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Quantum Spin Dimers from Chiral Dissipation in Cold-Atom Chains
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We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling
to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture
of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate
of atoms in a magnetized phase, while the spins are identified with motional states of a separate
species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to
couple differently to left- and right-moving modes, which in our atomic setup can be tuned from
bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs
of neighboring spins form dimers that decouple from the remainder of the chain. Our results also
apply to current experiments with two-level emitters coupled to photonic waveguides.

PACS numbers: 03.65.Yz, 67.85.Jk, 42.50.Dv, 03.67.Bg

In an open quantum many-body system, the compe-
tition of particle interactions, external driving and the
dissipative coupling to a quantum reservoir can result
in novel scenarios for the formation of strongly corre-
lated quantum states [1]. This is not only of interest as a
nonequilibrium condensed matter problem per se [2–9],
but dissipatively prepared entangled states also provide
a potential resource for quantum information tasks [10–
15]. Quantum optical systems of cold atoms or solid-state
impurities provide a natural setting for such open many-
body quantum systems. The paradigmatic example is
given by an ensemble of two-level atoms driven by laser
light, and coupled to a photonic reservoir [16–19], e.g.,
as one-dimensional (1D) engineered photonic band gap
materials [20]. These model systems can be described
as a collection of spin-1/2 systems, which via the pho-
tonic modes interact with long-range dipole-dipole in-
teractions, and exhibit collective and enhanced decay
into radiation modes of photonic structures. The re-
alization of such Dicke-type models [21, 22] coupled to
low-dimensional quantum reservoirs, and the observation
of the associated dynamical quantum phases and phase
transitions are, at present, an outstanding challenge in
quantum optics [23–26].

In the present work, we introduce a realization of dissi-
pative quantum magnetism based on cold atoms in opti-
cal lattices [27, 28], where the quantum reservoir is repre-
sented by phononic degrees of freedom of a 1D spin-orbit
coupled Bose-Einstein quasicondensate (quasi-BEC) [29–
35]. This model system provides a faithful and exper-
imentally realistic representation of a chain of driven
spin-1/2 particles coupled to a 1D bosonic bath. Cru-
cially, spin-orbit coupling (SOC) makes the reservoir chi-

ral, with the spins coupling differently to the left and
right propagating modes, γL 6= γR [cf. Fig. 1(a)]. This
asymmetry is, moreover, tunable via the atomic param-
eters, making it possible to engineer the spin-bath cou-

pling from purely unidirectional to fully bidirectional.

To describe the dynamics of our 1D spin chain, we de-
rive a quantum optical master equation for the reduced
system density matrix ρ(t), tracing over the reservoir
degrees of freedom. This equation contains both long-
range dipolar spin interactions, as mediated by the ex-
change of Bogoliubov excitations, and collective dissipa-
tive terms. Remarkably, at long times the system evolves
to a pure many-body state of quantum spin dimers,

Figure 1. The 1D spin chain coupled to a 1D chiral bosonic
reservoir. (a) Driven spins decay into right- and left-moving
reservoir modes with rates γR and γL. For γR 6= γL, quan-
tum spin dimers (indicated by |D〉) are formed as the unique
pure steady state. (b-d) Implementation with a two-species
mixture of cold atoms. (b) Spins are represented by the two
lowest vibrational states of atoms a on each site of a 1D op-
tical lattice, which can “decay” due to collisions with a 1D
SOC quasi-BEC, representing the bath. (c) SOC of atoms b
due to coupling of two internal states |↑〉 and |↓〉 via a Ra-
man process [29]. (d) Dispersion relations ~ωkβ of the bath
excitations in the plane wave phase. The red and blue arrows
indicate excitations of atoms b from the quasi-BEC (circle at
km) to wave vectors kL and kR, resonant with ~ω.



ρ(t)
t→∞−−−→ |Ψ〉〈Ψ| with |Ψ〉=⊗N/2

j=1 |D〉2j−1,2j . Here

|D〉j,l≡
1

√

1 + |α|2

[

|g〉j |g〉l+
α√
2

(

|g〉j |e〉l−|e〉j |g〉l
)

]

(1)

is the spin-dimer state of a pair of spin-1/2 particles at
lattice sites j, l with |g〉 , |e〉 denoting the corresponding
ground and excited states, and α a parameter defined be-
low. This result is valid for a generic range of parameters
in the case of reservoirs with broken left-right symmetry
and an even number of spins [cf. Fig. 1(a)]. Further, it
is also of immediate relevance in the context of recent
proposals and experiments for two-level systems (TLSs)
coupled to a photonic chiral reservoir [36–39].

Model.— We realize a driven dissipative spin chain cou-
pled to a 1D bosonic reservoir with a two-species mixture
of quantum gases. The corresponding setup is shown in
Figs. 1(b)- 1(d). The spin chain is represented by spin-
less atoms of a first species a (with mass ma), trapped
in a species-selective 1D optical lattice [3] of period d
[cf. Fig. 1(b)]. We assume filling with one atom per site
and a deep lattice to completely suppress the tunneling
(Mott insulator). Thus, the ground and first vibrational
states of the atom at lattice site j with position xj rep-
resent a TLS, |g〉j and |e〉j , or effective spin-1/2. Other
vibrational states are decoupled due to the lattice anhar-
monicity. We can drive these TLSs near their transition
frequency ω via a Raman process with frequency ν and
Rabi frequencies Ωj . In the rotating wave approximation
(RWA), the Hamiltonian for the driven spin chain with
N atoms reads (σj ≡ |g〉j 〈e|)

Hsys = ~ω

N
∑

j=1

σ†
jσj + ~

N
∑

j=1

(

Ωjσje
iνt +H.c.

)

. (2)

The 1D bosonic quantum reservoir is realized with a
second atomic species b (with mass mb). We assume,
again, trapping in a 1D geometry (aligned with the opti-
cal lattice), however, with the atoms b now moving freely
along a homogeneous 1D wire. In addition, we prepare
them in the quasi-BEC regime [34, 35, 40–42]; i.e., the
linear density ρ̄ satisfies ~

2ρ̄2/mb ≫ kBT, µ, with T the
temperature and µ the chemical potential. Atoms a will
couple to the reservoir atoms b via collisional interactions.
In particular, there will be resonant processes, where an
atom a “decays” from |e〉 to |g〉, creating an excitation of
energy ~ω in the reservoir gas [27, 43, 44] [cf. Fig. 1(b)].
These excitations will propagate along the wire and rep-
resent the right- and left-moving bosonic excitations con-
stituting our 1D bath. First experiments along these lines
have been realized with a three-dimensional BEC as the
reservoir [3, 4].

A chiral reservoir with asymmetric decay of spins to
left- and right-moving modes (γL 6= γR) is obtained by
adding SOC to the 1D quasi-BEC. Following Ref. [29],
SOC with equal Rashba and Dresselhaus contributions

can be implemented by coupling two internal states |↑〉
and |↓〉 of the reservoir atoms b via Raman lasers with
momentum transfer 2~k0, coupling strength Ω0, detun-
ing 2δ0 and recoil energy E0 ≡ ~

2k20/(2mb) [cf. Fig. 1(c)].
Using an extension of Bogoliubov theory to quasiconden-
sates [40, 42], one can diagonalize the reservoir Hamilto-
nian in terms of Bogoliubov-like excitations as Hres =
∑

k,β ~ωkβb
†
kβbkβ . We refer to Ref. [45] for details. Here

bkβ are bosonic annihilation operators for excitations
with wave vector k in the branch β=±, and ωkβ is the
corresponding excitation spectrum shown in Fig. 1(d) for
~Ω0 ≪ E0. What is crucial for our proposal is that at
energies ∼ E0, there is an energy window ∼Ω0 in which
excitations are chiral; i.e., all excitations with positive
group velocity are strongly polarized along |↑〉, while the
ones with negative group velocity are strongly polarized
along |↓〉. This locking of the propagation direction to
the spin is reminiscent of chiral edge modes in systems
with artificial gauge fields [56, 57]. To be specific, the ex-
citation spectrum of Fig. 1(d) is obtained when the SOC
quasi-BEC is prepared in the so-called plane wave phase
[58–60] with quasicondensation at a positive wave vec-
tor km. This can be achieved by using a finite detuning
δ0 < 0, satisfying ρ̄(g↑↑ − g↑↓)/2 < ~|δ0| ≪ E0, where
g↑↑, g↓↓, g↑↓≥0 are the 1D collisional interaction param-
eters of the reservoir gas. An important characteristic of
this phase is that the atoms in the quasi-BEC are spin
polarized, as manifested by ρ̄↓/ρ̄↑ < 1, where ρ̄↑ and ρ̄↓
are the mean densities of the different quasi-BEC spin
components (ρ̄ = ρ̄↑ + ρ̄↓). A feature of the synthetic
SOC is the tunability of this spin polarization with Ω0

[cf. Fig. 2(a)].

We take a quantum optical point of view in describ-
ing the system-bath interaction, which is motivated by
the analogy with TLSs coupled to a 1D photonic bath
in the weak coupling limit. Microscopically, it is given
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Figure 2. Tunability of decay asymmetry into chiral left- and
right-moving modes (a) γL/γR as a function of ~Ω0/E0 for
ga↓ = ga↑ (solid line) and ga↓ =0 (dashed line). The dash-
dotted line shows the reservoir spin polarization ρ̄↓/ρ̄↑. (b)
Density fluctuation coefficients Qλ

−(k) (λ=↑, ↓) in the lower
branch for ~Ω0=0.2E0. The wave vectors for left- and right-
moving excitations ks (s=L,R) are indicated, where Qλ

−(ks)
show their strong spin polarization. Other parameters are
ρ̄ = 6.14k0, ma/mb = 2, g↑↑ = g↑↓ = g↓↓ = 0.23E0/k0, ga↑ =
−0.37E0/k0, ~ω=1.46E0 and δ0=−0.004E0.



in our setup by collisional interactions between a and b
atoms. For spinless atoms a, these collisions are spin
conserving and reduce to interspecies density-density in-
teractions. Therefore, density fluctuations of the reser-
voir atoms in a frequency band around ω provide an
energy-conserving mechanism for spin decay. In terms
of elementary excitations, they can be written as δρλ =
√

ρ̄λ/L
∑

k,β=± Qλ
β(k)bkβe

i(k−km)x+H.c. [42, 45], where

L is a quantization length and the coefficients Qλ
β(k)

(with λ ∈ {↑, ↓}) reflect the spin-polarization of exci-
tations [cf. Fig. 2(b)]. By placing the TLS transition fre-
quency ω in the aforementioned energy window around
E0, the RWA restricts the reservoir to chiral excitations
only, provided γL, γR ≪ Ω0, ω. Furthermore, we can lin-
earize the dispersion in intervals IL and IR, around the
corresponding resonant wave vectors kL and kR, with
group velocities vL < 0 and vR > 0 [cf. Fig. 1(d)]. As
a result, the interaction Hamiltonian can be written in
a form reminiscent of the prototypical quantum optical
RWA Hamiltonian as (cf. Ref. [45])

Hint =i~
∑

s=L,R

√

γs|vs|
L

∑

k∈Is,j

σ†
jbk,−e

i(k−km)xj+H.c., (3)

with decay rates into the left and right propagating
modes (s=R,L) given by

γs ≡
η(ks)e

−η(ks)

~2|vs|

(

∑

λ=↑,↓

gaλ
√
ρ̄λQ

λ
−(ks)

)2

. (4)

Here ga↑, ga↓ are the collisional couplings between a and
b atoms, and η(k) ≡ (E0/~ω)(mb/ma)[(k − km)/k0]

2.
The physical origin of the decay asymmetry γR 6= γL

is primarily the preparation of the reservoir in the plane
wave phase at km>0. For ~Ω0≪E0, the reservoir atoms
are strongly spin polarized ρ̄↑ ≫ ρ̄↓ [cf. Fig. 2(a)], sup-
pressing the creation of left-moving excitations in the
spin-conserving collisions due to the small overlap of the
spin wave functions. In addition, creating left- or right-
moving excitations requires different momentum trans-
fers [cf. Fig. 1(d)] which also give rise to an asymmetry,
reflected by the coupling constants η(ks). As illustrated
in Fig. 2(a), the decay asymmetry can be tuned with Ω0

from essentially unidirectional γL/γR ≪ 1 to fully bidi-
rectional γL/γR = 1. Another mechanism for an asym-
metry is provided in the case of spin-dependent collisions
(ga↑ 6= ga↓). In particular, for ga↑ ≫ ga↓, there is pre-
dominant decay to the right-moving modes. Remarkably,
there are parameters for which Q↑

−(kL)=0 (cf. Ref. [45]),
making it possible to realize an ideal cascaded spin chain
with γL = 0, if ga↓=0 [cf. Fig. 2(a)].

Master equation.— We derive a master equation for
the reduced density operator ρ(t) of the spin chain by
eliminating the reservoir atoms in the Born-Markov ap-
proximation [27, 61]. For ~ω≫ kBT , and neglecting re-
tardation effects provided γs ≪ 2π|vs|/(Nd) [16, 62], we

find

ρ̇ = −(i/~)[Hsys, ρ] + LBρ+ LCρ, (5)

where Hsys is defined in Eq. (2) and the Liouvillian terms
describing reservoir-mediated interactions read

LBρ≡γL
∑

j,l

[

−i sin(|φjl|)[σ†
l σj , ρ]+cos(|φjl|)D(σj , σl)ρ

]

,

LCρ≡
∆γ

2

∑

j

D(σj , σj)ρ+∆γ
∑

j>l

(

e−iφjl [σj , ρσ
†
l ]+ H.c.

)

.

In writing Eq. (5) we used the notation D(a, b)ρ ≡
2aρb†−b†aρ−ρb†a and assumed ∆γ ≡ γR−γL ≥ 0. Ad-
ditionally, we defined phase factors φjl ≡ (xj − xl)(kR −
kL)/2, and redefined σj → σje

−i(kR+kL−2km)xj/2 and
Ωj → Ωje

i(kR+kL−2km)xj/2. The Liouvillian LB is famil-
iar from TLSs coupled to a symmetric (bidirectional) 1D
waveguide [16, 23]. It contains a coherent (Hamiltonian)
part, describing infinite-range dipole-dipole interactions
and an incoherent part with “quantum jump operators”
[61] associated with infinite-range superradiant collective
decay. Its strength is given by the smaller of the decay
rates γL. The last term, LC , is the Liouvillian of a cas-

caded quantum system [10, 61], i.e., where bath excita-
tions can only move to the right. Its strength is given by
∆γ and thus it appears only if the left-right symmetry is
broken.

Quantum spin dimers as the steady state.— We con-
sider a situation where the lattice spacing d is commen-
surate with the wavelength of the reservoir excitations,
(kR − kL)d = 4πn (n is an integer [63]), so that the
dipole-dipole interactions vanish. In addition, we assume
that all spins are driven homogeneously, Ωj=Ω, and on-
resonance, ν=ω.

We note that for ∆γ = 0, Eq. (5) reduces to a totally
symmetric Dicke model, where a nonequilibrium quan-
tum phase transition at a critical driving Ωc≡NγL/4 has
been predicted [21, 23]. In this case, only coupling within
the so-called Dicke manifolds is allowed, which leads to
multiple steady states. In contrast, when ∆γ 6= 0 this
symmetry is broken and the steady state is unique. Re-
markably, for an even number of spins, the steady state
is pure and it dimerizes; i.e., each spin pairs up with
one of its neighbors in the entangled state |D〉 given in
Eq. (1) with the singlet fraction α = 2i

√
2Ω∗/∆γ. Such

a dimerized state represents a dark state of the driven-
dissipative many-body dynamics [64], where excitations
are exchanged between two adjacent spins, but they do
not escape from the pair due to quantum interference.
For the ideal cascaded case (γL = 0), Ref. [10] has previ-
ously discussed such “cooling to dimers” with engineered
optomechanical systems. In Ref. [45], we give a formal
proof that this dimerization is in fact the generic steady
state of Eq. (5) for the whole range 0 ≤ γL/γR < 1.

To gain insight into how a spin chain dynamically
purifies and arranges itself into dimers, we numerically
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Figure 3. Dynamical formation of spin dimers as the unique
steady state of the driven-dissipative spin chain. We plot the
entropy Sj,j+1(t) of all adjacent spin pairs (solid lines) and
the purity P(t) of the total state (black dashed line) for the

initial condition |Ψ(0)〉 =
⊗N

j=1
|g〉

j
. Results are shown for

Ω = 0.5γR and (a) N=10, γL=0, (b) N=10, γL=0.4γR, (c)
N=9, γL=0, (d) N=9, γL=0.4γR.

calculate the time evolution of the purity of the total
state P≡Tr{ρ2}, and the entropy of adjacent spin pairs
Sj,j+1 ≡−Tr{ρj,j+1 ln(ρj,j+1)}. Here ρj,l is the reduced
density operator for spins j and l. The formation of pure
dimers is manifested by P(t) → 1 and S2j−1,2j(t) → 0,
∀j = 1, ..., N/2, as shown in Figs. 3(a) and 3(b). For any
ratio γL/γR < 1, pairs are purified “from left to right,”
but only in the cascaded limit does this happen succes-
sively at a constant speed [cf. Fig. 3(a)]. The time scale
tss to reach the steady state increases with γL/γR. In
the limit γL/γR → 1, we numerically find the scaling
tss ∼ (1 − γL/γR)

−4 for small system sizes (cf. Ref.[45]).
When the number of spins is odd, it is not possible for
all of them to pair up in dimers. Nevertheless, in the
cascaded limit dimers are still formed, leaving only the
last unpaired spin in a mixed state [cf. Fig. 3(c)]. The
excitations emitted by this last spin propagate only to
the right and do not affect the dimers on its left. On the
other hand, if excitations can also propagate to the left,
no dimers are formed because the output of an unpaired
spin breaks them up [cf. Fig. 3(d)].

To ensure robustness of dissipative dimerization, we
studied numerically the effect of various imperfections
on the steady state of Eq. (5), reflected by the pair pu-
rities P2j−1,2j ≡ Tr{(ρ2j−1,2j)

2}. In general, imperfec-
tions give rise to an incomplete decoupling of spin pairs
from the rest of the chain, as Fig. 4(a) illustrates for de-
viations from the commensurability condition, quantified
by ǫ ≡ (kR − kL)d− 4πn. We observe particular robust-
ness for low γL/γR and a decrease in the pair-purities
from left to right. However, already for ǫ . 0.1 we ob-
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Figure 4. Robustness of the dimerized steady state against
imperfections for N =6. (a) Pair purities P2j−1,2j and total
purity P as a function of ǫ (see text), for γL = 0.1 (dashed
line) and γL = 0.4γR (solid line). (b) P2j−1,2j and P as a
function of decay outside the 1D bath γ′, for γL =0 (dashed
line) and γL=0.4γR (solid line). We fix Ω =0.5γR.

tain P2j−1,2j & 0.9, when γL = 0.1γR. Qualitatively, the
same behavior is observed for deviations in the detuning
and phases of the coherent driving field. On the other
hand, on-site decay outside the 1D reservoir leads to a sig-
nificant decrease of the purities [cf. Fig.4(b)]. This could
be a concern for implementations with photonic waveg-
uides [17, 20]. However, in the setup proposed here, such
processes are only weakly induced (e.g., by classical noise
[65]), and thus they expected to be negligible compared
with γR.

Estimates.— We consider a quasi-BEC of 87Rb with
E0/(2π~) ≈ 3.5 kHz, 2|δ0| & 25Hz [29], T = 5nK,
ρ̄ = 48µm−1 (e.g. with 4800 atoms confined to L ∼
100µm [34, 35, 66]), and a transverse trapping frequency
ω⊥/(2π)=10 kHz. For the spin chain we consider Yb, be-
cause it is spinless and heavy (ma/mb ≈ 2) (cf. Ref. [45]).
With interspecies scattering lengths between 87Rb and
172Yb of aa↑ = aa↓ ≈ −160.7 aBohr [67] and ~ω/(2π) ≈
5.3 kHz, one obtains decay rates γR/(2π)∼ 100Hz, with
asymmetries 10−3 < γL/γR < 1.1 [cf. Fig. 2(a)]. These
rates validate a posteriori the RWA and Markov approx-
imations, as well as neglecting retardation effects for sys-
tems up to N ∼ 30 spins spaced by d∼ 800 nm. On the
other hand, these “quantum optical” approximations can
also be deliberately violated in our setup to study retar-
dation and non-Markovian effects outside the validity of
the master equation treatment. We note that heating
due to photon scattering [33] in the 87Rb SOC quasi-
BEC is negligible on time scales related to the formation
of dimers (cf. [45, 68]).

Outlook.— We have shown how SOC in an atomic
gas can be used to engineer a chiral reservoir for spin
chains. The tunable asymmetry of the coupling to left-
and right-moving excitations leads to a pure steady state
in which neighboring spins are dimerized, representing
a novel form of dissipative quantum magnetism [69, 70].
While the cold-atom realization provides particular ad-
vantages, our results also apply to implementations with
photons [37–39]. We have shown [71] that the present
results generalize to the dissipative formation of pure
many-body states of spin-1/2 tetramers, hexamers, etc.,



by appropriate driving patterns [10]. This multipartite
entanglement can be detected via the Fisher information
[72], which recently has been measured in cold-atom ex-
periments [73].
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