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Abstract—Digital Marketplace is a market-based framework
for trading mobile communications services at a service level.
It is well suited for managing a future mobile communications
environment where the one-to-one mapping between network
operators and subscribers no longer holds, and the subscribers
are given the option to select a network operator and a wireless
access technology that matches their preferences best at a service
level. As with any market-based framework, it is important to
analyse the selling mechanism from the economic perspective. In
this paper, we address the deficiencies of previous research on the
economic equilibrium of the Digital Marketplace. We achieve this
by proposing an approximation to the equilibrium of the Digital
Marketplace through the use of an auction with common prior.
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I. INTRODUCTION

Mobile communications has become an indispensable part

of our everyday lives. According to Ofcom [1], 51% of all

adults in the UK own a smartphone, and approximately 24% of

all UK households own a tablet. Furthermore, one in five adults

declares they would miss their mobile most if it were taken

away. It should be noted that these numbers continue to rise,

and with each year the penetration of mobile communications

will increase.

Parallel to this, mobile users are given access to a plethora

of wireless access technologies: from WiFi, through 3G, to the

latest 4G. Cities throughout the UK are now offering free WiFi

hotspots [2]. Furthermore, according to Ofcom [3], while 3G

already covers 98% of the UK population indoors, this figure

is promised to be at least matched by the 4G mobile services

by the end of 2017 at the latest.

To make full use of this increasingly diverse environment

and increase the competition between network operators even

further, the one-to-one mapping between network operators

and subscribers need no longer hold. This allows the sub-

scribers to seamlessly switch not only between different wire-

less access technologies belonging to one particular network

operator, but also between network operators themselves. In

this way, the subscriber, when requesting a bearer service,

is given the option to select a network operator and a

wireless access technology that best matches the required

quality requirements of the service: an Always Best Connected

paradigm [4]. It is not only to the benefit of the subscribers,

however, since the integration of wireless access technologies

will allow network operators for more efficient usage of

network resources.

In order to manage such a complex system, a sophisticated

management platform is required. In this research, we advo-

cate the use of the Digital Marketplace (DMP). DMP is a

market-based framework where network operators compete in

a procurement auction for the right to transport the subscriber’s

requested service over their infrastructure [5], [6]. As with

any market-based framework, it is important to analyse the

selling mechanism from the economic perspective. In [6]–[8],

Konka et al. present the results of such an analysis. They

characterise the equilibrium, and propose numerical methods

for the numerical approximation of the equilibrium, which

is otherwise analytically intractable. The proposed numerical

methods are, however, deficient in the sense that they apply

only to a subset of all bidding scenarios possible within the

DMP. In this paper, we address this problem by modelling the

selling mechanism in the DMP as an auction with common

prior. In an auction with common prior, the range the costs

can vary is the same for each bidder, and for this type of

auctions, there exists a plethora of well-studied numerical

algorithms that can be used to approximate the equilibrium

of the auction. Consequently, we propose an approximation to

the equilibrium of the DMP through the use of an auction with

common prior [9]. Our solution yields results of acceptable

quality, with the approximation error never exceeding 16%,

and importantly, decreasing with the increasing number of

network operators.

The rest of this paper is organized as follows. In Section II,

a brief overview of the selling mechanism in the DMP is given.

Section III explains the concept of auction with common prior,

while Section IV describes how the DMP selling mechanism

can be approximated as an auction with common prior. In

Section V, a methodology for quantifying how well the

common prior auction models the DMP auction is given, while

Section VI provides numerical results of approximations in

several scenarios. Finally, Section VII draws conclusions.

II. BIDDING PROBLEM IN THE DIGITAL MARKETPLACE

In order to put the research work presented in this paper

into context, the bidding problem in the DMP is briefly

summarised here. The DMP features an auction-based network



selection mechanism, which is based on a procurement first-

price sealed-bid auction. Following the notation of Konka et

al. [6], there are n = |N | network operators (NOs) who bid

for the right to sell their product to the subscriber. Each NO

is characterised by utility function

ui(b̂, ĉ) =











1

w

(

b̂i − ĉi

)

if b̂i < min
j 6=i

b̂j ,

0 if b̂i > min
j 6=i

b̂j .
(1)

where b̂ = (b̂i, b̂−i) is an n-tuple of all NOs bids, ĉ = (ĉi, ĉ−i)
is an n-tuple of all NOs costs, and w ∈ [0, 1] denotes the

weight that the subscriber attaches to the price of the service,

which is inversely proportional to the weight attached to the

reputation of the particular NO by the subscriber. Furthermore,

the costs for each NO are distributed over the interval

ĉi ∈ [ĉi,
¯̂ci] ≡ [(1− w)ri, (1− w)ri + w],

where ri ∈ [0, 1] denotes the reputation for each NO.

As shown in [6], there exists a unique equlibrium to this

bidding problem, and it is characterised by the following

system of ordinary differential equations (ODEs)

d

db
ĉi(b) =

1− Fi(ĉi(b))

fi(ĉi(b))

[

1

n− 1

n
∑

k=1

1

b− ĉk(b)
− 1

b− ĉi(b)

]

(2)

for i = 1, 2, . . . , n, with the upper boundary condition

ĉi(
¯̂
b) =

¯̂
b, (3)

and the lower boundary condition

ĉi(b̂) = min{ĉi, ĉ(b̂)} (4)

for all i ∈ N . Here, ĉi denotes the inverse bidding functions

for all NOs i ∈ N , while Fi denotes the distribution function

of ĉi. It is possible to derive the analytical solution to the

system in Eq. (2) in the case of n = 2 bidders and Fi

corresponding to uniform distribution. However, for more than

2 bidders, a closed-form solution does not exist.

Two numerical algorithms for approximating the solution to

the system in Eq. (2) are proposed in [6]: forward shooting

method (FSM), and polynomial projection method (PPM).

Both methods were first proposed by Bajari [10] for approxi-

mating auctions with common prior, and were adapted to the

DMP bidding problem in [6]. To give a brief overview of

each method, the FSM is an adaptation of a finite differences

method for approximating solutions to ODEs, while PPM tries

to find the best fitting polynomials to the equilibrium bidding

functions. Due to the nature of the problem, however, the

algorithms handle only a subset of all cases such that the

lower boundary condition (4) is reduced to ĉi(b̂) = ĉi. It is

the purpose of this paper to address this deficiency by casting

the bidding problem into a simpler setting of common prior

(CP) for which there exists a plethora of numerical solutions

that are well-researched and well-defined [9].

III. AUCTION WITH COMMON PRIOR

In an auction with CP, we assume that each NO i draws

their cost from common support across all bidders; that is,

each NO draws their cost from the interval

ĉi ∈ [ĉ, ¯̂c] for all i ∈ N.

In this case, the equilibrium is still characterised by the system

of ODEs in Eq. (2), however, with different boundary condi-

tions; that is, with the following upper boundary condition

ĉi(
¯̂
b) = ¯̂c, (5)

and the lower boundary condition

ĉi(b̂) = ĉ (6)

for all 1 ≤ i ≤ n.

As shown by Lebrun [11], assuming the assumptions gov-

erning the original DMP bidding problem described in [6]

hold, there exists a unique solution to the system of ODEs (2).

Furthermore, similarly to the original bidding problem, the

closed-form solution exists only in a limited number of spe-

cial cases [9], [12]. However, as presented by Hubbard and

Paarsch [9], there exist well-defined numerical methods which

can be used to solve it.

In particular, in this paper, the CP auction is approximated

using the FSM method. It was chosen due to its relatively low

implementation complexity (compared to the PPM method),

and the fact that its variant is also used to approximate the

DMP bidding problem. Therefore, in terms of the numerical

accuracy and stability, the numerical solutions to the DMP and

CP auctions should be of comparable quality.

IV. DIGITAL MARKETPLACE CAST INTO COMMON PRIOR

SETTING

In a CP auction, every NO is characterised by a distribution

(of costs) with common support across all NOs. Hence, in

order to model the DMP auction as an auction with CP, firstly,

we need to agree on a support that is common to every NO and,

at the same time, encompasses the supports of every individual

NO from the original DMP auction. The smallest such support

is

[ĉ, ¯̂c] =

[

min
i∈N

{ĉi},max
i∈N

{¯̂ci}
]

⊂ [0, 1]. (7)

To see this, recall that, for any given w ∈ (0, 1), assuming

r1 ≤ · · · ≤ rn with at least one inequality strict, it follows

ĉ
1
≤ · · · ≤ ĉn and ¯̂c1 ≤ · · · ≤ ¯̂cn with at least one inequality

strict. If we further let Ci = [ĉi,
¯̂ci] then C =

⋃

i∈N Ci is the

smallest set containing all sets Ci for all i ∈ N . Since Ci is

closed for all i ∈ N , it follows that C is closed, and C = [ĉ, ¯̂c]
such that ĉ ≤ ĉi and ¯̂ci ≤ ¯̂c for all i ∈ N , which is equivalent

to [mini∈N{ĉi},maxi∈N{¯̂ci}].
All that remains is to then select a family of distributions

which captures the numerical ranges of the original supports

as closely as possible. To provide an illustrative example, let

there be 2 NOs such that ĉ
1
< ĉ

2
< ¯̂c1 < ¯̂c2. Each NO

is characterised by a uniform distribution. One possible way



TABLE I
BIDDING SCENARIO WITH 2 NETWORK OPERATORS

Price weight, w Reputation rating, ri
Network operator 1

0.5
0.25

Network operator 2 0.75

of casting this scenario into common prior setting is to model

the distributions of both NOs as truncated normal distributions

truncated to the interval [ĉ
1
, ¯̂c2], and with differing mean and

standard deviation parameters.

In order to describe the truncated normal distribution, firstly

recall the probability density function (pdf) of standard normal

distribution

φ(ĉ) =
1√
2π

exp

{

−1

2
ĉ2
}

, (8)

and cumulative distribution function (cdf)

Φ(ĉ) =

∫ ĉ

−∞

φ(ĉ)dĉ =
1

2

[

1 + erf

(

ĉ√
2

)]

(9)

for all ĉ ∈ R. The pdf of the truncated normal distribution,

truncated to the interval ĉ ∈ [ĉ, ¯̂c], can then be described in

terms of the pdf of the standard normal distribution as follows

f(ĉ;µ, σ, ĉ, ¯̂c) =

1

σ
φ
(

ĉ−µ
σ

)

Φ
(

¯̂c−µ
σ

)

− Φ
(

ĉ−µ

σ

) (10)

where µ ∈ R is the mean (or location) of the distribution,

and σ2 ≥ 0 is the variance (or squared scale) [13]. Similarly,

the cdf of the truncated normal distribution can be defined as

follows

F (ĉ;µ, σ, ĉ, ¯̂c) =
Φ
(

ĉ−µ
σ

)

− Φ
(

ĉ−µ

σ

)

Φ
(

¯̂c−µ
σ

)

− Φ
(

ĉ−µ

σ

) . (11)

By way of example, consider bidding scenario summarized

in Table I. Suppose we were to cast this scenario into common

prior setting where NOs are characterised by truncated normal

distributions. Firstly, we note that the supports for both NOs

are

[ĉ
1
, ¯̂c1] = [0.125, 0.625]

for NO 1, and

[ĉ
2
, ¯̂c2] = [0.375, 0.875]

for NO 2, while the common support is given by

[ĉ, ¯̂c] = [ĉ
1
, ¯̂c2] = [0.125, 0.875].

Secondly, we need to specify distribution specific parame-

ters (mean and standard deviation) for each NO. Since the aim

is to approximate the original distributions of both NOs, we

pick the midpoints of the original supports as means, that is,

µi = ĉi +
¯̂ci − ĉi

2
= ĉi +

w

2
,

µ1

σ1

Cost

Density
function

ĉ
1

¯̂c1 ¯̂c2

Fig. 1. Choosing parameters for the truncated normal distributions of NOs

TABLE II
NUMERICAL VALUES OF THE CHOSEN TRUNCATED NORMAL

DISTRIBUTION PARAMETERS

Mean, µi Standard deviation, σi

Bidder 1 0.375 0.125

Bidder 2 0.625 0.125

and let the standard deviations be equal to the quarter of the

length of the original supports, that is,

σi =
¯̂ci − ĉi

4
=

w

4
.

The choice of the parameters is motivated by the shape of

the normal distribution, and the fact that, with this choice of

parameters, the probability of at least 0.95 of drawing cost

from the interval [ĉi,
¯̂ci] (which corresponds to the interval

[µi−2σi, µi+2σi]) is achieved [13]; therefore, minimising the

probability of drawing cost from outside the interval [ĉi,
¯̂ci],

and effectively imitating uniform distribution with support

[ĉi,
¯̂ci]. This is depicted in Fig. 1 as the shaded region under

the bell curve, while Table II summarizes the numerical values

of the described parameters.

V. METHODOLOGY FOR QUANTIFYING ACCURACY OF THE

APPROXIMATIONS

In order to quantify how well the CP auction models

the original DMP auction, we shall consider two metrics:

subscriber’s expected price, and ex ante expected utility for

each NO. In this way, we obtain an indicator of how better

off (or worse off) is the subscriber and each of the NOs.

The subscriber’s expected price is equivalent to the expected

value of the winning bid; that is,

p = E[b̂i(ĉi) | b̂i(ĉi) < min
j 6=i

b̂j(ĉj)], (12)

where b̂i is the equilibrium bidding function for all i ∈ N .

Since an analytical derivation of the closed-form solution is

not straightforward, we resort to numerical estimation of the

buyer’s expected price. That is, for each considered bidding



scenario, the costs for each NO are pseudo-randomly drawn

from uniform distribution, the corresponding equilibrium bids

are computed, and the minimum is chosen as the winning bid

(price). This procedure is repeated 1000 times, yielding 1000

i.i.d. observations of the price which are then averaged to give

an estimate of the expected price (consequence of the Strong

Law of Large Numbers [14]).

In order to define the NO’s ex ante expected utility, we

define the expected utility function for each NO i ∈ N as

Πi(ĉi) = (b̂i(ĉi)− ĉi) ·
∏

j 6=i

(

1− Fj(b̂
−1

j (b̂i(ĉi)))
)

(13)

where b̂i is the equilibrium bidding function, and Fi is the

distribution function of costs for NO i. The ex ante expected

utility is then equivalent to the expected value of the expected

utility; that is,

Πi = E[Πi(ĉi)] =

∫ ¯̂ci

ĉ
i

Πi(t)dFi(t) (14)

for all i ∈ N . In other words, the ex ante expected utility

can be thought of as the average expected utility for each NO

for each considered bidding scenario, and it follows from the

definition of ex ante expected payments in a standard first-

price auction put forward by Krishna [12].

The way the aforementioned metrics are actually computed

deserves a more elaborate explanation. The numerical deriva-

tion of equilibrium in the CP auction relies on approximating

the NOs’ distributions of costs with truncated normal distri-

butions with common support. When computing the expected

price and ex ante expected utilities for all NOs in the CP

auction, it is assumed, however, that the NOs draw their

costs from their actual (uniform) distributions but use the

equilibrium bidding strategies derived for the CP auction with

truncated normal distributions to compute their bids. In this

way, when computing the expected price and ex ante expected

utilities, we do not misrepresent the NOs’ distributions of

costs, and hence, ensure the comparison results of casting

the DMP auction into CP auction setting are as realistic as

possible.

We further define the relative error in expected prices as

ηp =

∣

∣

∣

∣

pDMP − pCP

pDMP

∣

∣

∣

∣

(15)

and the relative error in ex ante expected utilities as

ηΠi
=

∣

∣

∣

∣

ΠDMP
i −ΠCP

i

ΠDMP
i

∣

∣

∣

∣

(16)

for all i ∈ N , where pDMP and pCP denote the expected

prices for DMP and CP auction respectively, and ΠDMP
i and

ΠCP
i denote the ex ante expected utilities for NO i for DMP

and CP auction respectively.

VI. APPROXIMATION RESULTS

We analyse the results for three bidding scenarios: with

n = 2, n = 3 and n = 4 NOs respectively. We concentrate

on only upto 4 NOs since with each additional NO, the

time required to simulate the problem increases exponentially.

Furthermore, since the UK market is currently dominated by

an oligopoly of four NOs who own their infrastucture (EE,

Vodafone, O2 and Three), solving the bidding problem for

4 NOs is directly relevant. The procedure for generating the

approximation results is as follows:

1) For each chosen value of price weight, generate 100

reputation ratings n-tuples, (r1, . . . , rn). Each n-tuple

is ordered; that is, r1 < r2 < · · · < rn. Therefore,

in what follows, NO 1 is characterised by the lowest

reputation rating, NO 2 by the second lowest, and so

on. By ordering individual reputation ratings within

the n-tuples, we focus on exploring the mean relative

errors in ex ante expected utilities for individual NOs

characterised by the lowest reputation rating, second

lowest, etc. In other words, if a NO is characterised

by the lowest reputation rating, we quantify the mean

relative error in ex ante expected utility the NO is

going to incur by bidding according to the equilibrium

bidding strategies prescribed by the CP auction. Without

this assumption, the mean relative error curves would

converge on the same value for all NOs, and thus, some

valuable insight into the extent of the mean relative

errors in ex ante expected utilities would be lost. It is

worth noting, however, that the mean relative error in

expected price is unaffected by ordering of the reputation

ratings.

Furthermore, each ri for each NO i is drawn from

a uniform distribution over the range (0, 1). In order

to keep the analysis numerically tractable, we do not

consider bidding scenarios with NOs characterised by

equal reputation ratings.

2) For each reputation ratings n-tuple, evaluate relative

errors in expected price and ex ante expected utility per

NO using Eqs. (15) and (16).

3) Evaluate mean relative errors in expected price and

ex ante expected utility per NO, and associated 95%

confidence intervals.

4) Repeat for price weight values ranging from 0.75 to

0.99. Price weight values are bounded from below by

0.75 which is in line with the work presented in [6],

and it guarantees that the lower boundary condition in

Eq. (4) reduces to ĉi(b̂) = ĉi. Otherwise, as reported

in [6], it would be impossible to numerically approxi-

mate solutions to the DMP auction using the FSM and

PPM methods as they are not defined for the problem

with unreduced lower boundary condition in Eq. (4).

A. n = 2 Network Operators

The approximation results for two NOs are depicted in

Fig. 2. It is worth observing that as the price weight increases,

the confidence intervals for the mean relative errors decrease.

This is a direct consequence of the fact that as the price

weight w → 1, the actual values of the reputation ratings

of the NOs do not significantly influence the mean relative
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Fig. 3. Approximation results for 3 NOs

errors in expected price and ex ante expected utilities for both

NOs. To see this, recall from Eq. (7) the common support

[mini ci,maxi c̄i] = [(1−w)mini ri, (1−w)maxi ri+w]. As

w → 1, this reduces to [limw→1(1− w)mini ri, limw→1(1−
w)maxi ri+w] = [0, 1]. Hence, as the price weight increases,

the less significant the effect of the reputation ratings on the

common support.

Furthermore, as the price weight approaches 1, the mean

relative errors in ex ante expected utilities for both NOs

start to converge. This is due to the fact that, as w → 1
and in particular at w = 1, the DMP auction becomes a

standard first-price auction with all NOs characterised by

uniform distributions which are overlapping to a high degree;

i.e., with some abuse of notation, Fi(x) ≈ Fj(x) for all x,

i 6= j and i, j ∈ N . The same is true for the CP auction with

this difference that all NOs are characterised by almost equal

truncated normal distributions. Furthermore, in both auctions,

the NOs are characterised by symmetric, albeit different across

auctions, equilibrium bidding strategies. This is due to the fact

that at a symmetric equilibrium the support becomes identical

in both auctions, and hence, uniform distribution of costs and

truncated normal distribution of costs have to result in different

equilibrium bidding strategies. This in turn leads to almost

equal mean relative errors in ex ante expected utilities for all

NOs.

The mean error in expected prices is approximately linearly

increasing in price weight, and is bounded from above by 8%

and from below by 4%. The mean error in ex ante expected

utility for NO 1 also linearly increasing in price weight, and is

bounded from above by 15% and from below by 10%. For NO

2, however, the relationship between the price weight and the

mean error is nonlinear, with the error attaining its maximum

of approximately 15.5% for the price weight of w ≈ 0.8. It

is bounded from above by 15.5% and from below by 14%. It

is clear that NO 1 who is characterised by lower reputation

rating is experiencing overall smaller mean error for all values

of the price weight. However, as w → 1 and as explained in

the previous paragraph, the mean error converges on the same

value of approximately 15% for both NOs.

B. n = 3 Network Operators

Figure 3 depicts the approximation results for three NOs.

First of all, it should be noted that the first two observations

pointed out in case of two NOs also apply to the current

case of three NOs. All mean relative errors, unlike in the

case of two NOs, however, exhibit clear nonlinearity in price

weight. Furthermore, the mean relative error in expected prices

is increasing as the price weight increases, and achieves its

maximum at w = 0.99. It is bounded from above by 5% and

from below by 2%. The mean relative error in ex ante expected

utilities for NO 1 is bounded from above by 10% and from

below by 5%. The mean relative error in ex ante expected

utilities for NO 2 is also bounded from above by 10%, but

it is bounded from below by 8%. It is worth noting that the

shape of the mean relative error curve for NO 2 resembles

that of the mean relative error curve for NO 1 translated in y-

direction. Finally, the mean relative error in ex ante expected

utilities for NO 3 is bounded from above by approximately

12% and from below by 10%.

As expected, NO 3 who is characterised by the highest

reputation rating experiences the highest mean relative error

in ex ante expected utilities for all values of the price weight

out of all NOs. In fact, the lower bound for NO 3 is the same

as the upper bound for the remaining NOs. This agrees with

the conclusion drawn for the case of two NOs, where NO 2

was the NO characterised by the highest reputation rating and

experienced the highest mean relative error out of all NOs.

C. n = 4 Network Operators

Figure 4 depicts the approximation results for four NOs.

Firstly, it should be noted that, similarly to the previous
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Fig. 4. Approximation results for 4 NOs

two scenarios, as the price weight approaches 1, the mean

relative errors in ex ante expected utilities for all NOs start

to converge. Furthermore, as the price weight increases, the

confidence intervals for the mean relative errors decrease. In

terms of shape of the mean relative error curves, similarly to

the case of three NOs, all mean relative errors exhibit some

nonlinearity in price weight. Furthermore, the mean relative

error in expected prices is bounded from above by 1%, and

from below by approximately 0.1%. The mean relative error

in ex ante expected utilities for NO 1 is bounded from above

by 2%, and from below by approximately 0.1%. The mean

relative error in ex ante expected utilities for NO 2 is bounded

from above by 2%, and from below by 0.1%. It is worth noting

that, for the values of price weight w ∈ [0.75, 0.9], the mean

relative error for NO 2 is actually smaller than for NO 1, even

though NO 1 is characterised by the lowest reputation rating.

The mean relative error in ex ante expected utilities for NO

3 is bounded from above by 3%, and from below by 1.5%.

Finally, the mean relative error for NO 4 is bounded from

above by 8%, and from below by 1.5%.

As expected, NO 4 who is characterised by the highest

reputation rating experiences the highest mean relative error

in ex ante expected utilities for all values of the price weight

out of all NOs. This agrees with the conclusion drawn for

the previous two bidding scenarios, where NO who was

characterised by the highest reputation rating, experienced the

highest mean relative error out of all NOs.

D. Discussion

Considering all bidding scenarios together, it should be

noted that, for all considered price weight values, the mean

relative error in expected prices is decreasing as the number

of NOs increases. Similarly, the mean relative error in ex ante

expected utilities for all NOs decreases as the number of NOs

increases. As a consequence, as the number of NOs increases,

the mean relative error for the price weight approaching 1

decreases as well. However, for NO characterised by the

highest reputation rating, we observe that, as the number of

NOs increases, the range of mean relative errors grows larger.

All in all, it can be concluded that the CP auction becomes

a more accurate approximation to the DMP auction with the

increasing number of NOs.

VII. CONCLUSIONS

In this paper, we have shown how a selling mechanim

employed by the Digital Marketplace can be modelled as an

auction with common prior. For this type of auctions, there

exists a plethora of well-studied numerical algorithms that can

be used to approximate the equilibrium of the auction.

The paper has explored 3 bidding scenarios: with n = 2,

n = 3 and n = 4 network operators. It was shown that

the network operator characterised by the highest reputation

rating will incur the highest approximation error in all cases.

Furthermore, it was also shown that, as the number of network

operators increases, the approximation error decreases.

All in all, it can be concluded that approximating the

selling mechanism employed by the Digital Marketplace with

a common prior auction constitutes a valid alternative, and as

such, even though not perfectly accurate, it might be a more

desirable option for the network operators due to the wealth of

numerical methods available that have been extensively studied

by the researchers.
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