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ABSTRACT

We present electron collision strengths and their thermally averaged values for the
nebular forbidden lines of the astronomically abundant doubly-ionized oxygen ion,
O2+, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as
implemented in an R-matrix atomic scattering code. We use several atomic targets for
the R-matrix scattering calculations including one with 72 atomic terms. We also com-
pare with new results obtained using the intermediate coupling frame transformation
method. We find spectroscopically significant differences against a recent Breit-Pauli
calculation for the excitation of the [O iii] λ4363 transition but confirm the results of
earlier calculations.

Key words: atomic data – atomic processes – radiation mechanisms: non-thermal –
infrared: general – planetary nebulae: general.

1 INTRODUCTION

The forbidden lines of O2+ are among the most important
features in the spectra of photoionized plasmas which in-
clude, inter alia, H ii regions and planetary nebulae. The
exceptional brightness of the strongest [O iii] lines means
that they can be used to determine the oxygen abundances
and physical conditions in the Milky Way and other galax-
ies out to cosmological distances that reach redshifts of more
than z = 3 (Maiolino et al 2008).

It has been recently suggested (Nicholls et al 2012)
that the elemental abundance and electron temperature
anomalies seen in the analysis of the planetary nebula spec-
tra, where considerable differences have been observed be-
tween the results obtained from the collisionally-excited
lines (CEL) and those obtained from the optical recombina-
tion lines (ORL), might be resolved by using non Maxwell-
Boltzmann (MB) distributions for the energies of the free
electrons. The κ distribution, which is widely used in the
analysis of solar data, was proposed as a replacement for the
MB distribution to resolve this issue. If the electron distribu-
tions are generally non-Maxwellian in nebulae it would affect
the analysis of [O iii] lines significantly and reliable collision
strength data are needed to compute the effective collision
strengths for collisional excitation and de-excitation.

The proposal that the electron energy distribution in
planetary nebulae is not Maxwellian dates back to the 1940s
at least where Hagihara (1944) proposed that the velocity

⋆ E-mail: t.sochi@ucl.ac.uk.

distribution of free electrons in gaseous assemblies, such as
those found in planetary nebulae, deviates significantly from
the Maxwellian. Bohm & Aller (1947) argued against Hagi-
hara and concluded that any deviation from the Maxwellian
equilibrium distribution is very small. The essence of Bohm
and Aller’s argument is that for typical planetary nebulae
conditions of electron temperature of about 10000 K and
electron number density of about 104 cm−3, the thermal-
ization process of elastic collisions between an electron and
other electrons and ions is by far the most frequent event
and typically occurs once every second, while other pro-
cesses that shift the system from its thermodynamic equi-
librium, like inelastic scattering with other ions that leads
to metastable excitation or recapture, occur at much larger
time scales estimated to be months or even years. Bohm
and Aller also indicated the significance of any possible de-
viation from a Maxwellian distribution on derived elemental
abundances.

Although there have been many studies related to col-
lision strengths of O2+, as we will discuss in the coming
paragraphs, some of the previous data have limitations. For
example, some of these data are produced in an LS-coupling
scheme while others are based on approaches that do not ad-
equately treat resonance phenomena.

Before the advent of close-coupling codes there were
several calculations of collision strengths for excitation of
the O iii forbidden lines that did not incorporate resonance
effects (Czyzak et al 1968; Seaton 1975; Bhatia et al 1979).

The first close-coupled collision strengths were obtained
by Baluja et al (1980) for some of the semi-forbidden inter-
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combination transitions of O iii using the R-matrix method
(Berrington et al 1974, 1987; Hummer et al 1993; Berrington
et al 1995). They included all channels with configurations
1s2 2s2 2p2, 1s2 2s 2p3 and 1s2 2p4 in the expansion of the
wavefunction. They also used three pseudo-orbitals (3s, 3p
and 3d) and allowed for configuration interaction in the in-
cluded states with the addition of correlation terms in the
total wavefunction.

Ho & Henry (1983) also used the close coupling approx-
imation with configuration interaction in the target wave-
function to compute the collision strengths of some of O iii

transitions in LS-coupling. They employed a mix of spec-
troscopic and correlation Hartree-Fock orbitals to describe
their target.

Relatively extensive work was done by Aggarwal (1983,
1985) who computed collision strengths of O iii transitions
between the fine structure levels using configuration inter-
action target wavefunctions. He transformed LS-coupling
reactance matrices obtained from R-matrix calculations to
pair coupling with the program JAJOM (Saraph 1978). The
results were obtained with a fine energy mesh up to 5.16 Ry-
dberg where a complex resonance structure was observed on
the entire mesh.

Aggarwal (1993) used an elaborate configuration inter-
action target described by Aggarwal & Hibbert (1991) and
the R-matrix method in LS-coupling to compute effective
collision strengths for some inelastic transitions of O iii be-
tween 26 LS-coupled states of six configurations over a wide
range of electron temperature (2500-200000 K). They em-
ployed the standard and no-exchange R-matrix codes on a
fine energy mesh that reveals the resonance structure. This
work was extended by Aggarwal & Keenan (1999), who com-
puted the collision strengths for the transitions between the
fine structure levels using the R-matrix method including
all partial waves with L 6 40 to ensure convergence. Ag-
garwal & Keenan (1999) transformed the LS reactance ma-
trices obtained by Aggarwal (1993) into pair coupling using
JAJOM (Saraph 1978) where necessary. They only tabu-
lated fine-structure collision strengths for some transitions,
pointing out that in pair coupling, if one of the terms in a
transition has spin zero and hence J = L, e.g. 3P – 1D, the
fine-structure collision strengths are proportional to the sta-
tistical weight of the non-zero spin states, in this example
the 3PJ levels.

Lennon & Burke (1994) did extensive work on O2+ colli-
sion strengths for the transitions between the fine structure
levels, as part of a wider investigation on the carbon iso-
electronic ions, using the R-matrix method, where the CIV3
configuration interaction code (Hibbert 1975) was used to
generate the target wavefunctions. The target included 12
states belonging to 3 configurations (1s2 2s2 2p2, 1s2 2s 2p3

and 1s2 2p4). They also transformed to pair coupling in the
same way as Aggarwal & Keenan (1999) described above.
They presented a sample of Maxwellian based effective col-
lision strengths in the temperature range 103 − 105 K.

Recently, Palay et al (2012) made the first calculation of
collision strengths for the O iii forbidden transitions using a
relativistic Breit-Pauli (BP) R-matrix method with resolved
resonance structures. They used 22 configurations (3 spec-
troscopic and 19 correlation) to describe the target. Like
most of the previous studies, they have also presented sam-

ples of the Maxwellian averaged effective collision strengths
which were also computed at temperatures down to 100 K.

The most recent R-matrix calculations (Lennon &
Burke 1994; Aggarwal & Keenan 1999; Palay et al 2012)
generally agree to within 10% for the thermally averaged
collision strengths for the forbidden transitions among the
five lowest levels. An exception to this generally close agree-
ment is for the transitions from the lowest three 3PJ levels
to the 1S0 state. The recent results of Palay et al (2012)
differ significantly from those of earlier workers. The exci-
tation mechanism of the 1S0 level is important because the
1S0 →1D2 λ4363 line is widely used to infer the electron
temperature in H ii regions and planetary nebulae. If a κ

distribution of electron energies is assumed, the number of
free electrons capable of exciting the 1S0 state would be in-
creased relative to a MB distribution which would affect the
derived O2+ abundance.

The aim of the present paper is twofold. Firstly we
make a Breit-Pauli R-matrix calculation of the O2+ colli-
sion strengths with an independently derived target config-
uration basis to compare with previous work, especially the
only other Breit-Pauli results from Palay et al (2012). Sec-
ondly we attempt to place realistic error estimates on our
results by examining the effect of several factors on our re-
sults. We discuss the convergence of our calculation as the
number of target states is increased. Our largest target in-
cludes significant contributions to the dipole polarizability
of the three energetically lowest terms. We also consider the
effect of Gailitis averaging of the collision strengths close
to the excitation thresholds, especially for excitation of the
3P1 level between the 3P1 and 3P2 thresholds. We addi-
tionally compare the results of the Breit-Pauli calculation
with those obtained using the Intermediate Coupling Frame
Transformation (ICFT) R-matrix method (Griffin, Badnell
& Pindzola 1998). This method is based on transforming
the non-physical LS-coupled reactance matrices, to compute
collision strengths in intermediate coupling.

The calculation described in the following sections is
constructed to provide accurate results for the excitation of
the optical and infrared forbidden transitions among the five
lowest levels of O2+ at temperatures typical of the photoion-
ized plasmas in nebulae. We compute collision strengths up
to ≈ 1.3 Rydberg free electron energy relative to the ground
level and Maxwell-Boltzmann averaged collision strengths
from 100 K to 25000 K. We set the lower limit of tempera-
ture at 100 K to reflect the suggestion that planetary nebulae
may contain material of very low temperature, in the form
of knots or clumps, within the main nebular body which is
at a much higher temperature (Liu et al 2000; Zhang et al

2004; Liu et al 2006). These multi-component nebular mod-
els have gathered momentum recently as they seem to offer
the most satisfactory explanation to the long-standing prob-
lem of ORL-CEL abundance and temperature inconsistency
(Storey & Sochi 2014). As for the upper limit, it is justified
by the fact that the estimation of the maximum temperature
for photoionized nebulae is around 20000-25000 K.

The main tools used in this investigation are the Au-
tostructure code1 (Eissner et al 1974; Nussbaumer & Storey

1 See Badnell: Autostructure write-up on WWW. URL:
amdpp.phys.strath.ac.uk/autos/ver/WRITEUP.
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Table 1. The configuration basis used to define the scattering
target. The 1s2 core is to be understood in all configurations.
The bar signifies a correlation orbital.

2s2 2p2, 2s 2p3, 2p4

2s2 2p 3l; l = 0, 1, 2
2s 2p2 3l; l = 0, 1, 2

2p3 3l; l = 0, 1, 2

2s2 3l 3l
′

, l, l
′

=0,1,2

2s 2p 3l 3l
′

, l, l
′

=0,1,2

2p2 3l 3l
′

, l, l
′

=0,1,2

2s2 2p 4f, 2s 2p2 4f, 2p3 4f
2s2 3d 4f, 2s 2p 3d 4f, 2p2 3d 4f

2s2 4f2, 2s 2p 4f2, 2p2 4f2

Table 2. Orbital scaling parameters, λnl, for Autostructure in-
put. The rows stand for the principal quantum number n, while
the columns stand for the orbital angular momentum quantum
number l.

s p d f

1 1.44889

2 1.22418 1.18282

3 -0.80508 -0.61905 -1.04731

4 -1.87410

1978; Badnell 2011) to define and elaborate the atomic
target and the UCL-Belfast-Strathclyde R-matrix code2

(Berrington et al 1995) to do the actual scattering calcula-
tions. We compare our results with earlier calculations and
also assess the reliability of our results.

2 COMPUTATION

In the following we outline the computational methods used
in this work.

2.1 The O2+ target

We used the Autostructure code (Badnell 2011) to generate
the target radial functions required as an input to the first
stage of the R-matrix code. The radial data were generated
using thirty-nine configurations containing seven orbitals;
three physical (1s, 2s and 2p) and four correlation orbitals
(3s, 3p, 3d, 4f). These configurations are given in Table 1.
An iterative optimization variational protocol was used to
obtain the orbital scaling parameters, λnl, which are given in
Table 2. The correlation orbitals are calculated in a Coulomb
potential with central charge 8|λnl|.

In the scattering calculations, targets with differing
numbers of target states were used, with the largest hav-
ing 72 terms which are listed in Table 3. Calculations were
also made with the first 10 and 20 terms from this list as
discussed in more detail below. Comparing the statistically

2 See Badnell: R-matrix write-up on WWW. URL:
amdpp.phys.strath.ac.uk/UK RmaX/codes/serial/WRITEUP.

weighted oscillator strengths, gf , in the length and veloc-
ity formulations for all the strong allowed transitions be-
tween the 2s2 2p2 and 2s 2p3 configurations, we find ex-
cellent agreement with an average difference of 2.6%. Good
agreement between the length and velocity results is a nec-
essary but not sufficient condition for ensuring the quality
of the target wave functions. These transitions also make
the largest contributions to the dipole polarizabilities of the
three lowest terms.

The 72 terms listed in Table 3 were chosen to include
all those correlation configurations that contribute signifi-
cantly to the dipole polarizability of the three lowest terms.
The main contributions come from 2s2 2p 3d configuration.
The contribution of states outside the n = 2 complex to the
dipole polarizabilities of the 3P, 1D and 1S terms is 37%,
37% and 60% respectively. In Table 4 we list the energies
of the 18 levels of the n = 2 complex configurations. We
show theoretical energies which include one- and two-body
fine-structure interactions (Eth2) and those which only in-
clude the spin-orbit interaction (Eth1), the latter being the
only fine-structure interactions included in the version of the
R-matrix code that we use (see footnote 2). We return to
the effect of omitting two-body fine structure interactions in
section 3.

2.2 The Scattering Calculations

We made several calculations with increasing numbers of
target states, both with Breit-Pauli and the Intermediate
Coupling Frame Transformation R-matrix methods. The
target radial functions were supplied as a radial grid for-
mat rather than Slater type orbital format where the radial
file was generated by Autostructure. The inner region ra-
dius (RA) in the R-matrix formulation was 9.315 au. Twelve
continuum basis functions were used to represent the wave-
functions in the inner region. This choice was based on con-
vergence tests and with experience from previous work on
the C++ e− system (Sochi 2012; Sochi & Storey 2013). The
maximum value of 2J for the (N + 1)-electron problem was
chosen to be 19 although 15 was found to be sufficient for
convergence of the collision strengths for the forbidden tran-
sitions of interest here.

As indicated previously, we made three sets of calcula-
tions using the configuration basis described in section 2.1
with 10-, 20- and 72-terms using both the BP and ICFT
approaches. These three targets comprise 18, 34 and 146
fine-structure levels respectively. The main purpose of using
several targets is to have an estimate of the error in the final
results from observing the convergence of the results with
different numbers of target terms. For all three targets, the
(N + 1)-electron wavefunction contains all possible configu-
rations formed from the 39 configurations of the N -electron
target combined with any of the orbitals, spectroscopic and
correlation. There are 102 such (N + 1)-electron configura-
tions.

Experimental energies obtained from the National In-
stitute of Standards and Technology (NIST)3 were used in
place of theoretical ones to ensure correct positioning of

3 See NIST website: www.nist.gov.

c© 0000 RAS, MNRAS 000, 000–000
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Table 3. Target terms and energies, E, calculated by Autostructure using the configuration basis listed in Table 1. The 1s2 core is
suppressed from all configurations. All these terms are included in the 72-term target, while for the smaller targets (10- and 20-term)
only the first 10 and 20 terms respectively are included.

Index Configuration Term E (cm−1) Index Configuration Term E (cm−1)

1 2s2 2p2 3P 0.0 37 2s 2p2 3p 1So 483995
2 2s2 2p2 1D 21257 38 2s 2p2 3p 3Po 485363
3 2s2 2p2 1S 45630 39 2s 2p2 3s 3S 486363

4 2s 2p3 5So 58948 40 2s 2p2 3p 1Po 486594
5 2s 2p3 3Do 121133 41 2s 2p2 3p 3Do 491627

6 2s 2p3 3Po 144640 42 2s 2p2 3s 3P 496357
7 2s 2p3 1Do 190314 43 2s 2p2 3p 3Po 498566

8 2s 2p3 3So 199693 44 2s 2p2 3p 3So 503468
9 2s 2p3 1Po 214885 45 2s 2p2 3s 1P 506149
10 2p4 3P 287613 46 2s 2p2 3s 1S 508564
11 2s2 2p 3p 1P 301182 47 2s 2p2 3p 1Do 509665
12 2p4 1D 302782 48 2s 2p2 3p 1Po 526999
13 2s2 2p 3p 3D 306265 49 2s2 2p 3d 3Fo 539361
14 2s2 2p 3s 3Po 309248 50 2p3 3p 5P 542552

15 2s2 2p 3p 3S 310788 51 2s2 2p 3d 1Do 550865
16 2s2 2p 3p 3P 315730 52 2p3 3s 5So 551832
17 2s2 2p 3s 1Po 323156 53 2p3 3p 3P 553504

18 2s2 2p 3p 1D 328464 54 2p3 3p 3D 567272
19 2s2 2p 3p 1S 345567 55 2p3 3p 1P 567946

20 2p4 1S 351203 56 2p3 3p 3F 568179
21 2s 2p2 3p 3So 372370 57 2p3 3p 1F 570684

22 2s 2p2 3p 5Do 376169 58 2s2 2p 3d 3Po 572129
23 2s 2p2 3s 5P 379161 59 2s2 2p 3d 3Do 578854
24 2s 2p2 3p 5Po 379976 60 2p3 3s 3Do 584855
25 2s 2p2 3p 3Do 392038 61 2p3 3s 3So 589631
26 2s 2p2 3p 5So 395094 62 2p3 3p 3P 600736
27 2s 2p2 3p 3Po 400796 63 2s 2p2 3d 5F 600824
28 2s 2p2 3s 3P 418063 64 2p3 3s 1Do 602294

29 2s 2p2 3p 3Fo 437947 65 2p3 3p 1D 606079
30 2s 2p2 3p 1Do 439915 66 2p3 3p 3S 606299

31 2s 2p2 3s 3D 442045 67 2p3 3p 3D 607292
32 2s 2p2 3p 1Fo 443431 68 2s 2p2 3d 5D 610073

33 2s 2p2 3p 3Do 447068 69 2p3 3p 1P 612417
34 2s 2p2 3p 1Po 449383 70 2s2 2p 3d 1Po 617417
35 2s 2p2 3p 3Po 456397 71 2p3 3p 3P 618955
36 2s 2p2 3s 1D 468076 72 2s2 2p 3d 1Fo 620437

thresholds for convergence of resonance series. In some cases
this required re-ordering the target states.

Collision strengths were calculated for electron energies
up to 1.28 Rydberg relative to the 2s2 2p2 3P

0
ground level,

hence 0.89 Rydberg relative to the highest state of interest,
2s2 2p2 1S

0
. This energy corresponds to ≈ 7kT when the

electron temperature T = 20000 K, the approximate upper
limit for temperatures in photoionized nebulae. Over this
energy range, collision strengths were calculated at 20000
equally spaced energies, except between the 2s2 2p2 3P

1
and

3P
2
levels where calculations were performed on a mesh 100

times finer. Calculations were also made with and without
Gailitis averaging of the collision strengths in the region be-
neath each threshold where the effective quantum number
ν > 10.

We calculate the thermodynamically-averaged collision
strengths for electron excitation, Υ, from a lower state i to
an upper state j from

Υi→j (ǫi, Tf) =
√
π

2
e

(

∆Eij
kTf

)

∫

∞

0

Ωij (ǫi)

(

kTf

ǫi

)1/2

f (ǫi, Tf) dǫj
(1)

where Tf is the effective temperature, k is the Boltzmann
constant, ǫi and ǫj are the free electron energy relative to
the states i and j respectively, ∆Eij (= ǫi − ǫj) is the en-
ergy difference between the two states, Ωij is the collision
strength of the transition between the i and j states, and
f(ǫi, Tf) is the energy- and temperature-dependent electron
distribution. In what follows we will only consider Maxwell-
Boltzmann distributions of electron energy, given by

fMB(ǫ, T ) =
2

(kT )3/2

√

ǫ

π
e
−

ǫ
kT , (2)

although, as discussed above, other distributions such as the
κ distribution have been proposed and discussed (Vasyliunas
1968; Nicholls et al 2012; Storey & Sochi 2013).
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Figure 2. Thermally averaged collision strengths from the 10-term target (solid black line) and 20-term target (dotted blue line), shown
as the percentage difference from the 72-term target, plotted against log T [K]. The labels of the sub-figures refer to the level indices in
Table 4.

3 RESULTS AND DISCUSSION

3.1 Results

A sample of our 10-, 20- and 72-term BP collision strengths
is shown in Figure 1. The agreement between the three cal-
culations is excellent, with the most obvious difference being
that some resonances move to lower energies as the target
size is increased, as might be expected. Figure 2 shows the
results for the thermally averaged collision strength, Υ, as a
function of temperature for the 10- and 20-term calculations
relative to the 72-term calculation as a percentage difference.
The differences are less than 9% at any temperature for the
10-term calculation and less than 5% for the 20-term case.

The energy region between the 2s2 2p2 3P
1
and 3P

2

states contains a Rydberg series of resonances converging
on the 3P

2
level with an effective quantum number at the

3P
1
threshold of 47.7. The energy difference between the 3P

1

and 3P
2
levels of 193 cm−1 corresponds to a temperature of

278 K, so this energy region is significant for computing Υ
at temperatures down to 100 K. We calculate the collision
strengths with an energy interval of 6.4 × 10−7 Rydberg in
this interval and compare with the result of using Gailitis
averaging in this region. The difference is less than 1% at
any temperature and we conclude that Gailitis averaging is
adequate to obtain accurate values of Υ down to 100 K.

The results of the ICFT calculations showed unexpect-

c© 0000 RAS, MNRAS 000, 000–000



6 P.J. Storey, Taha Sochi & N.R. Badnell

Table 4. The 18 lowest energy levels of the n = 2 complex of O2+

and their experimental (Eex) and theoretical (Eth1 and Eth2)
energies in wavenumbers (cm−1). Four non-physical states of the
configuration 2s2 2p 3s are omitted from the list which is indexed
in experimental energy order. The experimental energies are ob-
tained from the NIST database while the theoretical energies were
obtained from Autostructure with the configuration basis listed
in Table 1. The energies Eth1 were obtained with only spin-orbit

terms in the target Hamiltonian while Eth2 also include two-body
fine-structure interactions within the n = 2 complex.

Index Level Eex Eth1 Eth2

1 2s2 2p2 3P
0

0.00 0 0

2 2s2 2p2 3P
1

113.18 115 113

3 2s2 2p2 3P
2

306.17 339 308

4 2s2 2p2 1D
2

20273.27 21489 21471

5 2s2 2p2 1S
0

43185.74 45900 45882

6 2s 2p3 5So
2

60324.79 59600 59582

7 2s 2p3 3Do
3

120058.2 121800 121775

8 2s 2p3 3Do
2

120053.4 121804 121799

9 2s 2p3 3Do
1

120025.2 121812 121805

10 2s 2p3 3Po
2

142393.5 145316 145307

11 2s 2p3 3Po
1

142381.8 145321 145307

12 2s 2p3 3Po
0

142381.0 145331 145319

13 2s 2p3 1Do
2

187054.0 191025 191006

14 2s 2p3 3So
1

197087.7 200423 200405

15 2s 2p3 1Po
1

210461.8 215609 215591

.

.

.
.
.
.

.

.

.
.
.
.

20 2p4 3P
2

283759.7 288653 288629

21 2p4 3P
1

283977.4 288863 288854

22 2p4 3P
0

284071.9 288965 288951

edly large differences from the BP results in some energy
domains. This is illustrated in Figure 3 where we compare
the thermally averaged collision strengths for the 72-term
ICFT calculations with the 72-term BP results for the 3P

1

– 3P
2
transition. Due to the difference in scaling with effec-

tive charge (zeff) of term energy separations (∝ zeff) and
resonance energies (∝ z2eff), resonance effective quantum
numbers can become small for lowly ionized systems. Such
deeply-closed channels can be problematic for the multi-
channel quantum defect theory (MQDT) used by the ICFT
method due to computational finite numerical precision of
highly divergent wavefunctions. Gorczyca & Badnell (2000)
found that classically forbidden channels (e.g. n < l) could
be handled expediently by simply omitting them from the
MQDT representation. For low-energy scattering in O2+ we
encountered a similar problem in a new guise for n . 2.
The closed-channel partition of the MQDT representation
should give no contribution since all bound orbitals (spec-
troscopic and pseudo) are projected out of the continuum
basis. All such closed channel contributions (e.g. correla-
tion resonances) arise instead in the open-open part of the
scattering matrix. For l > 1 the original Gorczyca & Bad-
nell (2000) expediency already omits such closed channels
(n < l). For l = 0, 1 we found it necessary to explicitly omit
such closed channels from the closed partition as well. We
show the effect of this modification as the dashed blue line
in Figure 3. The agreement with the full Breit-Pauli calcu-
lation is now excellent.

Considering the convergence as the number of target
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(b) 1-3
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Figure 1. Collision strength (vertical axis) versus final electron
energy in Rydberg (horizontal axis) for Breit-Pauli calculations of
the 1-2, 1-3 and 1-4 transitions with 10-term (dotted black line),
20-term (dashed blue line), and 72-term (solid red line). Refer to
Table 4 for level indexing.

states is increased and the good agreement between the
ICFT and Breit-Pauli results, we adopt the results of the 72-
term Breit-Pauli calculation as our final results and, based
on the convergence behavior and the effect of Gailitis aver-
aging, estimate an uncertainty of no more than 5% in the
final thermally averaged collision strengths. In Table 5 we
tabulate thermally averaged collision strengths Υ, for the 72-
term target in the temperature range log10T = 2.0(0.1)4.4.

3.2 Comparison to Previous Work

We compare our effective collision strength results with
those from previous calculations of similar quality, that is
those which used close-coupling techniques and computed
collision strengths at sufficient energies to delineate reso-
nances.

In Table 6 we compare our final 72-term results with
the LS results of Lennon & Burke (1994). That calculation
was based on the 12-state target including n = 3 correlation
orbitals described by Burke, Lennon & Seaton (1989). They
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Table 5. Thermally averaged collision strengths from the 72-term Breit-Pauli calculation as a function of temperature. See Table 4 for
the transition indices.

log T [K] 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

2.0 0.635 0.226 0.232 0.030 1.112 0.697 0.090 1.170 0.151 0.383
2.1 0.626 0.226 0.232 0.030 1.110 0.698 0.090 1.172 0.151 0.383

2.2 0.615 0.225 0.233 0.030 1.107 0.700 0.090 1.174 0.151 0.383
2.3 0.602 0.225 0.233 0.030 1.104 0.702 0.090 1.178 0.151 0.383
2.4 0.587 0.224 0.234 0.030 1.100 0.706 0.090 1.184 0.151 0.384
2.5 0.572 0.224 0.236 0.030 1.095 0.710 0.090 1.191 0.151 0.384
2.6 0.557 0.224 0.238 0.030 1.092 0.715 0.090 1.199 0.151 0.385
2.7 0.543 0.225 0.239 0.030 1.093 0.719 0.090 1.206 0.151 0.386
2.8 0.532 0.226 0.239 0.030 1.098 0.720 0.090 1.208 0.150 0.387
2.9 0.524 0.229 0.239 0.030 1.109 0.718 0.089 1.205 0.150 0.388
3.0 0.520 0.231 0.237 0.030 1.122 0.713 0.089 1.197 0.150 0.390

3.1 0.517 0.233 0.234 0.030 1.134 0.705 0.089 1.184 0.149 0.392
3.2 0.515 0.235 0.231 0.029 1.143 0.696 0.088 1.168 0.148 0.397

3.3 0.514 0.236 0.228 0.029 1.150 0.686 0.088 1.152 0.148 0.405
3.4 0.513 0.237 0.225 0.029 1.156 0.677 0.087 1.137 0.147 0.420
3.5 0.514 0.238 0.223 0.029 1.163 0.672 0.087 1.129 0.146 0.445

3.6 0.516 0.240 0.223 0.029 1.174 0.673 0.088 1.131 0.147 0.480
3.7 0.520 0.242 0.227 0.030 1.187 0.682 0.089 1.148 0.150 0.521
3.8 0.526 0.246 0.232 0.030 1.206 0.700 0.091 1.177 0.154 0.562
3.9 0.534 0.251 0.240 0.031 1.228 0.724 0.095 1.217 0.159 0.596
4.0 0.542 0.257 0.249 0.033 1.253 0.751 0.098 1.262 0.166 0.617
4.1 0.550 0.263 0.258 0.034 1.277 0.778 0.102 1.307 0.172 0.627

4.2 0.555 0.270 0.267 0.035 1.299 0.803 0.106 1.348 0.178 0.625
4.3 0.559 0.277 0.274 0.036 1.319 0.825 0.109 1.385 0.184 0.616

4.4 0.561 0.283 0.280 0.037 1.338 0.842 0.112 1.414 0.188 0.602
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Figure 3. Effective collision strength (Upsilon) versus tempera-
ture from the 72-term target: Breit-Pauli (solid black line), ICFT
before modification (dotted red line) and ICFT after modifica-
tion (dashed blue line), for the transition between levels 2 and 3
of Table 4. On this scale the solid and dashed lines are almost

indistinguishable.

agree within 10% for all transitions and all temperatures.
The effective collision strengths, Υ(3P – 1D) and Υ(3P –
1S), for excitation of the optical forbidden lines do not differ
by more than 6% at any temperature. The agreement is gen-
erally even better with our 20-term calculation which might
be expected since that calculation includes the 12 terms of
the n = 2 complex which is the target of Lennon & Burke
(1994). However, their target does not include the states
constructed from correlation orbitals that make a large con-

tribution to the polarizability of the important states, as
discussed in section 2.1.

The most recent R-matrix calculations where fine-
structure collision strengths are presented are those of Ag-
garwal & Keenan (1999) and Palay et al (2012). The for-
mer calculation is based on an elaborate 26-term target de-
scribed by Aggarwal & Hibbert (1991) constructed from 1s,
2s and 2p spectroscopic and 3s, 3p, 3d, 4s, 4p and 4d cor-
relation orbitals. The resulting LS-coupled reactance matri-
ces were recoupled algebraically using the JAJOM (Saraph
1978) program where necessary. This approach neglects the
fine-structure interactions between target states and in this
approximation some fine-structure collision strengths can be
derived directly from LS-coupled collision strengths using
only statistical weight factors as described by both Aggar-
wal & Keenan (1999) and Lennon & Burke (1994). Palay
et al (2012) have made a 19-level Breit-Pauli R-matrix cal-
culation where the target is expanded over a configuration
set involving 1s, 2s, 2p and 3s spectroscopic orbitals and
3p, 3d, 4s and 4p correlation orbitals. Palay et al (2012)
use an extended version of the Breit-Pauli R-matrix code
which they attribute to Eissner & Chen (in preparation) that
includes two-body fine-structure interactions which enables
Palay et al (2012) to calculate the fine structure splitting of
the ground 3PJ levels with an error of order 3%. Palay et al

(2012) were also the first to extend the tabulation of ther-
mally averaged collision strengths down to very low electron
temperatures (100 K).

In Figure 4 we compare graphically our fine-structure
results with those of Lennon & Burke (1994), Aggarwal &
Keenan (1999) and Palay et al (2012). In Table 7 we compare
the same results numerically and also include the results of
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the earlier R-matrix calculation by Aggarwal (1983). Fig-
ure 4 shows the percentage difference in the thermally av-
eraged collision strengths from these three calculations rel-
ative to our results, for all ten transitions among the en-
ergetically lowest five levels. Where necessary, we derived
fine-structure collision strengths from the results of Lennon
& Burke (1994) and Aggarwal & Keenan (1999) using sta-
tistical weight factors as outlined above. With the exception
of the 1D

2
– 1S

0
transition, our results agree with those of

Lennon & Burke (1994) and Aggarwal & Keenan (1999)
to within 10% for all temperatures between 1000 K and
25000 K where comparison can be made and to within 5%
for the majority of temperatures. For these two calculations
the differences are relatively insensitive to temperature, in-
dicating that their collision strengths have a similar energy
dependence to ours. We find generally larger disagreements
with the results of Palay et al (2012), reaching 10–15% at
the extremes of tabulated temperature for many transitions
and being even larger for the transitions from the ground
3PJ levels to the 1S0 state (transitions 1-5, 2-5 and 3-5).
Here the differences reach 100% at 100 K and are over 20%
at 10000 K. The differences also show a distinctive tempera-
ture dependence. With the exception of the 3PJ – 1S0 tran-
sitions the Palay et al (2012) results are generally smaller
than ours at the lowest temperatures and larger at the high-
est temperatures.

In Figure 6 we compare collision strengths from Palay
et al (2012) with our 72-term target for the transitions, 3P2

– 1S0 and 3P2 – 1D2, over an energy range that includes
the 1S0 threshold. For the 3P2 – 1S0 transition the results
of Palay et al (2012) are generally larger near the threshold
and rise sharply as the threshold is approached, being ap-
proximately a factor of two larger than our results at the
threshold. This behavior, which is replicated for the 3P0 –
1S0 and 3P1 – 1S0 transitions, explains the large differences
seen in Figure 4 and Figure 8 for the thermally averaged
collision strengths at the lowest temperatures. The plot of
the 3P2 – 1D2 collision strength shows that there is a reso-
nance feature just below the 1S0 threshold in the results of
Palay et al (2012) that is not present in our 72-term results
which might be the cause of the sharp rise seen at threshold
in their 3P2 – 1S0 collision strength. We note that Palay et

al (2012) omitted the three 2p4 terms from their scattering
target, although it was included in their configuration ex-
pansion. This raises the possibility that the O+ 2p5 state,
which is presumably represented by an (N+1)-electron state
composed only of target orbitals in their calculation, is not
accurately described and is the cause of the feature seen just
below the 1S0 threshold and hence of the large difference
compared to our, and other calculations.

We attempted to confirm this possibility by making two
simple test calculations, one with all 12 terms of the n = 2
complex in the target and one with the three terms of the 2p4

configuration omitted as in the Palay et al (2012) calcula-
tion. This latter 9-term target does not show the resonance
feature seen in their results just below the 1S0 threshold
nor the sharp rise in the 3PJ – 1S0 collision strengths at
threshold. To clarify the position of the 2p5 2Po state in
these calculations we also calculated photoionization cross-
sections from O+ 2s 2p4 2D3/2 which is expected to show
prominent resonances corresponding to the 2s 2p4 2D3/2

– 2p5 2Po
1/2,3/2 transitions. In the 12-term calculation the

2p5 2Po
1/2,3/2 states are found at 0.3166 and 0.3145 Ryd-

berg, well below the 1S0 threshold, while in the 9-term cal-
culation they lie at 0.4371 and 0.4379 Rydberg, well above
it. Given that the Palay et al (2012) calculation omits the
2p4 target terms but includes other correlation in the config-
uration expansion it is at least plausible that the resonance
feature just below the 1S0 threshold is indeed due to the
misplaced 2p5 levels. Incidentally, the 3P2 – 1D2 collision
strengths from our 72-term calculation in Figure 6 shows a
minor series perturbation near 0.315 Rydberg that probably
corresponds to 2p5 2Po.

3.3 Discussion

In photoionized plasmas the O iii forbidden lines are com-
monly used to determine the electron temperature of the
emitting material, and hence to determine the number of
O2+ emitters relative to H by comparison with a strong H
recombination line. The temperature determination rests on
the ratio of the intensity of the λ4363 line to either or both
of the λ4959 and λ5007 lines. The λ4363 line is relatively
weak and cannot be seen if the temperature is much below
5000 K. Once the temperature is known, the much stronger
λλ4959, 5007 lines can be used to deduce the O2+ number
density. In nebular plasmas all these lines are excited colli-
sionally from the 3PJ ground levels. The excitation mecha-
nism for λ4363 is therefore central to determining the elec-
tron temperature and abundances. In Figure 5 we show how
the derived electron temperature from our work differs from
that obtained from Lennon & Burke (1994) and from the
data of Aggarwal & Keenan (1999) and Palay et al (2012).
In all the temperature determinations the radiative tran-
sition probabilities were taken from Nussbaumer & Storey
(1981) and Storey & Zeippen (2000). Very similar tempera-
tures are obtained with the collision strength data of Lennon
& Burke (1994) and Aggarwal & Keenan (1999). Palay et

al (2012) state that there are no significant differences in
line ratios arising from their calculation when comparing to
Aggarwal & Keenan (1999) but Figure 5 shows that this is
not the case. The difference in derived temperature is 213 K
at 5000 K, 421 K at 10000 K and 504 K at 15000 K.

In summary, our new Breit-Pauli R-matrix calculation
generally shows much better agreement for thermally av-
eraged collision strength with the earlier non-Breit-Pauli R-
matrix calculations of Lennon & Burke (1994) and Aggarwal
& Keenan (1999) than the more recent Breit-Pauli work of
Palay et al (2012). The results of the important forbidden
line diagnostic line ratios show the same pattern. One ques-
tion that arises is whether the two-body fine-structure terms
that are included in the Breit-Pauli R-matrix formulation of
Palay et al (2012) and not in our calculation might be part
of the cause. We do not believe that this is the case for the
following reason. In Figure 7 we show two sets of results for
the thermally averaged collision strength for the 3P

1
– 3P

2

transition from 72-term ICFT calculations. The solid line
includes the effects of the spin-orbit interaction in the tar-
get, introduced via the so-called Term-Coupling Coefficients
(TCCs), while the dashed line shows the results obtained in
pair-coupling, i.e. without TCCs. Except at the lowest tem-
peratures (T < 300 K) they differ by no more than 1%. The
larger difference at the lowest temperatures simply reflects
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Figure 5. The difference in derived electron temperature from

the λ4363/(λ4959+λ5007) line intensity ratio using the data of
Lennon & Burke (1994) (solid black line), Aggarwal & Keenan
(1999) (dashed blue line) and Palay et al (2012) (dotted red line)
against the temperature derived from the present results.
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Figure 6. Collision strengths as a function of incident electron

energy for (a) the 3P2–1S0 and (b) the 3P2–1D2 transitions near
the 1S0 threshold from the present 72-term target (solid black
line) and from Palay et al (2012) (red dashed line). The vertical
dotted lines indicate the positions of the 1S0 and 5So2 thresholds.

the fact that the pair-coupling calculation does not separate
the 3PJ levels in energy and therefore the threshold energies
of these levels are not correct. The results for the other tran-
sitions show similar behavior. We emphasize, however, that
the ICFT calculation which does incorporate target spin-
orbit effects agrees with the full Breit-Pauli calculation to
within 1% at all temperatures. The good agreement that we
find shows that the spin-orbit interaction has a very small
effect on the results. In O2+ two-body fine-structure inter-
actions are substantially smaller than the spin-orbit inter-
action and should therefore have a negligible effect on the
results. This point is emphasized in Figure 8 where we show
the percentage difference between the results of Palay et al

(2012) and ours for the three 3PJ – 1S0 transitions. Except
at very low temperatures, they do not show any significant
dependence on J which might be expected if fine-structure
effects were important and indicate rather that the term-
term 3P – 1S collision strengths differ significantly between
the two calculations.
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Figure 7. Effective collision strength (Upsilon) versus tempera-

ture from 72-term target for the 3P1 – 3P2 transition: ICFT with
spin-orbit interactions in the target (solid black line) and ICFT
in pair coupling (dashed blue line).

2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100

log T [K]

P
e

rc
e

n
ta

g
e

 D
if
fe

re
n

c
e

Figure 8. Percentage difference in Υ versus logarithm of temper-
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4 CONCLUSIONS

In the present paper, the collision strengths for the transi-
tions between the lowest five levels of the astronomically-
important O2+ + e− atomic system up to about 1.3 Ryd-
berg of electron excitation energy are computed in the close
coupling approximation using the UCL-Belfast-Strathclyde
R-matrix atomic code. Different coupling schemes with dif-
ferent atomic definitions and parameters are used to describe
the scattering target and scattering process.

Our results were extensively compared to previous
work. We found a good agreement in most cases which in-
creases our confidence in our results. However, we found sig-
nificant differences with Palay et al (2012) who also used a
Breit-Pauli coupling scheme and hence a better agreement
was expected. The good agreement between our R-matrix
Breit-Pauli calculation and earlier R-matrix work in which
the fine-structure was treated more approximately strongly
supports our results. We showed that the relatively large dif-
ferences found for the excitation of the λ4363 line between
the work of Palay et al (2012) on the one hand, and all previ-
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Figure 4. Percentage differences of thermally averaged collision strengths from our 72-term Breit-Pauli calculation (vertical axis) versus
temperature in 10000 K (horizontal axis). Results are from Lennon & Burke (1994) (solid black line), Aggarwal & Keenan (1999) (dashed

blue line) and Palay et al (2012) (dotted red line). The labels of the sub-figures refer to the level indices in Table 4.

ous calculations, on the other, leads to significant differences
in derived temperatures from the main [O iii] line ratios.

With regard to the use of the ICFT method, for lowly
ionized systems some resonances can have very low princi-
pal quantum number, and channels are deeply closed, which
can cause problems for multichannel quantum defect theory.
This difficulty can be overcome by explicitly omitting chan-
nels with very low effective quantum number and in any case
evaporates as the effective charge number increases.
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Table 6. Comparison of thermally averaged collision strengths, Υ, from Lennon & Burke (1994) (LB) and the current work within the
lowest five levels of O2+ as a function of temperature. The first row of each temperature is from Table 3 of LB and the second row is
from the current work using the Breit-Pauli 72-term target. The values given for 3P-1D

2
and 3P-1S

0
are summed over the 3P

J
levels.

log T [K] 3P
0
-3P

1

3P
0
-3P

2

3P
1
-3P

2

3P-1D
2

3P-1S
0

1D
2
-1S

0

3.0 0.4975 0.2455 1.1730 2.2233 0.2754 0.4241
0.5199 0.2313 1.1218 2.1331 0.2667 0.3897

3.2 0.5066 0.2493 1.1930 2.1888 0.2738 0.4268

0.5154 0.2349 1.1430 2.0811 0.2643 0.3968

3.4 0.5115 0.2509 1.2030 2.1416 0.2713 0.4357
0.5132 0.2367 1.1558 2.0237 0.2610 0.4200

3.6 0.5180 0.2541 1.2180 2.1117 0.2693 0.4652

0.5158 0.2398 1.1736 2.0107 0.2616 0.4799

3.8 0.5296 0.2609 1.2480 2.1578 0.2747 0.5232
0.5260 0.2462 1.2057 2.0913 0.2732 0.5621

4.0 0.5454 0.2713 1.2910 2.2892 0.2925 0.5815
0.5421 0.2568 1.2526 2.2425 0.2941 0.6174

4.2 0.5590 0.2832 1.3350 2.4497 0.3174 0.6100
0.5551 0.2698 1.2994 2.3987 0.3165 0.6254

4.4 0.5678 0.2955 1.3730 2.5851 0.3405 0.6090
0.5609 0.2835 1.3378 2.5184 0.3339 0.6022
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Table 7. Comparison of thermally averaged collision strengths, Υ, between Aggarwal (1983) (A), Lennon & Burke (1994) (LB), Aggarwal
& Keenan (1999) (AK), Palay et al (2012) (P), and the current work (SSB) using the 72-term target as a function of temperature [K].
See Table 4 for the transition indices. Note that the values attributed to Lennon & Burke (1994) for T = 2500 K and 25000 K are those
tabulated for log T = 3.4 and 4.4 in that work respectively.

Index Temperature [K]

100 500 1000 2500 5000 7500 10000 12500 15000 17500 20000 25000 30000

1-2 A 0.5041 0.5172 0.5310 0.5417 0.5490 0.5537 0.5567 0.5586 0.5612 0.5633

LB 0.4975 0.5115 0.5454 0.5678
AK 0.5011 0.5084 0.5159 0.5222 0.5266 0.5294 0.5311 0.5324 0.5348 0.5380
P 0.5814 0.5005 0.4866 0.5240 0.5648 0.6007 0.6116
SSB 0.6350 0.5430 0.5199 0.5132 0.5199 0.5317 0.5421 0.5494 0.5540 0.5569 0.5587 0.5609 0.5623

1-3 A 0.2499 0.2566 0.2646 0.2717 0.2776 0.2824 0.2865 0.2901 0.2962 0.3013
LB 0.2455 0.2509 0.2713 0.2955

AK 0.2406 0.2449 0.2512 0.2573 0.2626 0.2669 0.2707 0.2739 0.2798 0.2855
P 0.2142 0.2153 0.2234 0.2469 0.2766 0.3106 0.3264

SSB 0.2259 0.2247 0.2313 0.2367 0.2424 0.2497 0.2568 0.2629 0.2682 0.2727 0.2766 0.2833 0.2890

1-4 A 0.2283 0.2262 0.2337 0.2426 0.2506 0.2627 0.2627 0.2672 0.2740 0.2790
LB 0.2470 0.2380 0.2544 0.2872

AK 0.2260 0.2265 0.2343 0.2434 0.2515 0.2582 0.2637 0.2683 0.2751 0.2799
P 0.1959 0.2088 0.2154 0.2347 0.2693 0.3094 0.3256

SSB 0.2318 0.2389 0.2370 0.2249 0.2265 0.2381 0.2492 0.2579 0.2646 0.2698 0.2739 0.2797 0.2832

1-5 A 0.0278 0.0280 0.0295 0.0310 0.0324 0.0335 0.0344 0.0351 0.0362 0.0368
LB 0.0306 0.0301 0.0325 0.0378
AK 0.0307 0.0304 0.0310 0.0321 0.0332 0.0342 0.0351 0.0358 0.0370 0.0378
P 0.0597 0.0535 0.0496 0.0409 0.0407 0.0430 0.0442
SSB 0.0299 0.0298 0.0296 0.0290 0.0295 0.0312 0.0327 0.0339 0.0349 0.0357 0.0363 0.0371 0.0375

2-3 A 1.1925 1.2239 1.2592 1.2884 1.3107 1.3275 1.3404 1.3510 1.3679 1.3821
LB 1.1730 1.2030 1.2910 1.3730
AK 1.1680 1.1870 1.2100 1.2320 1.2490 1.2620 1.2730 1.2820 1.2980 1.3150
P 1.0360 1.0320 1.0720 1.2100 1.3300 1.4510 1.4990
SSB 1.1121 1.0928 1.1218 1.1557 1.1873 1.2221 1.2526 1.2763 1.2943 1.3082 1.3194 1.3374 1.3518

2-4 A 0.6848 0.6785 0.7010 0.7279 0.7518 0.7716 0.7879 0.8014 0.8221 0.8368

LB 0.7411 0.7139 0.7631 0.8617
AK 0.6780 0.6795 0.7029 0.7302 0.7545 0.7746 0.7911 0.8049 0.8253 0.8397
P 0.5903 0.6285 0.6483 0.7067 0.8108 0.9313 0.9802
SSB 0.6975 0.7187 0.7132 0.6772 0.6823 0.7175 0.7506 0.7768 0.7969 0.8125 0.8247 0.8421 0.8527

2-5 A 0.0833 0.0840 0.0884 0.0931 0.0972 0.1006 0.1033 0.1054 0.1085 0.1105

LB 0.0918 0.0904 0.0975 0.1135
AK 0.0921 0.0911 0.0929 0.0962 0.0995 0.1025 0.1052 0.1074 0.1109 0.1135

P 0.1765 0.1590 0.1477 0.1228 0.1223 0.1294 0.1332
SSB 0.0900 0.0897 0.0892 0.0873 0.0890 0.0939 0.0985 0.1022 0.1052 0.1075 0.1093 0.1118 0.1131

3-4 A 1.1413 1.1308 1.1683 1.2131 1.2529 1.2860 1.3132 1.3357 1.3702 1.3947
LB 1.2352 1.1898 1.2718 1.4362
AK 1.1300 1.1325 1.1715 1.2170 1.2575 1.2910 1.3185 1.3415 1.3755 1.3995
P 0.9934 1.0560 1.0890 1.1880 1.3630 1.5640 1.6450
SSB 1.1702 1.2057 1.1965 1.1374 1.1474 1.2066 1.2620 1.3055 1.3389 1.3647 1.3850 1.4137 1.4310

3-5 A 0.1388 0.1401 0.1473 0.1552 0.1620 0.1676 0.1721 0.1757 0.1809 0.1842
LB 0.1530 0.1507 0.1625 0.1892
AK 0.1536 0.1518 0.1549 0.1603 0.1659 0.1709 0.1753 0.1790 0.1849 0.1891
P 0.2850 0.2587 0.2421 0.2045 0.2046 0.2170 0.2235
SSB 0.1512 0.1506 0.1497 0.1467 0.1496 0.1579 0.1657 0.1720 0.1769 0.1808 0.1839 0.1881 0.1902

4-5 A 0.4708 0.5463 0.6114 0.6468 0.6630 0.6687 0.6692 0.6670 0.6599 0.6524
LB 0.4241 0.4357 0.5815 0.6090
AK 0.3907 0.4312 0.4836 0.5227 0.5478 0.5629 0.5719 0.5769 0.5809 0.5812
P 0.3900 0.3899 0.3899 0.4544 0.5661 0.6230 0.6219
SSB 0.3827 0.3856 0.3897 0.4196 0.5208 0.5882 0.6174 0.6266 0.6265 0.6223 0.6163 0.6026 0.5886
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