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Abstract. Smart video analytics algorithms can be embedded within
surveillance sensors for fast in-camera processing. This paper presents a
DSP embedded video analytics system for object and people tracking, us-
ing a PTZ camera. The tracking algorithm is based on adaptive template
matching and it employs a novel Sum of Weighted Absolute Differences.
The video analytics is implemented on the DSP board DM6437 EVM
and it automatically controls the PTZ camera, to keep the target central
to the field of view. The EVM is connected to the network and the track-
ing algorithm can be remotely activated, so that the PTZ enhanced with
the DSP embedded video analytics becomes a smart surveillance sensor.
The system runs in real-time and simulation results demonstrate that
the described SWAD outperforms other template matching measures in
terms of efficiency and accuracy.

1 Introduction

Modern digital video surveillance has made possible the semantic analysis of
video data via software, on computer systems, using Video Analytics [1, 2]. As
digital circuits become smaller and faster, video surveillance sensor systems can
be equipped with processing functionalities and DSPs, so that smart video an-
alytics algorithms can be embedded within the surveillance sensors, for fast in-
camera processing. Such sensors are referred to as smart cameras and they can
exchange information with each other, to form a collaborative network of smart
surveillance sensors, where the human intervention is reduced to the minimum.

Starting from the work described in [3], in this paper we present a DSP em-
bedded implementation of an adaptive template matching algorithm for object
and people tracking, in the context of a smart surveillance sensor including a
pan-tilt-zoom (PTZ) camera. The novel Sum of Weighted Absolute Differences
(SWAD) proposed in [4] for robust target tracking is implemented in real-time on
the single core DSP board DM6437 Evaluation Module (EVM) from Spectrum
Digital. When compared to other tracking methods, such as Sum of Absolute
Difference (SAD), Normalized Cross-Correlation (NCC) and Mean Shift tracker
(MS), the SWAD-based algorithm shows better performance in the context of an
embedded implementation, as it exploits the DM6437 fixed-point architecture.



The video analytics algorithm on the EVM automatically controls the PTZ cam-
era to follow the target and keep it central to the field of view, when it moves
towards the frame boundaries. The EVM is connected to the network and, dif-
ferently from the system in [3], the tracker can be activated and deactivated
from remote, through on/off TCP-based messages. The contribution of this pa-
per is therefore threefold: first, a real-time DSP embedded implementation of
the SWAD-based tracker described in [4] is presented; second, extended perfor-
mance evaluation of the SWAD-based tracker compared with SAD, NCC and
MS is provided; third, the smart surveillance system in [3] is improved with re-
mote activation, faster processing and better tracking performance, to create, in
conjunction with the PTZ camera, an embedded smart surveillance sensor.

The remainder of the paper is organized as follows. Section 2 reviews related
work in the field of tracking algorithms and embedded surveillance applications.
An overview of the DSP embedded system described in this paper is given in
section 3, while section 4 describes the video analytics implemented on the DSP,
including tracking algorithm and camera controller. Section 5 provides a quanti-
tative performance evaluation of the system, while section 6 concludes the paper.

2 Related work

The implementation of image processing algorithms on embedded platforms
poses challenges due to hardware limitations and time constraints. However,
a number of implementation techniques were introduced to overcome these is-
sues [5–7]. Previous work using static cameras [8–10] describe the implementation
of smart surveillance sensors, for example for object detection and tracking.

The usage of active cameras for tracking applications is described in [11–14],
but these mainly focus on the algorithm itself, rather than on creating an actual
embedded smart sensor, as in the case of the work presented in this paper. To the
best of the authors’ knowledge, only the work in [15] has implemented a tracking
algorithm [16] to control an active camera on an embedded device, namely an
FPGA. However, performance evaluation and comparison with other algorithms
or systems are missing from both [15] and [16]. Moreover, the work in [15] com-
prises an implementation exercise of a given tracking algorithm: the implemen-
tation choices on the FPGA are driven by the characteristics of the selected
algorithm, rather than the algorithm itself being tailored for specific hardware
requirements. In contrast, the video analytics system presented in this paper is
embedded on a single core DSP board and such real-time implementation serves
more as a proof of concept, i.e. prove that the described SWAD-based tracker
achieves better performance compared with other algorithms, when implemented
on devices with limited capabilities. As there exist automatic code generation
tools and integrated development environments (IDE) for the DM6437 EVM as
explained in [3], an initial working prototype has been obtained using Simulink
and the Target Support Package. Such prototype has then been manually op-
timized and used as a test bench to implement and evaluate the SWAD-based
tracker proposed in [4], as reported in section 5. Clearly, a reasonable follow-up



Fig. 1. Overview of the DSP embedded system, with the EVM and PTZ coupled
together to form a smart surveillance sensor.

for the work presented in this paper would be to implement the same video
analytics algorithm on an FPGA, for further performance evaluation.

The migration from a computer-based implementation of a tracking algo-
rithm, like those described in [17], to a DSP embedded one is not straightfor-
ward. In such a context, the hardware available plays a fundamental part in
the choice of the actual algorithm to implement. In this work, a PTZ camera is
used, so that algorithms which rely strictly on the position of the target in the
previous frames do not represent an ideal choice. For example, the Mean-Shift
tracker (MS) [18] requires target overlapping in consecutive frames, within the
so-called basin of attraction. However, this condition cannot be guaranteed with
a moving camera.

On the other hand, DSP boards have limited resources, such as memory,
bandwidth and word-length for number representation, so that not every track-
ing algorithm is suitable for an embedded implementation. In the proposed sys-
tem, the hardware available is a DM6437 EVM equipped with a single core
fixed-point DSP, that can perform integer operations on groups of 4–8 bytes in
parallel. Therefore, on such DSP, algorithms working with floating point num-
bers would not take advantage of the architecture of the processor. Also in this
case, the MS is not an ideal choice, as it heavily relies on floating point oper-
ations. Instead, two algorithms that can exploit such architecture are Normal-
ized Cross-Correlation (NCC) and Sum of Absolute Differences (SAD) template
matching [19]. As we will shown in section 5, the SAD algorithm gives better per-
formance than NCC in terms of efficiency, since additions are performed much
faster than multiplications. However, SAD fails in many cases when occlusion or
noise pixels exist. In this paper the new Sum of Weighted Absolute Differences
proposed in [4] is implemented, as it can deal with partial occlusions, offering
better tracking performance than SAD, as demonstrated in section 5.

3 DSP embedded system

An illustration of the DSP embedded video analytics system described in this
paper is shown in Fig. 1. The system hardware comprises two main components:



Fig. 2. Block diagram of the video analytics system.

a Spectrum Digital DM6437 Evaluation Module (EVM) equipped with a Texas
Instruments TMS320DM6437 fixed-point DSP; and an ACTi IP Speed Dome
CAM-6510, which is a pan-tilt-zoom (PTZ) camera with 360◦ panning range,
180◦ tilting range and a maximum angular speed of 400◦ per second. A composite
analogue video signal is also available as output from the PTZ and is fed into the
EVM’s video-in port. Both PTZ and EVM are connected to a local area network
(LAN) through their Ethernet interfaces, so that they can communicate with
each other via TCP/IP. For display purposes only, the EVM’s video-out port is
connected to a video display.

The system software is implemented in C and runs in real-time at more than
30 frames per second on the EVM. The PTZ camera hosts a proprietary web
server and hence no software has been developed for it. Commands for the PTZ
are encoded in HTTP requests to the camera web server. The video analytics
algorithm on the EVM controls the PTZ by issuing such HTTP-based commands
over the network. The EVM also runs a simple TCP server, so that remote on/off
signals can be sent to the EVM, to activate the tracking algorithm.

When in stand-by mode, the system does not track any target and the PTZ
can be moved freely. When the algorithm is activated, it starts tracking what
is in the middle of the field of view at that exact moment. It is straightforward
to integrate the proposed DSP embedded smart sensor with other event-based
surveillance systems: for example an external smart system [20] can detect an
event, compute the 3D position of the target, control the PTZ to point on the
target, and then activate the SWAD-based tracking algorithm on the EVM, to
follow the designated target.

4 Embedded video analytics

This section describes the video analytics implemented in our embedded system.
A block diagram of it is shown in Fig. 2. Following the acquisition, deinterleaving
and decimation processes, the output from the tracking block is the position of
the target in the current frame. This information is used by the display block
to highlight the target on the video display. The PTZ controller block uses the
target position to decide whether to pan/tilt the PTZ camera. The tracking
block also receives its own activation signals from the network.



Fig. 3. Layout of the current frame Fi showing the best match T̂i, the region of interest
Ri and their positions within Fi.

4.1 Acquisition, deinterleaving and decimation

The composite analogue video output from the PTZ is fed into the EVM’s
video-in port. This video stream is digitized into 8-bit interleaved YCbCr 4:2:2
frames of 576 × 1440 pixels, with CbYCrY packed format and video resolution
of 576× 720 pixels, by the video decoder present on the EVM board. A deinter-
leaving operation separates individual YCbCr 4:2:2 frames into luminance (Y),
blue (Cb) and red (Cr) chrominance components, of which the tracking algo-
rithm requires only Y to perform its task. The luminance component is then
downsampled by a factor of 2 both vertically and horizontally, achieving a frame
size of 288× 360 pixels.

For speed optimization on the EVM, deinterleaving and decimation are per-
formed at the same time, by simply extracting only the required samples from the
4:2:2 YCbCr frames. If Ji is the i

th interleaved YCbCr 4:2:2 frame of 576×1440
pixels, the corresponding decimated luminance component Fi of 288×360 pixels
is computed as:

Fi(x, y) = Ji(2x, 4y + 1) : x ∈ [0, H − 1], y ∈ [0,W − 1] (1)

where H = 288 and W = 360 are height and width of Fi.

4.2 Adaptive template matching target tracking

The tracking algorithm implemented on the DM6437 EVM is the adaptive tem-
plate matching with minimization of a Sum of Weighted Absolute Differences
(SWAD) described in [4]. The target model is represented by a template Ti of
NT × NT pixels. As illustrated in Fig. 3, in the current frame Fi a region of
interest Ri of NR × NR pixels, with NR = NT + 2NS , is selected around the
target position pi−1 in the previous frame Fi−1. The best match T̂i in Fi for
the target template Ti is found within the region of interest Ri, by minimizing
the SWAD coefficient ψ(x, y) computed as:

ψ(x, y) =

NT−1
∑

m=0

NT−1
∑

n=0

K(m,n)∆(x, y,m, n) (2)



with pixel difference ∆(x, y,m, n):

∆(x, y,m, n) = |Ri(x+m, y + n)− Ti(m,n)| (3)

The kernel K in (2) is:

K(x, y) =

⌊

255 ·
g(x, y)

g(⌊µ⌋ , ⌊µ⌋)

⌋

(4)

where x, y ∈ [0, NT − 1] and g(x, y) is a 2-dimensional Gaussian function with
mean µ = (NT − 1)/2 and standard deviation σ = NT /5, defined as:

g(x, y) = exp

(

−
(x− µ)2

2σ2
−

(y − µ)2

2σ2

)

(5)

Such kernel is used to assign high weights to central pixels and low weights to
peripheral ones, as these pixels might belong to background or even occluding
objects. In our DSP-based implementation, the values in K and the absolute
differences in the SWAD metric are integers in the range [0, 255]. The kernel val-
ues are computed offline once and stored in a look-up table. Using 8-bit integers
allows us to optimally exploit the fixed-point architecture of the DM6437 DSP.

To take into account possible rescaling, rotation and target changes in gen-
eral, the target template is updated using an infinite impulse response filter
approach. Therefore the new target template Ti+1 is computed as:

Ti+1 = (1− α)Ti + αT̂i (6)

where α ∈ [0, 1] is a blending factor. In our implementation it is α = 0.5. The
position pi in Fi of the best match Ti represent the position of the target in the
current frame. This information is passed to the PTZ control block, to decide
whether to pan/tilt the camera.

4.3 PTZ controller

The commands for the PTZ camera are hexadecimal sequences of 6 bytes in-
cluded as parameters within standard HTTP requests, sent from the algorithm
on the EVM to the web server running on the PTZ camera. The tracking algo-
rithm establishes a TCP connection and sends the appropriate commands to the
PTZ when the target approaches the frame boundaries. This situation is handled
as follows. The current frame Fi is divided into horizontal and vertical regions,
as shown in Fig. 4: horizontal-left (HL), horizontal-centre (HC) and horizontal-
right (HR); vertical-top (VT), vertical-centre (VC) and vertical-bottom (VB).
For a given best match T̂i in Fi, the PTZ pans to the left if T̂i overlaps the
HL region, or to the right if T̂i overlaps HR; otherwise the camera does not
move horizontally. Similarly, the PTZ tilts up if T̂i overlaps VT, or tilts down
if T̂i overlaps VB; otherwise the camera does not move vertically. This simple
procedure allows the PTZ to follow the target, preventing it from going out of
the field of view.



Fig. 4. Horizontal and vertical regions in the frame Fi.

Fig. 5. Four images from the tracking algorithm running on the EVM.

4.4 Video display

The high resolution digital video output from the PTZ can be accessed over the
network. For display purposes only, an analogue video signal is available from
the EVM’s video-out port. This signal contains the interleaved 4:2:2 YCbCr
version Si of the frame Fi, with the values of the chrominance pixels set to 127.
The interleaved frame Si is therefore a single plane matrix, with size equal to
H × 2W = 288 × 720 pixels. The interleaving process is performed similarly
to the deinterleaving process described in section 4.1. For every new incoming
frame Fi, only the pixels of Si corresponding to the luminance component are
modified and set equal to Fi, while all the other pixels remains set to 127, as:

Si(x, y) =

{

Fi(x,m), y = 2m+ 1
127, otherwise

(7)

where x ∈ [0, H − 1], y ∈ [0, 2W − 1] and m ∈ [0,W − 1]. Four frames from
the video analytics algorithm running on the EVM are shown in Fig. 5. For
display purpose, the best match T̂i, the region of interest Ri and the vertical
and horizontal regions described in section 4.3 are all highlighted on the display.
Note that the current template Ti is shown on the top-left corner of each video
frame.

5 System performance evaluation

In this section, a quantitative evaluation of the embedded system is given.

5.1 Accuracy and precision

A comparison of PC-based Matlab implementations of SWAD, SAD, NCC and
MS has been carried out to assess the relative tracking capability of the SWAD-



Table 1. Mean value µǫ and standard deviation σǫ of error ǫi in pixels, and percentage
λǫ of frames with lowest error, for each tracker.

SAD NCC MS SWAD

µǫ σǫ λǫ µǫ σǫ λǫ µǫ σǫ λǫ µǫ σǫ λǫ
Dudek 4.25 2.54 7% 4.29 2.36 24% – – – 3.67 2.13 34%

PETS2006 30.99 22.56 0% 34.13 24.21 0% 14.19 4.44 7% 10.91 4.14 93%

PETS2007 6.67 6.22 15% 9.93 9.24 11% 7.34 1.35 7% 3.89 1.50 53%

PETS2009 4.27 3.25 37% 27.38 47.80 7% 81.95 97.72 0% 2.26 1.42 48%

based adaptive template matching tracker, as shown in Fig. 6. Four publicly
available test sequences have been used: Dudek face sequence [21], S1-T1-C/3
from PETS2006 dataset [22], S06 2/1 from PETS2007 dataset [23], and S3-multi-
12.43/8 from PETS2009 dataset [24]. As the Dudek sequence is in grey scale,
the MS has not been applied to it. The ground truth for the Dudek sequence is
already available, while the three PETS sequences have been manually labelled.
For each frame Fi, an error ǫi is computed in terms of Euclidean distance between
the ground truth and the target position returned by the trackers. The accuracy
in pixels of a tracker is therefore obtained as mean value µǫ of the error ǫi over
a sequence, while the precision is computed as the standard deviation σǫ. With
λǫ we define the percentage of frames in a sequence in which a given tracker has
the lowest error compared with the other trackers. In the left column of Fig. 6
the first frames with initial target positions for each sequence are shown, while
in the right column graphs of the error ǫi are illustrated. Numerical values of µǫ,
σǫ and λǫ are reported in Table 1. It can be seen that in general the error for
SWAD is significantly lower, with better accuracy and precision, i.e. the lowest
mean error µǫ and standard deviation σǫ. Moreover the SWAD-based tracker
has also the lowest error for most of the frames, i.e. highest λǫ.

5.2 Execution time

After manual profiling and code optimization, the total running time of the DSP
embedded SWAD-based adaptive template matching target tracking algorithm
described in section 4 is of 15 ms per frame, giving a processing frame rate
comfortably higher than the real-time requirement of 25 − 30 fps. The SWAD
matching block in (2) and (3) with NT = 32 and NS = 50 takes 7 ms. Optimiza-
tion for the SWAD matching is achieved by exploiting the C code “intrinsics”,
which are specific functions for the C6000 architecture of the DM6437 DSP [25].
Each C-level intrinsic function is mapped to a single assembly instruction and it
executes additions, multiplications and absolute subtractions on groups of four
8-bit integers. For example, the intrinsic function MEM4 reads 4 pixel values
from memory; SUBABS4 computes the absolute difference between two groups
of 4 pixels; and DOTPU4 computes the dot product between two vectors of 4
pixels. This approach reduces the number of operations for each row of pixels in
the template Ti by a factor of 4. A plain implementation of the SWAD matching
without intrinsics takes 63 ms, so being 9 times slower than optimized SWAD.
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Fig. 6. Accuracy and precision test. (a-b) Dudek face sequence; (c-d) PETS2006; (e-
f) PETS2007; (g-h) PETS2009. (a-c-e-g) Initialization frames; (b-d-f-h) error distance
from ground truth in pixels.

This demonstrates that the presented SWAD-based adaptive template matching
algorithm exploits the fixed-point architecture of the DSP on the EVM.



An optimized version of the SAD matching using intrinsic functions takes
5 ms. Nonetheless, even though SWAD is slightly slower than SAD, its better
tracking performance reported in section 5.1 entirely justifies its usage over con-
ventional SAD. Concerning an implementation of NCC on the DM6437, it can
be said that extra care must be taken to simulate floating point operations, as
for example square root, in integer arithmetic. It takes about 9 ms just to com-
pute the mean values of the template Ti and of each NT × NT subregion in
the ROI Ri. Thus it is clear that the execution of a complete implementation
of NCC matching on the DM6437 DSP would definitely take longer than 7 ms,
and therefore NCC would be slower than SWAD.

6 Conclusion

In this paper we have presented a DSP embedded smart surveillance tracking
sensor, using a PTZ camera to follow a target and always keep it central to
the field of view. The system runs in real-time and it is implemented on the
fixed-point single core DSP DM6437 Evaluation Module. The adaptive template
matching tracking algorithm employs a robust Sum of Weighted Absolute Dif-
ferences (SWAD) to maintain high accuracy under noise and partial occlusion
when conventional SAD fails. The system can be used as a working framework to
develop new real-time matching techniques for tracking and video analytics. The
system can also be easily integrated with other surveillance systems, to create a
collaborative network of smart surveillance sensors.

Currently the speed of the active camera is fixed and therefore the system
might fail in case of (very) fast moving targets. It is planned to set the panning
and tilting angular speed of the camera proportional to the speed of the target.
In such a way, the system should be able to follow very fast moving targets. Also,
a zooming capability is going to be incorporated in the smart sensor. Finally, a
strategy for handling severe and complete occlusion will be also added.
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