMATION EXCLUSION

RELATION

As a corollary of (8), we prove Grudka et al.’s conjec-
tured information exclusion relation [16]. Furthermore,
we actually strengthen their bound and extend it to the
case of quantum memory. In order to fully appreciate
this, let us first consider the extension of Hall’s result to
the case of quantum memory, i.e., we replace the classical
system Y with a general quantum system B. A corollary
of (3) is:

I(X :B) + I(Z :B) ⩽ rH −H(A|B). (12)

Improving (4), this result allows for entanglement be-
tween A and B. It says that the trade-off in correlations
is weakened if H(A|B) is negative, i.e. if ρAB is strongly
entangled. After all, in the maximally entangled case,
I(X :B) = I(Z :B) = log d, so in such a case the bound
on the r.h.s. must be no smaller than 2 log d.

Now consider the following information exclusion rela-
tion, a corollary of our uncertainty relation (8).

Corollary 3. For any bipartite state ρAB,

I(X :B) + I(Z :B) ⩽ r −H(A|B), (13)

with

r = min{r(X,Z), r(Z,X)}, (14a)

r(X,Z) = log(d
∑

j

max
k

cjk), (14b)

r(Z,X) = log(d
∑

k

max
j
cjk). (14c)

Proof. Write H(X|B) = H(X) − I(X :B) (similarly for
H(Z|B)), rearrange (8), and use H(Z) ⩽ log d to get

I(X :B)+I(Z :B) ⩽ log d+H(X)−q(ρA, X, Z)−H(A|B).

Now, H(X) − q(ρA, X, Z) =
∑
j p

x
j log(maxk cjk/p

x
j ) ⩽

log(
∑
j maxk cjk), where we used the concavity of the

log. Bringing d inside the log completes the proof. A
similar bound holds when interchanging X and Z.

This allows us to conclude

Corollary 4. Grudka et al.’s conjecture, (5), is true.
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Proof. Consider the d different terms {maxk cjk}j ap-
pearing in r(X,Z); these may not be the d largest terms
of the matrix [cjk], hence summing over them is smaller
than computing

∑
d largest cjk. So r(X,Z) ⩽ rG (see (5)),

thus r ⩽ rG. Also, if we set B = Y , where Y is classical,
then we have H(A|Y ) ⩾ 0. Combining this with r ⩽ rG
and (13) proves (5).

We emphasise that Eq. (13) goes well beyond Grudka
et al.’s conjecture: it strengthens (5) by replacing rG by
r, and it generalises the result to the case of quantum
memory, allowing for arbitrary (possibly non-classical)
correlations between A and B. In general, we have

r ⩽ rG ⩽ rH.

In the qubit case (d = 2), we have equality r = rG = rH.
To see a case where all three are different, consider the
qutrit example given in Ex. 1. In this case we have rH =
log 6, rG = log 5, and r = log(9/2). Note that r can be
calculated analytically given the coefficients cjk of (2).

IV. UNCERTAINTY VERSUS INFORMATION

One key conceptual insight of our work is to draw a dis-
tinction between the complementarity of uncertainty and
the complementarity of information. The factor cmax nat-
urally appears—via qMU = log(1/cmax)—in uncertainty
relations like (1) and (3). But we should not expect it
to be the right factor to capture the complementarity of
information. While our work shows that uncertainty re-
lations can be improved by replacing qMU with q as in
(10), a much more dramatic improvement is given by re-
placing rH = log(d2 · cmax) with r, i.e., going from the
information exclusion relation (12) to (13). Indeed, in or-
der to obtain a state-independent bound for uncertainty
relations, we must consider the subspace with the least
complementarity. On the other hand, in information ex-
clusion relations it is the overall complementarity, i.e.
with respect to the various subspaces that compose the
space, that matters. The reason our approach is better
suited to capture information complementarity is that r
measures the overall complementarity, averaged over the
whole space, of X and Z. Notice that to obtain our
improved state-independent information exclusion rela-
tion of Corollary 3 we had to tap into the strength of
our state-dependent uncertainty relation of Theorem 2.
Finally, to better appreciate the difference between the
complementarity of uncertainty and the complementarity
of information, it is instructive to consider the conditions
under which our state-independent bounds become triv-
ial, i.e., q = 0 and r = 2 log d. Let U be the unitary
relating X and Z; we have q = 0 iff at least one entry
of U has magnitude 1. In contrast, r = 2 log d iff U is
of the form U =

∑
j e
iφj |P (j)⟩⟨j| for some permutation

function P and phase factors eiφj . These are vastly dif-
ferent conditions, with the latter one implying that U
must be trivial over the entire space, whereas the former

condition says that only one row or column of U need be
trivial.

V. APPLICATIONS

The relevance of (3) for witnessing of entanglement
(WoE) and security analysis for quantum key distribu-
tion was discussed in [7] and implemented experimentally
for WoE in [8, 9]. Since our bound Eq. (8) is an improve-
ment over (3), it enables a tighter analysis. To use our
bound q(ρA) the only information about ρA needed is the
probability distributions {pxj } and {pzk}. In the case of
WoE using the uncertainty relation with quantum mem-
ory as in [8, 9], Alice already determines these probability
distributions experimentally, so no extra effort is needed
to use our bound.

Likewise, our Eq. (13) is relevant to witnessing of good
quantum channels [15, 24]. Consider a channel E from
Alice to Bob. To show that E is good, Alice can send
the X basis states with equal probability through E , and
Bob measures the output in basis XB . Alice does the
same for Z and Bob measures ZB . They compare their
results over a classical communication line and estimate
I(X :XB) and I(Z :ZB). Then they can lower bound the
quantum capacity of E , denoted Q(E), using

Q(E) ⩾ I(X :XB) + I(Z :ZB)− r, (15)

which follows from applying (13) to ρAB = (I⊗E)(|φ⟩⟨φ|)
where |φ⟩ is maximally entangled, and using Q(E) ⩾

−H(A|B) [25]. Thus, showing that E has a positive quan-
tum capacity amounts to showing that the r.h.s. of (15)
is positive.

Closely related to quantum cryptography are ideas of
monogamy or decoupling, whereby strong quantum cor-
relations between A and B guarantee weak correlations
between A and any third system C. Equation (3) has
been used [15, 26] to give sufficient conditions for which
C is decoupled from A, in terms of Bob’s uncertainty
about X and Z. Our results, (8) and (13), allow these
quantitative statements of monogamy to be tightened.

VI. GENERALISATION TO POVMS

A. Results in tripartite form

Our previous results can be rewritten in a form that
considers a tripartite state on ABC rather than a bipar-
tite state on AB. The tripartite formulation is equiv-
alent to the bipartite one, i.e., one formulation implies
the other [7, 15]. In what follows, we state the tripar-
tite formulation of our results since this form allows us
to generalise our results to POVMs in a straightforward
way.

Our first main result was Eq. (8). This says that,
for any tripartite state ρABC and any orthonormal bases
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X = {|xj⟩} and Z = {|zk⟩} on HA,

H(X|B) +H(Z|C) ⩾ q(ρA) (16)

where q(ρA) was defined in (9). Notice that the term
H(A|B) that appeared in (8) has now disappeared since
we have changed H(Z|B) to H(Z|C).
Our second main result was Eq. (13). It says that,

for any tripartite state ρABC and any orthonormal bases
X = {|xj⟩} and Z = {|zk⟩} on HA,

I(X :B) + I(Z :C) ⩽ r, (17)

where r was defined in (14).
We used our second result to prove a conjecture by

Grudka et al. [16], which strengthened Hall’s information
exclusion principle [12]. Hall’s scenario considered the
case where Y is a classical register and we want to bound
the sum I(X :Y ) + I(Z :Y ). Our second result implied
the following bound on this sum:

I(X :Y ) + I(Z :Y ) ⩽ r, (18)

which in turn implied Grudka et al.’s conjecture.
In what follows, we will generalise all of these results,

Eqs. (16), (17), and (18), to the case where X and Z are
arbitrary POVMs (assuming they contain a finite number
of POVM elements) on system A.

B. Notation for POVMs

In the general case where X = {Xj} and Z = {Zk}
are POVMs on A, we consider the isometries VX :HA →
HXX′A and VZ :HA → HZZ′A defined by [10]

VX =
∑

j

|j⟩X ⊗ |j⟩X′ ⊗
√
Xj , (19a)

VZ =
∑

k

|k⟩Z ⊗ |k⟩Z′ ⊗
√
Zk, (19b)

where |j⟩ and |k⟩ are elements of the standard (orthonor-
mal) basis on the appropriate spaces. For some initial
tripartite state ρABC we denote the alternative post-
measurement states as:

ρ̂XX′ABC = VXρABCV
†
X , (20a)

ρZZ′ABC = VZρABCV
†
Z . (20b)

Then we define

H(X|B) = H(ρ̂XB)−H(ρB), (21a)

H(Z|C) = H(ρZC)−H(ρC), (21b)

which are the conditional entropies of the classical quan-
tum states ρ̂XB = TrX′AC(ρ̂XX′ABC) and ρZC =
TrZ′AB(ρZZ′ABC), respectively. For example, notice that
we can write

ρ̂XB =
∑

j

|j⟩⟨j|X ⊗ TrA(XjρAB)

= (X ⊗ I)(ρAB) (22)

for the quantum channel X : ρA 7→∑
j |j⟩⟨j|XTr(XjρA).

Also, we denote the probabilities associated with these
two POVMs as pxj = Tr(XjρA) and p

z
k = Tr(ZkρA).

C. Uncertainty relation for POVMs

Generalising the results to POVMs essentially amounts
to finding an appropriate generalisation of the comple-
mentarity factor that appears in our bounds, such as
q(ρA) and r. In what follows, we will use the factors:

hj(X,Z) =
∥∥∥
∑

k

ZkXjZk

∥∥∥
∞
, (23a)

hk(Z,X) =
∥∥∥
∑

j

XjZkXj

∥∥∥
∞
, (23b)

where the infinity norm (or operator norm) ∥M∥∞ is the
largest singular value ofM , or in the case of (23) it is the
largest eigenvalue since the arguments are positive semi-
definite matrices. We discuss in the next subsection why
we chose this complementarity factor - the reason being
that it gives a stronger bound than an alternative, as
discussed below.

Now we generalise (16) to the case of arbitrary POVMs
with the following result, proved in App. A 1.

Theorem 5. Let X = {Xj} and Z = {Zk} be arbitrary
POVMs on A. Then for any tripartite state ρABC ,

H(X|B) +H(Z|C) ⩾ q(ρA) (24)

where we define

q(ρA) = max{q(ρA, X, Z), q(ρA, Z,X)}, (25a)

q(ρA, X, Z) = −
∑

j

pxj log hj(X,Z), (25b)

q(ρA, Z,X) = −
∑

k

pzk log hk(Z,X). (25c)

Notice that our definition of q(ρA) reduces to that
given in (9) when we specialise to the case of orthonor-
mal bases (in other words, rank-one projective POVMs).
This is because, when Z is projective, then hj(X,Z) =
maxk ∥ZkXjZk∥∞ and further specialising to X and Z
being composed of rank-one projectors reduces the for-
mula to hj(X,Z) = maxk cjk, which is the formula ap-
pearing in (9).

While we have taken the tripartite view to give a simple
statement of our results for POVMs, it is possible rewrite
(24) in a bipartite form, using an approach similar to that
in [18]. We obtain:

H(X|B) +H(Z|B) ⩾ q(ρA) +H(A|B)− f (26)

where f := min{H(A|BX)ρ̂, H(A|BZ)ρ}, and where
H(A|BX)ρ̂ and H(A|BZ)ρ denote the conditional en-
tropies of ρ̂XAB and ρZAB , respectively. For the case of
orthonormal bases considered earlier, f = 0.
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D. Choice of complementarity factor

The following technical lemma, proved in App. A 2,
is relevant to our choice of complementarity factor for
POVMs [42].

Lemma 6. Let σ be an arbitrary operator—that is, an
arbitrary square matrix, although we will be interested
mostly in the case in which σ is positive semidefinite,
hence the choice of notation—and let Z = {Zk} be any
POVM. Then

∥∥∥
∑

k

ZkσZk

∥∥∥
∞

⩽ max
k

∥∥∥
√
Zkσ

√
Zk

∥∥∥
∞
. (27)

Our choice of complementarity factor was inspired
by Refs. [18, 19]. In particular, in Chapter 7 of [18]
Tomamichel conjectures that, for any two POVMs X and
Z,

max
j

∥∥∥
∑

k

ZkXjZk

∥∥∥
∞

⩽ max
j,k

cjk, (28)

where

cjk =
∥∥∥
√
ZkXj

√
Zk

∥∥∥
∞

=
∥∥∥
√
Xj

√
Zk

∥∥∥
2

∞
. (29)

Clearly our Lemma 6 implies Eq. (28) and hence resolves
an outstanding conjecture. The reason this conjecture
was interesting was because the factors on the left- and
right-hand-sides of (28) were alternative complementar-
ity factors that could potentially be used as bounds in the
uncertainty relation. Indeed the r.h.s. of (28) was used
in several uncertainty relations [10, 15, 28], so proving
that the l.h.s. of (28) is smaller, as we have done here,
shows that the l.h.s. provides a better bound for POVM
uncertainty relations. (This issue is only of concern for
general POVMs, since the two factors in (28) are equal
when X and Z are orthonormal bases.)
This discussion has relevance to the present article

since our derived bound in Theorem 5 involves quantities
q(ρA, X, Z) and q(ρA, Z,X) defined in terms of hj(X,Z)
and hk(Z,X) given in (23). But from Lemma 6, these
quantities are bounded by

hj(X,Z) ⩽ max
k

∥∥√ZkXj

√
Zk
∥∥
∞ = max

k
cjk, (30a)

hk(Z,X) ⩽ max
j

∥∥√XjZk
√
Xj

∥∥
∞ = max

j
cjk. (30b)

Hence our bound involving hj(X,Z) and hk(Z,X) is
stronger than the one obtained from replacing them with
the quantities on the right-hand-sides of (30). This pro-
vides justification for our choice of complementarity fac-
tor.

E. Information exclusion relation for POVMs

Here we use Theorem 5 to derive an information ex-
clusion relation that is generalised to the POVM case.

Again, we note that the following definition of r reduces
to that in (14) when X and Z are specialised to be or-
thonormal bases.

Corollary 7. Let X = {Xj} and Z = {Zk} be arbitrary
POVMs on A. Then for any tripartite state ρABC ,

I(X :B) + I(Z :C) ⩽ r, (31)

where we define

r = min{r(X,Z), r(Z,X)}, (32a)

r(X,Z) = log[|Z|
∑

j

hj(X,Z)], (32b)

r(Z,X) = log[|X|
∑

k

hk(Z,X)]. (32c)

where |Z| and |X| denote the number of POVM elements.

Proof. Write H(X|B) = H(X)−I(X :B) and H(Z|C) =
H(Z) − I(Z :C), then rearrange (24) and use H(Z) ⩽

log |Z| to get

I(X :B) + I(Z :C) ⩽ log |Z|+H(X)− q(ρA, X, Z).

Now write

H(X)− q(ρA, X, Z) =
∑

j

pxj log[hj(X,Z)/p
x
j ]

⩽ log[
∑

j

hj(X,Z)], (33)

where we used the concavity of the log. Bringing |Z|
inside the log completes the proof, and by symmetry the
same bound holds where one interchanges X and Z.

Finally, we generalise (18) to the POVM case. The fol-
lowing result is applicable to the same scenario that Hall
considered in his information exclusion principle, except
we have generalised it to the case where X and Z are
POVMs.

Corollary 8. Let X = {Xj} and Z = {Zk} be arbitrary
POVMs on A. Let Y be a classical register that may
be correlated to A, i.e., ρAY is an arbitrary quantum-
classical state. Then,

I(X :Y ) + I(Z :Y ) ⩽ r (34)

where r is defined by Eq. (32).

Proof. Apply (31) to the tripartite state ρAY Y ′ where
system Y ′ is an exact copy of system Y , such that ρAY ′ =
TrY (ρAY Y ′) is of the same form as ρAY = TrY ′(ρAY Y ′).
(Note: the fact that Y is classical allows us to copy its
correlations with A.) In this case we have I(X :Y ′) =
I(X :Y ), hence proving (34).
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VII. STATE-INDEPENDENT BOUND FOR

UNCERTAINTY RELATION

A. Computable expression

Now let us consider the state-independent version of
our bound, defined by

q = min
ρA

q(ρA).

In Sec. II we noted that this bound can be rewritten in
an alternative form that may be easier to calculate. Here
we derive this alternative form.
Let us first rewrite q(ρA) as follows:

q(ρA) = max{q(ρA, X, Z), q(ρA, Z,X)}
= max

0⩽p⩽1
[p q(ρA, X, Z) + (1− p)q(ρA, Z,X)]

= max
0⩽p⩽1

[pTr[ρA ·
∑

j

Xj log(1/hj(X,Z))]

+ (1− p)Tr[ρA ·
∑

k

Zk log(1/hk(Z,X))]]

= max
0⩽p⩽1

Tr[ρA∆(p)], (35)

where we define

∆(p) = p∆XZ + (1− p)∆ZX , (36)

∆XZ =
∑

j

log(1/hj(X,Z)) ·Xj ,

∆ZX =
∑

k

log(1/hk(Z,X)) · Zk.

From hj(X,Z) ⩽ 1 and hk(Z,X) ⩽ 1, it follows that
∆XZ ⩾ 0 and ∆ZX ⩾ 0, and hence ∆(p) ⩾ 0.
Next, thanks to the linearity in the arguments, we can

use the minimax theorem to interchange the min and
max in q as follows:

q = min
ρA

max
0⩽p⩽1

Tr[ρA∆(p)]

= max
0⩽p⩽1

min
ρA

Tr[ρA∆(p)]

= max
0⩽p⩽1

λmin[∆(p)]. (37)

The formula in (37) makes it possible to numerically
calculate q. Given the POVM elements of X and Z,
it is straightforward to numerically diagonalise ∆(p) for
a fixed p; then the maximisation over p can be plot-
ted graphically. For example, Fig. 1 shows this plot for
Example 1 given in the main text, yielding a value of
q ≈ 0.64.
It is also worth noticing that, since λmin[∆XZ ] =

λmin[∆ZX ] = qMU, Eq. (37) is another way of seeing that
q ⩾ qMU. Also, since the smallest eigenvalue satisfies
λmin[A + B] ⩾ λmin[A] + λmin[B] for any two Hermi-
tian matrices [30], we have that q = qMU iff the function
λmin[∆(p)] is independent of p and hence is equal to qMU

for all p.

0 0.2 0.4 0.6 0.8 1
0.58

0.59

0.6

0.61

0.62

0.63

0.64

λ
m

in
[∆

(p
)]

q

qMU

p

FIG. 1: Plot of the minimum eigenvalue of ∆(p) as a function
of p, for Example 1 given in the main text. The maximum
in the plot corresponds to q ≈ 0.64, which is an improvement
over the old bound qMU ≈ 0.58 corresponding to the value at
p = 0 and p = 1.

B. Analytical bound

While q is our strongest state-independent bound, we
can find a slightly weaker state-independent bound q′

that is given by a simple, analytical expression and is still
an improvement over qMU. In Cor. 1, we gave the form
of q′ in terms of the largest and second-largest entries of
the matrix cjk. To state this result for general POVMs,
we define cjk according to (29), which reduces to the
expression in (2) in the case of orthonormal bases.

Now we generalise Cor. 1 to POVMs as follows, with
the proof in App. A 3.

Theorem 9. Let (ĵ, k̂) be a pair of indices such that
cĵk̂ = maxjk cjk = cmax, where cjk is defined in (29), so

that cĵk̂ = ∥
√
Xĵ

√
Zk̂∥2∞. Let c2 be the second-largest

entry of the matrix cjk (possibly equal to cmax). It holds
that q(ρA) ⩾ q′ where q′ is a state-independent parameter
given by

q′ = qMU +
1

2
(1−√

cmax) log

(
cmax

c2

)
. (38)

Eq. (38) allows us to argue that, if d ⩾ 3, our bound
q′ (and hence also q) is an improvement over the stan-
dard bound qMU for almost all pairs of orthonormal bases
(X,Z). To argue this, we will need the following lemma,
proved in App. A 4, kindly provided by N. Johnston [33].

Lemma 10. For any dimension d ⩾ 3, the entries Uij
of a generic d-dimensional unitary U satisfy

|Uij | ̸= |Ukl|, ∀(i, j) ̸= (k, l). (39)

That is, for any dimension d ⩾ 3 the set of unitaries
that violate (39) has vanishing measure with respect to
the Haar measure.

Combining Theorem 9 with Lemma 10 immediately
leads to the following conclusion.
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Corollary 11. In any dimension d ⩾ 3, for almost all
choices of two orthonormal bases one has c2 < cmax < 1,
hence q′ > qMU.

Proof. The bases are related by a unitary transformation
U , represented in the first basis by entries Uij . The pa-
rameter cmax corresponds to the modulus square of the
largest entry. Because of Lemma 10, we have cmax < 1
generically. Indeed, if cmax = 1, all the remaining en-
tries in the same row or column must vanish, violating
(39). Finally, also the condition c2 = cmax corresponds
to a violation of (39). The use of (38) completes the
claim.

C. Arbitrarily large gap between qMU and our

bound

We show here that the gap between qMU and our state-
independent bound can grow unboundedly, and more pre-
cisely logarithmically in the dimension of the system in-
volved. In the case of q, this can be seen by observing
that it is additive on tensor copies, i.e., q({X⊗n, Z⊗n}) =
nq({X,Z}) where X and Z are arbitrary POVMs. Since
qMU is also additive on tensor copies, any gap between
qMU and q for a single copy ofX and Z will get multiplied
by n.
Our simple analytical bound q′ is not additive on ten-

sor copies. Nonetheless, we construct the following ex-
ample for which δ := q′ − qMU grows as log d. Consider
a Hilbert space HA = HA1

⊕ HA2
with dim(HA) = d,

dim(HA1
) = 1, dim(HA2

) = d− 1. Let

U0 = 111 ⊕ Fd−1 (40)

be a unitary acting on HA where 111 is the 1× 1 identity

matrix (acting on HA1
). Also, Fd−1 =

∑
j,k

ωjk
√
d−1

|j⟩⟨k| =
∑
j |tj⟩⟨j|, with ω = e2πi/(d−1), is the Fourier matrix of

dimension d − 1, which acts on HA2
by mapping the

standard basis S = {|j⟩} to the basis T = {|tj⟩}. We
suppose that the orthonormal bases on HA of interest
(X and Z) for the uncertainty relation are related by a
unitary U that is the product of U0 and a slight rotation
Ur, i.e.,

U = UrU0. (41)

Now let |y0⟩ ∈ HA2
be a state that is unbiased with

respect to both the S basis and the T basis on HA2
. (It

is always possible to find such a state regardless of the
Hilbert space dimension.) We define Ur by

Ur = e−iHrθ, Hr = |y′0⟩⟨0|+ |0⟩⟨y′0|, (42)

where |y′0⟩ = V |y0⟩ and V : HA2
→ HA is an isometry

that embeds the d− 1 dimensional space HA2
into the d

dimensional spaceHA defined by V =
∑d−2
j=0 |j+1⟩⟨j|. We

choose the rotation angle 0 < θ < π/2 to be a constant,
i.e., independent of d. Note that

H2
r = |0⟩⟨0|+ |y′0⟩⟨y′0|, H3

r = Hr, H4
r = H2

r ,

which implies that

sin(Hrθ) = Hr · sin θ,
cos(Hrθ) = (11−H2

r ) +H2
r · cos θ,

and

Ur = cos(Hrθ)− i sin(Hrθ)

= (11−H2
r ) +H2

r · cos θ − iHr · sin θ. (43)

For j ̸= 0 and k ̸= 0, we have

⟨0|U |0⟩ = cos(θ),

⟨0|U |j⟩ = −i sin(θ)⟨y′0|j⟩,
⟨j|U |0⟩ = −i sin(θ)⟨j|y′0⟩,
⟨j|U |k⟩ = ⟨j|F ′

d−1|k⟩+ (cos(θ)− 1)⟨j|y′0⟩⟨y′0|F ′
d−1|k⟩,

where we write F ′
d−1 = V Fd−1V

† for clarity. In the limit
of large d, this gives

c00 = |⟨0|U |0⟩|2 = cos2 θ,

c0j = |⟨0|U |j⟩|2 ≈ (1/d) sin2 θ,

cj0 = |⟨j|U |0⟩|2 ≈ (1/d) sin2 θ,

cjk = |⟨j|U |k⟩|2 ≈ 1/d. (44)

Thus, in this limit, we have

cmax = cos2 θ, c2 ≈ 1/d. (45)

So for large d the gap is given by

δ := q′ − qMU

=
1

2
(1−√

cmax) log
cmax

c2

≈ 1

2
(1− cos θ) log(d cos2 θ). (46)

So δ grows with log d in this example.

VIII. CONCLUSIONS

We gave two main results: we strengthened the bound
in the uncertainty principle with quantum memory, and
we formulated an information exclusion relation (a bound
on complementary mutual information terms) that also
allows for quantum memory. The latter is a major im-
provement over previously known information exclusion
relations, with a much stronger bound that even provides
qualitatively new insight into the complementarity of in-
formation and how it differs from that of uncertainty.
Our results have applications in, e.g., quantum cryptog-
raphy, entanglement verification and quantum communi-
cation. It would be interesting to see if our results ex-
tend to smooth entropies or smooth mutual informations
that are relevant to non-asymptotic information theory
[18, 27].
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Appendix A: Proofs of Technical Results

1. Proof of Thm. 5

Let us first state the following lemma that is used in
proving the uncertainty relation. The lemma was given
in [15], but we reproduce its proof here for completeness.

Lemma 12. [15] Let Z = {Zk} be any POVM on system
A, then for any tripartite state ρABC ,

H(Z|C) ⩾ D(ρAB ||
∑

k

ZkρABZk). (A1)

Proof. Consider the state ρZZ′ABC defined in (20). Ap-
plying strong subadditivity to this state gives H(Z|C) +
H(Z|Z ′AB) ⩾ 0. Now note that conditional entropy can
be rewritten in terms of relative entropy with the formula
−H(A|B)σ = D(σAB ||11⊗ σB). So we have:

H(Z|C) ⩾ −H(Z|Z ′AB) (A2)

= D(ρZZ′AB ||11⊗ ρZ′AB) (A3)

⩾ D(ρZZ′AB ||VZV †
Z(11⊗ ρZ′AB)VZV

†
Z) (A4)

= D(ρAB ||V †
Z(11⊗ ρZ′AB)VZ) (A5)

= D(ρAB ||
∑

k

ZkρABZk). (A6)

The third line used the property D(ρ||σ) ⩾ D(ρ||ΠρσΠρ)
where Πρ is a projector onto a space that includes the

support of ρ; in this case we chose Πρ = VZV
†
Z . The

fourth line used the invariance of relative entropy under
isometries. It is straightforward to verify the fifth line
using ρZ′AB =

∑
k |k⟩⟨k| ⊗

√
ZkρAB

√
Zk.

Now we prove Thm. 5, which implies Thm. 2 as a spe-
cial case.

Proof. Starting from Lemma 12 we invoke the data-
processing inequality for the quantum channel X in (22),

as follows

H(Z|C) ⩾ D(ρAB ||
∑

k

ZkρABZk)

⩾ D(ρ̂XB ||
∑

j,k

|j⟩⟨j| ⊗ TrA(ZkXjZkρAB)) (A7)

⩾ D(ρ̂XB ||
∑

j

hj(X,Z)|j⟩⟨j| ⊗ ρB) (A8)

= −H(ρ̂XB)− TrXB [ρ̂XB log
∑

j

hj(X,Z)|j⟩⟨j| ⊗ ρB ]

(A9)

= −H(X|B)− TrX [ρX log
∑

j

hj(X,Z)|j⟩⟨j|] (A10)

= −H(X|B) + q(ρA, X, Z) (A11)

where the fifth line used the additivity of the log for
tensor products. The third line invoked the property
D(S||T ) ⩾ D(S||T ′) if T ′ ⩾ T , where we note that

∑

j,k

|j⟩⟨j| ⊗ TrA(ZkXjZkρAB)

=
∑

j

|j⟩⟨j| ⊗ TrA[(
∑

k

ZkXjZk)ρAB ]

⩽
∑

j

hj(X,Z)|j⟩⟨j| ⊗ ρB (A12)

since
∑
k ZkXjZk ⩽ ∥∑k ZkXjZk∥∞11.

Finally, by symmetry, one can interchange X and Z in
the bound and hence use q(ρA).

2. Proof of Lem. 6

Proof. First notice that

max
k

∥∥√Zkσ
√
Zk
∥∥
∞ =

∥∥ρ
∥∥
∞,

where

ρ :=
∑

k

|k⟩⟨k| ⊗
√
Zkσ

√
Zk

and {|k⟩} is the standard basis on an auxiliary space.
Now consider the isometry V =

∑
k |k⟩⊗

√
Zk and notice

that
∑

k

ZkσZk = V †ρV.

So we wish to show that

∥∥ρ
∥∥
∞ ⩾

∥∥V †ρV
∥∥
∞.

Consider the projector Π = V V † and the channel E(·) =
Π(·)Π + (11 − Π)(·)(11 − Π) that pinches with respect to
this projector. It is a standard result in matrix analysis
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that the infinity norm never increases upon pinching the
argument [30]. So we have

∥ρ∥∞ ⩾ ∥E(ρ)∥∞
= max{∥ΠρΠ∥∞, ∥(11−Π)ρ(11−Π)∥∞}
⩾ ∥ΠρΠ∥∞ = ∥V †ρV ∥∞, (A13)

where the last equality uses the invariance of the norm
under isometries.

3. Proof of Thm. 9

We first note the following useful lemma, shown, e.g.,
in Refs. [31, 32].

Lemma 13. For any positive semi-definite operators
S ⩾ 0 and T ⩾ 0, we have

∥S + T∥∞ ⩽ max{∥S∥∞, ∥T∥∞}+ ∥
√
S
√
T∥∞. (A14)

Now we prove Thm. 9, which implies Cor. 1 as a special
case.

Proof. From the definition (25) of q(ρA), and using (30),
we have

q(ρA) ⩾ max{−
∑

j

pxj log(max
k

cjk),−
∑

k

pzk log(max
j
cjk)}

⩾
1

2
[−
∑

j

pxj log(max
k

cjk)−
∑

k

pzk log(max
j
cjk)]

⩾
1

2
[−px

ĵ
log cmax − (1− px

ĵ
) log c2

− pz
k̂
log cmax − (1− pz

k̂
) log c2]

= qMU +
1

2
log

(
cmax

c2

)
[2− (px

ĵ
+ pz

k̂
)]. (A15)

Since log(cmax/c2) ⩾ 0 by assumption, to bound q =
minρA q(ρA) we need to evaluate

max
ρA

(px
ĵ
+ pz

k̂
) = max

ρA
Tr[ρA(Xĵ + Zk̂)]

= ∥Xĵ + Zk̂∥∞
⩽ max{∥Xĵ∥∞, ∥Zk̂∥∞}+ ∥

√
Xĵ

√
Zk̂∥∞

⩽ 1 +
√
cmax, (A16)

where in the first inequality we have used (A14) from
Lemma 13, and in the second inequality the fact that Xĵ
and Zk̂, being POVM elements, both have operator norm
less than unity. Plugging this into (A15) proves (38).

4. Proof of Lem. 10

Proof. The proof relies on concepts of algebraic geom-
etry [34]. The set of unitaries in dimension d has real
dimension d2, that is, one has to specify d2 real param-
eters to specify a unitary U . On the other hand, uni-
taries can be seen as forming a real algebraic variety U
in R

2d2 . Indeed, let the real numbers xkl and ykl be the
real and imaginary components of the matrix entry Ukl,
i.e., Ukl = xkl + iykl. Then the condition U †U = 11 cor-
responds to a system of quadratic equations in the xkl’s
and ykl’s. Since the unitaries form a connected group,
the algebraic variety U is irreducible [34]. In particular,
if Z is another algebraic variety, either U ∩ Z is equal
to U (if U ⊆ Z) or U ∩ Z has real dimension strictly
smaller than d2. For any choice of two ordered pairs (i, j)

and (k, l), consider the algebraic variety Z(i,j)(k,l) ⊆ R
2d2

defined by (x2ij + y2ij) − (x2kl + y2kl) = 0. It is easy to
check that for d ⩾ 3, U ̸⊆ Z(i,j)(k,l) for every choice of
(i, j) ̸= (k, l). This is because, when d ⩾ 3, for any
(i, j) ̸= (k, l) it is possible to find a unitary that does
not belong to Z(i,j)(k,l). Notice that, on the other hand,
U = Z(1,1)(2,2) = Z(1,2)(2,1) for d = 2. Thus, for d ⩾ 3
and (i, j) ̸= (k, l), U∩Z(i,j)(k,l) has real dimension strictly

less than d2, hence vanishing Haar measure. Given that
there is a finite number of sets Z(i,j)(k,l), it also holds
that the union of all U ∩ Z(i,j)(k,l)’s has real dimension

strictly less than d2 and vanishing Haar measure. The
claim follows.
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