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We study non-equilibrium spatial self-organisation in

cold atomic gases, where long-range spatial order

spontaneously emerges from fluctuations in the plane

transverse to the propagation axis of a single optical

beam. The self-organisation process can be interpreted

as a synchronisation transition in a fully connected

network of fictitious oscillators, and described in

terms of the Kuramoto model.

1. Introduction

In recent years, cold and ultracold matter have proved

to be a formidable tool for the investigation of phase

transitions and collective behaviour in non-equilibrium

systems. When coupling the dynamics of light and the

center-of-mass degrees of freedom of laser-cooled atoms,

the dynamics becomes nonlinear and, above a critical

value for the energy injected into the system, a transition

is observed from a spatially homogeneous state to a

state displaying some form of long-range order. This

can be obtained in various configurations: transversally

pumped cavities [1] where collective dynamics and self-

organisation in cold [2,3] and ultracold [4] gases have

been investigated; collective atomic recoil lasing (CARL)

where the spontaneous generation of a back-scattered

beam within a monodirectional cavity is self-sustained

by atomic bunching in the resulting optical potential [5–

7]; in a counter-propagating geometry superradiance

and high-order nonlinearities stemming from atomic

bunching have been studied [8–10]. The spontaneous

breaking of a continuous translational symmetry in the

presence of a strong viscous damping was investigated

both for cavity [11,12] and counter-propagating [10,13,14]

c⃝ The Author(s) Published by the Royal Society. All rights reserved.
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geometries, while a single-mirror geometry in the absence of damping was the focus of recent

theoretical [15] and experimental [16] research. The distinguishing feature of these studies is that

the spatial scale of the emerging spatial structure is self-selected, so that the spontaneous breaking

of two continuous symmetries is observed (rotations and translations in the plane). A fully

connected network is implemented through effective long range interactions mediated by the

optical fields, so that a mean-field model effectively captures the dynamics of the system [11,15].

The same general concept lies at the heart of much recent research, ranging from the atom-optical

simulation of condensed matter phenomena [1] to the the study of spin-glass transitions in cold

atoms [17].

Together with spatial self-ordering, another prominent feature of nonlinear systems is that of

temporal spontaneous ordering, i.e. synchronisation. The emergence of synchronisation is a

pervasive feature of nonlinear science, ranging from biology and chemistry to neuroscience and

social networks [18]. Broadly speaking, the spatial ordering into a periodic structure and the

synchronisation of oscillators on a limit cycle can be thought of as the same phenomenon, if the

extended nature of the spatial coordinate is ignored, and only the spatial phase is considered.

Implementing light-mediated atom-atom interactions opens the possibility for tunable and

controllable realisations of long-range interacting and mean-field models for synchronisation [19],

and indeed this was exploited in Refs. [7,20] to connect the viscous CARL dynamics to the

Kuramoto model for synchronisation of coupled oscillators [21]. We will show in the following

that this connection is not limited to CARL, but applies also to the symmetry-breaking transverse

instabilities studied in [15,16]. Moreover, the connection made in [7,20] referred to the case where

strong damping is present in the system (hence the denomination ‘viscous’ CARL), which in the

Kuramoto analogy translates into the case where the oscillators have zero natural frequencies

(their distribution is a Dirac delta function). We extend here the Kuramoto analogy to the

situation analysed in [15,16], where no damping is present and a finite spread exists in the natural

frequency distribution of the fictitious oscillators.

2. Single-mirror optomechanical instabilities

(a) Basic scheme

We consider the single-mirror setup [22] depicted in Fig. 1, where a cold gas of two-level atoms

is illuminated from the side by a pump beam of amplitude F , frequency ω0 and wavenumber k0.

The pump beam is detuned by δ= ω0 − ωat from the atomic transition (frequency ωat, linewidth

Γ ), and is retroreflected by a mirror of reflectivityR placed at distance d from the cloud to form the

backward beam (amplitudeB). We can thus envisage a situation where fluctuations in the atomic

spatial properties can modify the refractive index distribution in the atomic ensemble and in turn

the phase profile of the field. These phase fluctuations are converted into amplitude fluctuations

by the free-space propagation to the mirror and back (related to the Talbot effect [23]) [24,25].

If the medium is nonlinear, it will react to these amplitude perturbations resulting in a runaway,

self-organisation process where initial fluctuations are exponentially amplified and a macroscopic

structure, emerging from noise, is encoded in the spatial properties of the atomic cloud. These

spatial perturbations can be in the internal states of the atoms, e.g. a change of population

of the excited state (electronic or two-level nonlinearity) or Zeeman sublevel (optical pumping

nonlinearity) or in the external degrees of freedom of the atoms. In particular we are interested

here in the centre of mass, motional degrees of freedom of the atoms, which can be excited by

dipole forces. As was first established for dielectric beads [26–28], linear Rayleigh scatterers can

exhibit a significant optomechanical nonlinearity: for a negative polarisability (corresponding

to δ > 0 for atoms), the dielectric scatterers are low-field seekers and are expelled from high

intensity regions. Since for δ > 0 the refractive index of atoms is smaller than one, a decrease in

atomic density implies an increase of refractive index. Hence the refractive index increases where
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Figure 1: Sketch of the single-mirror setup. A pump beam with an intensity corresponding to

a saturation parameter p0 = |F |2, frequency ω0 and wavenumber k0 illuminates a dense cloud

of cold 87Rb (temperature T , optical density in line centre b0). The beam is phase-shifted and

transmitted from the cloud, and then retroreflected as the backward (B) beam after propagation

to the mirror (distance d, reflectivity R) and back.

the intensity is high, leading to an effective self-focusing nonlinearity. The result is a transverse

optomechanical instability.

(b) Basic experimental observations

In the experiments motivating our study [16] the D2 line of 87Rb is exploited (transition

wavelength λ0 = 780.27nm) with an excited state lifetime of Γ−1 = 26ns. An atomic ensemble

is laser-cooled in a magneto-optical trap (MOT) to a temperature of about 290 µK. At this

temperature Doppler broadening is negligible compared to the linewidth of the atomic transition

(Γ/(2π) = 6.06 MHz). The cold sample obtained has a roughly Gaussian density profile

with dimensions (full-width-at-half-maximum, FWHM) of 10× 10× 5 mm (10mm along the

propagation direction) and contains about 5× 1010 atoms. The optical density in line centre is

b0 = 150. Then the MOT (trapping lasers and magnetic field) is shut down and the pump beam is

turned on for a duration tpump. This pump beam is spatially filtered by a single-mode fibre and

collimated to a spot size of 1.9mm (FWHM). The experiment is performed in the vicinity of the

F = 2→ F ′ = 3 hyperfine transition, which is closed. A repumper tuned to the F = 1→ F ′ = 2

transition counteracts hyperfine pumping due to the residual excitation of other states. The

polarisation of the pump beam is linear. Details of the setup can be found in [16].

Spontaneous breaking of transverse symmetries and pattern formation are observed for a wide

range of positive detunings to the F = 2→ F ′ = 3 transition, most experiments being done with a

pump detuning in the range δ= 7− 10Γ . The observed patterns have hexagonal symmetry and

consist of well developed peaks. As we are going to compare the results to a one-dimensional

theory, we are presenting here only cross-sections of the two-dimensional structures. The upper

panel of Fig. 2 shows a section through the light pattern in the pump beam. A high modulation is

evident with peaks reaching 3.5 times the background of the input beam. The pattern wavelength

is about 110µm and is found to depend on the feedback distance [16].

Ten microseconds after the pump beam is switched off, a weak probe beam, which is orthogonally

polarised to the pump and does not experience feedback, is injected into the medium. It is detuned

a few linewidths to the low-frequency side of the resonance and shows a honeycomb pattern. For

the dispersive imaging situation used here, one expects that high intensity levels are obtained

where the refractive index in the sample is high. For negative detunings these are the regions with

a high atomic density. The observation of honeycombs is hence consistent with the expectation

for complementary patterns in the light field and the atomic density: atoms are expelled from the

pump filament and gather along the ridges of the honeycomb pattern.

Within ten microseconds, all excited state populations created by the pump will have decayed.

Page 3 of 11

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r R

eview
 O

n
ly

4

rs
p

a
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

ro
c

R
S

o
c

A
0

0
0

0
0

0
0

..........................................................

0 50 100 150 200 250 300 350 400 450
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tr
an

sm
is

si
on

of
 p

um
p

0 50 100 150 200 250 300 350 400 450

x (μm)
0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

is
si

on
of

 p
ro

be

Figure 2: Cross-sections of typical hexagonal patterns observed in the transmitted pump beam

(upper panel) and probe beam (lower panel). Both stem from the re-imaged intensity distribution

10 mm after the cloud (i.e. corresponding to the reentrant backward beam) and are normalized to

the input intensity without atoms. Parameters for the pump beam: I = 129mW/cm2, δ=+7 Γ ,

and d= 5 mm; for the probe beam δ=−7 Γ .

Hence the presence of a structure a few microseconds after the pump beam is switched off

excludes electronic excitation as the source of the atomic grating evidenced by the probe. As other

measurements exclude hyperfine and Zeeman gratings [16], we conclude on the presence of a

significant density grating in the atomic cloud. This can be further substantiated by investigating

the dependence of the contrast of the probe pattern on the delay time between pump and probe

pulse. The result is shown in Fig. 3, which gives a decay time of around 80 µs (corresponding to

a decrease of the contrast by a factor of two). As an atom with a 1D thermal speed of 0.17m/s

would traverse 55µm (half the transverse period) in about 300µs, this is a reasonable order of

magnitude for a wash-out of a density pattern due to the velocity spread of the ensemble. This

will be explored further in the theoretical section.

3. Theoretical model

The analysis of the experimental results is somewhat complicated by the fact that in general

electronic and optomechanical nonlinearities are simultaneously present, so that an internal-

state and a density pattern can be simultaneously present in the atomic ensemble. Internal-state

nonlinear effects can be accounted for in our theoretical model [16] but we will neglect them here

by assuming low saturation values, since at low temperatures a spatial instability is expected to

occur even at low saturation levels due to density redistribution effects only [15]. The results

presented in [16] provide experimental support for this claim in the appropriate parameter

regimes.

For a theoretical treatment, we consider in the following the case of a cigar-shaped cloud

elongated along the coordinate x transverse to the propagation direction z, so that transverse

self-organisation will lead to one-dimensional structures. Our theoretical analysis [15] indicates

in fact that no qualitative differences are expected for the dynamics of one and two-dimensional

systems, and restricting to one dimension allows for a connection with temporal synchronisation

phenomena. We neglect propagation inside the cloud and account for diffraction of the

transmitted field only in the free-space propagation to the mirror and back. For the parameters
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Figure 3: Decay of the density pattern (as measured by the probe) as the delay between pump

(duration 215 µs) and probe (duration 10 µs) pulses is increased. Other parameters are pump

detuning +7Γ , probe detuning +5Γ , pump power 6.6mW, probe power 20µW. Pump and probe

are circularly polarised. The contrast is normalised to the contrast just after the pump switch-off.

considered here, this simplifying assumption provides good qualitative agreement with more

detailed models in which diffraction within the medium is also taken into consideration, as

discussed in [16]. We also assume the pump to be substantially detuned from the atomic

resonance, so that that the atoms act as linear scatterers and the transmitted field Ftr at the exit of

the cloud is:

Ftr(x, t) = F exp (iχ0n(x, t)) (3.1)

where χ0 = b0∆/(1 + 4∆2) parametrizes the cloud susceptibility and ∆= δ/Γ . Scaling of the

field is chosen so that p0 ≡ |F |2 = Ipump

Isat(1+4∆2)
denotes the off-resonance saturation parameter of

the pump, where Ipump is the pump intensity and Isat is the on-resonance saturation intensity

(Isat = 1.6− 3.6mWcm−2 for the D2 line of 87Rb, depending on the exact excitation conditions).

In the limit of large number of atoms N (N ∼ 1010 in a typical experiment) we describe the

cloud dynamics in terms of a phase-space distribution f(x, v, t), where v is the transverse velocity

coordinate, so that the atomic density is obtained as

n(x, t) =

∫+∞

−∞

dv f(x, v, t) .

As the gas is cooled to relatively low temperatures, T ∼ 100µK, optical forces become relevant

for the centre-of-mass dynamics of the gas. In particular, at large detuning radiation pressure

is reduced and the atoms are subject to the conservative dipole potential Udip = 1
2ℏδ log(1 +

s(x, t))≃ 1
2ℏδs(x, t), where the last approximation has been taken by assuming the saturation

parameter associated with the total intensity illuminating the gas to be small, s= |F |2 + |B|2 =
(1+R)Ipump

Isat(1+4∆2)
≪ 1. At the low temperatures under consideration collisions are negligible and the

dynamics of the gas is captured by the Vlasov equation:

∂f

∂t
+ v

∂f

∂x
+

fdip
M

· ∂f
∂v

= 0 , (3.2)

where fdip =−∂Udip/∂x is the dipole force and M is the atomic mass. The feedback loop is then

closed via diffraction in vacuum described in Fourier space by

B(q) =
√
Reidq

2/k0Ftr(q) . (3.3)

The phasor in Eq. (3.3) describes the conversion of phase fluctuations (imprinted on the

transmitted fields via Eq. (3.1)) into amplitude fluctuations by the free-space propagation to the

mirror and back. These amplitude modulations in the optical profile result in dipole forces which
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consequently act on the atoms and drive the instability.

The coupled light-atom dynamics described above (without internal-state dynamics) is predicted

to lead to a self-organising transition when the injected power exceeds a critical value, p0 ≥
pth0 = (2Rσχ0)

−1, where σ= ℏδ/2kBT measures the strength of dipole forces relative to thermal

effects [15]. The spatial scale Λc = 2π/qc is set by the critical (most unstable) wavenumber

qc =
√

πk0/2d, and can be continuously tuned through the mirror distance d. As qc is selected

among a continuum of wavenumbers, the self-structuring mechanism discussed here leads to the

spontaneous breaking of a continuous translational symmetry (see Figs. 4c and 4d). Moreover,

in two dimensions the rotational symmetry is also broken [16]. This aspect fundamentally

differentiates the optomechanical self-structuring investigated here from other self-organising

systems involving optomechanics and cold atoms, such as CARL [6,7] and transversely pumped

cavities [1–4], as the spatial scale of the emerging structures is not predetermined by the

geometrical setup or interference conditions.

4. Synchronisation dynamics and connection with the Kuramoto

model

We now discuss the connection between the optomechanical spatial instabilities discussed above

and the Kuramoto model for synchronisation. As a starting point, we remark that the spontaneous

emergence of a periodic pattern (identified by a single spatial frequency qc) can always be

interpreted in terms of a synchronisation transition. Focusing on the phase θ= qcx instead of

the spatial coordinate x itself, the bunching of the atoms in the minima of the self-organising

optical potential corresponds to the transition from a homogeneous state where the atoms have

a uniformly distributed phase to a state where the distribution of the phases is peaked around

a certain value ψ. It is convenient in the following to exploit the periodicity of the pattern

and confine the phase in the range (−π, π) as θj = mod(qcxj , 2π)− π. This connection between

spatial and temporal self-organisation was exploited, for instance, in showing that the spatial

instability of viscous CARL can be interpreted in terms of the Kuramoto model [7,20]. Similar

results also hold for ‘viscous’ single-mirror instabilities (see [11,12] for a cavity analogue), but

we wish to focus our attention here on the inviscid regime in connection with the experimental

results presented in [16].

In order to describe the dynamics of the N atoms composing the gas we consider the 2N coupled

equations (j = 1, . . . , N )

ẋj = vj v̇j =
fdip(xj)

M
=− ℏδ

2M

∂|B|2
∂x

∣

∣

∣

∣

xj

,

where the force is given by the dipole force fdip =−∂Udip/∂x as above. Since the pump intensity

is assumed to be spatially homogeneous, the optical gradients are due only to the backward field

modulations. We now obtain an approximate expression for the backward field valid when the

system is driven just above the threshold for self-organisation. Close to the critical point, a spatial

modulation for the atomic density is obtained at the critical wavenumber, n(x) = 1 + r cos(ψ −
qcx). As the system is translationally invariant, the phase ψ of the pattern is self-selected by the

system (see also [20]). The amplitude r and the phase ψ of the pattern define the Fourier mode of

the density at the critical wavenumber:

reiψ =
1

L

∫L
0
n(x) exp (iqcx) dx , (4.1)

so that r acts as an order parameter for the instability. In line with the CARL literature, we refer to

r as the bunching factor. We stress that while the density spectral properties are directly accessible

in numerical simulations, this is not the case in the experimental realisations. A definition

analogous to the bunching factor, but based on the Fourier properties of the optical fields, was
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termed contrast in Ref. [16] and used to experimentally monitor the self-organising dynamics. The

same procedure was also used in Fig. 3. In the following we will typically assume that the system

is close to the critical point, so that 0< r≪ 1. The critical wavenumber is selected by the system

as the one that most efficiently converts phase modulations in the pump beam into amplitude

modulations for the backward beam [22]. This implies that the far-field sideband at the critical

wavenumber is shifted by a factor eiπ/2 = i in the propagation to the mirror and back, so that B

is obtained from the transmitted field as (see Eq. (3.3)):

Ftr ≃
√
p0e

iχ0 {1 + iχ0r cos(ψ − qcx)}=⇒B =
√

Rp0e
iχ0 {1− χ0r cos(ψ − qcx)} .

To first order in r, the dipole force is thus found as

fdip
M

=− ℏδ

2M

∂|B|2
∂x

≃ ℏδ

M
Rp0χ0qcr sin(ψ − qcx)≡ Jqcr sin(qcx− ψ) , (4.2)

where in the last step we defined J = ℏδ
MRp0χ0.

In order to obtain a connection with models for temporal synchronisation, we now wish to use

Eq. (4.2) to obtain a single set of N equations for the phases θj = qcxj . Close to the critical point,

the modulation depth of the optical potential is small (r≪ 1) and the dynamical behaviour of the

atoms is force-free in first approximation. This is correct up to a certain time t∗, which we term as

dephasing time, and has the following interpretation: close to the critical point, the atoms can move

freely in the emerging optical potential without affecting the dynamics. This is strictly correct only

in the limit of vanishing modulations, r→ 0 (i.e. below threshold), but we exploit critical slowing

down at the onset of the instability to assume that no feedback on the optical field is exerted by

the atomic motion for a characteristic time defined by t∗ = (qcvth)
−1. This definition is chosen as

the time an atom at the thermal speed needs to travel the characteristic distance of the pattern,

Λc ∼ q−1
c . The equation for the frequencies Ωj = qcvj is then solved up to t∗ as

Ωj(t
∗)≃Ωj(0) + Jq2c r sin(θj − ψ)t∗ ,

where Ωj(0) denotes the ‘natural’ frequencies Ωj(0) = qcvj(0) determined by the initial atomic

velocities. The phases then evolve as

θ̇j =Ωj(0) +
J

vth
qcr sin(θj − ψ) . (4.3)

Eq. (4.3) is in the form of a Kuramoto equation [21], with a coupling strength K = Jqc/vth. We

remark that in Eq. (4.3) an effective long-range interaction between the ‘oscillators’ (i.e. the atoms)

is mediated by the light field, which thus offers the possibility of implementing a mean-field

model with all-to-all coupling in a simple and powerful way.

With a Lorentzian initial condition for the natural frequencies Ωj(0), the Kuramoto model (4.3)

is known to lead to a synchronisation transition when the driving exceeds the critical value

K ≥Kth = 2Ωth = 2qcvth [21]. Hence we recover the power threshold obtained in [15] and

reported above: pth0 = (2Rσχ0)
−1. As discussed in [15], with a Gaussian initial condition a slightly

different growth rate is found for the instability, but the threshold condition is unchanged. Since

the synchronisation transition leads to a bunching of the fictitious oscillators around the (self-

selected) phase ψ, in the x-space this corresponds to the formation of complementary periodic

structures ∼ cos(qcx− ψ) for the atomic density and the optical intensity. We remark that the

sign of the optical potential is positive for blue detuning (δ > 0) and negative for red detuning

(δ < 0), so that when δ > 0 the density and optical profiles are shifted by half a wavelength

(see Figs. 2 and 4). The onset of the optomechanical instability can thus be reinterpreted as a

Kuramoto transition to a synchronised state with a self-selected phase ψ where the threshold for

this process is determined by the initial spread of the oscillator frequencies. Physically, this spread

is determined by the initial temperature of the gas and is therefore tunable experimentally, while

the coupling strength K is tunable through the injected pump p0.
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Figure 4: Numerical simulations of the synchronisation dynamics. Fig. a shows the evolution of

the bunching factor r, displaying the spontaneous emergence of a macroscopically ordered state

after ∼ 1ms followed by oscillations of the order parameter. Figs. b, c and d show snapshots of the

dynamics taken after 1ms (b), 1.5ms (c) and 2ms (d). In each of these panels we show the intensity

profile s(x) (top left), the density profile n(x) (bottom left), and the discrete sampling (N = 105

particles) of the phase probability distribution as a function of θ= mod(qcx, 2π)− π in both a

linear (bottom right) and polar (top right) plot. In the bottom right panel of Figs. b-d, the black

dashed line indicates the uniform probability value 1
2π . Parameters are: δ=+15Γ , T = 300µK,

b0 = 100, d= 5mm and R= 1. The injected pump is p0 = 0.043 (5% above threshold). A movie

displaying the dynamics of the system for a pump duration of 5ms has also been submitted as

electronic supplementary material.

We numerically solved the coupled dynamics (3.1-3.2) of the phase-space distribution f(x, v, t)

and the optical field in one transverse dimension using a semi-Lagrangian method with spline

interpolation [15]. The initial condition of the gas is set to be a Lorentzian distribution with

full-width-at-half-maximum vth: f0(v) = vth/[π(v
2 + v2th)]. Our numerical results confirm the

theoretical predictions reported in the previous Sections since above threshold a spatially

homogeneous cloud is spontaneously converted into a periodic pattern with periodicity Λc =

2π/qc. Driving the system 5% above threshold, we monitor the bunching parameter r and observe

a transition from a r= 0 state to a state characterised by r > 0, followed by oscillations with a

period of about Tslosh ≃ 800µs, see Fig. 4a. This is analogous to what is observed in inviscid

CARL [29], and is due to the atoms sloshing and periodically amplifying in the spontaneously

formed optical potential. Fig. 4b, 4c and 4d show the formation of complementary periodic

spatial structures for the optical intensity s(x) and the atomic density n(x). The spatial scale

of the pattern is Λc ≃ 120µm for our choice of parameters, and is in good agreement with the

experimental observations [16]. The depth of the modulated potential shown in Fig. 4d in units

of temperature is Tpot ≈ ℏδ(smax−smin)
kB

≈ 440µK, where smax and smin are the maximum and
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Figure 5: Numerical results for the dephasing dynamics. The upper left panel (a) shows the

distribution function for a pump duration of 5ms, obtained for the same parameters as Fig. 4.

The pump is subsequently switched off and the atomic cloud state is monitored after 100µs (b)

and 500ms (c). The bunching factor decreases monotonically with a characteristic dephasing time

of the order of 100µs (d).

minimum values of s respectively and kB is the Boltzmann constant. For each of these states we

calculate the probability distribution of the phase θ by sampling the density distribution n(θ)

with N = 105 particles, which shows a peak around the value ψ≃ π/2 in correspondence with

the synchronisation transition.

Fig. 5 shows the dynamics of the pattern obtained for the same parameters as Fig. 4 when the

injected pump is switched off after 5ms. As the system is left with no driving (K = 0), the ballistic

motion of the atoms leads to a dephasing dynamics in which the bunching factor r decreases

monotonically, see Fig. 5d. The phase space distribution f(x, v) is monitored just before switching

off the pump (Fig. 5a), and then after 100µs (Fig. 5b) and 500µs (Fig. 5c). The characteristic

dephasing time can be inferred from Fig. 5d, and is in the order of 100µs. This is consistent with

the timescale of atomic motion at the considered temperature, and agrees with our experimental

results, see Fig. 3.

5. Conclusion

Self-structuring of the atomic density in a cloud of a cold atomic gas that is optically pumped

can be interpreted as a transition to a synchronised state of Kuramoto oscillators. Although this

connection was made in cases where strong damping is present [7,20], we have shown that the

analogy can be extended to cases where no damping is present such as those of the experimental

realisation in [16]. In this case a finite spread exists in the natural frequency distribution of the

fictitious oscillators, which sets the threshold for the synchronisation transition.

We note that a similar coupling between the optical field and the motion of atoms can also arise
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in the context of cooperative scattering of light by an optically thick cloud of atoms [30]. It is

possible to derive the optical forces acting on each atom in an ensemble of N atoms including

both the quasi-resonant radiation pressure (dominant close to the atomic resonance) as well as

the optical dipole forces (more relevant for larger detuning) [31]. In contrast to the situation

considered in this article, in [30,31] these forces arise from direct dipole-dipole coupling between

atoms and are not mediated via a propagation and feedback through a mirror. Furthermore, we

expect that synchronisation between different atoms not only manifests itself in the motional

degrees of freedom, but can also affect the internal degrees of freedom of the atoms, leading

to synchronised cooperative scattering of a large cloud. Such cooperative scattering has been

investigated in pioneering work by R. Dicke for samples smaller than the wavelength but also

for ‘radiation of gas of large extent’ [31].

Finally, it is important to mention that our theoretical and numerical predictions of the Kuramoto

analogy for inviscid systems can be applied outside the interaction of light with cold atoms.

For example it is possible to connect cold atoms and plasmas via the correspondence between

dipole and ponderomotive forces. Attractive (shadow) and repulsive (radiation pressure)

forces exist inside magneto-optically trapped samples, which introduce an effective charge

between the atoms and thus simulate electrostatic interactions. Self-structuring and its Kuramoto

interpretation are then to be expected in the investigation of various plasma systems without

friction, possibly including quantum plasmas.

In the context of the special issue, it is important to mention that optomechanical solitons

were predicted in single-pass propagation [13] and cavity schemes [12] with velocity damping.

Corresponding structures are expected for the single-mirror geometry.
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