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Stabilised finite element methods for a bending moment formulation

of the Reissner-Mindlin plate model ∗

Gabriel R. Barrenechea†, Tomás P. Barrios‡, and Andreas Wachtel§,

Abstract

This work presents new stabilised finite element methods for a bending moments formulation
of the Reissner-Mindlin plate model. The introduction of the bending moment as an extra un-
known leads to a new weak formulation, where the symmetry of this variable is imposed strongly
in the space. This weak problem is proved to be well-posed, and stabilised Galerkin schemes for
its discretisation are presented and analysed. The finite element methods are such that the bend-
ing moment tensor is sought in a finite element space constituted of piecewise linear continuos
and symmetric tensors. Optimal error estimates are proved, and these findings are illustrated by
representative numerical experiments.

Mathematics Subject Classifications (1991):

Key words: Reissner-Mindlin plate; stabilised finite element method; symmetric formulation; sym-
metric tensor.

1 Introduction

The Reissner-Mindlin equations are widely used by engineers to describe the behaviour of an elastic
plate loaded by a transverse force. In this model the shear deformations are taken into account.
Then, the theory is applicable to both thin and moderately thick plates, for which the normal to the
mid-surface remains straight but not necessarily perpendicular to the mid-surface.

One particularity of these equations is that the thickness of the plate appears explicitly in the
partial differential equations. Then, if these equations are discretised using standard piecewise poly-
nomial spaces, numerical locking appears. With the aim of avoiding this locking (i.e., in order to
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design finite element methods whose error estimates are independent of the thickness of the plate) a
considerable amount of work has been produced over the last couple of decades. Most of these works
have been carried out using a mixed finite element approach, see, e.g., [2], [12], [19], [1], and [14] for
an overview, and the references therein. All these references deal with a second order equation for the
rotations, while the remaining variables were determined by first-order partial differential equations.
As an alternative, recently there has been an interest in developing finite element methods based on a
rewriting of the equations as a first order system introducing the bending moment tensor as an extra
unknown. For example, in [3] the problem is posed in terms of six variables lying in L2 and H(div)
spaces, and then the discrete system is hybridised. In [4], the bending moment has been introduced
as an auxiliary unknown, the symmetry of this tensor has been imposed using a Lagrange multiplier
and the discretisation has been carried out with the aid of PEERS elements.

All of the approaches quoted above need the introduction of inf-sup stable pairs of elements for
which the symmetry of the stress tensor is not easily imposed. This is, in fact, the motivation for
introducing a Lagrange multiplier in [4], and for the introduction of the anti-symmetric gradient as
an extra unknown in [3]. This symmetry is easier to impose if the variables are sought in spaces of
complete polynomials (rather than Raviart-Thomas like spaces). These spaces are not, in general,
inf-sup stable, especially for the lowest order, and then some stabilisation is needed. Unlike the inf-
sup stable framework, the number of stabilised finite element methods for the bending plate problem
using standard nodal elements is, up to our knowledge, low. For example, in [17] the original weak
formulation is enhanced with least-squares type terms and the analysis performed for high order
polynomials. In [22] a simpler variant of this method, allowing the lowest polynomial order, is proposed
and analysed. In [8] an interpolation of the test functions into the lowest order Raviart-Thomas space
is used within the least-squares term, thus making this method only usable for first order elements.
A recent stabilised alternative, using the same unknowns, has been developed in [18]. Finally, we
mention the work [21] where a refined analysis of a family of stabilised methods and a multi grid
algorithm are proposed. It is worth mentioning that none of these references deal with the system of
first order equations, and then the bending moment tensor needs to be computed as the symmetric
part of the gradient of the displacement vector multiplied by the appropriate physical constants.

The aim of this work is then to propose a stabilised formulation for the Reissner-Mindlin problem
written as a system of four first order differential equations, having the bending moment tensor as an
extra unknown. The main interest is to discretise the bending moment tensor using a finite element
space of symmetric complete polynomials of first order. This leads to an inf-sup deficiency that is
compensated for by designing appropriate stabilising terms. Our interest in this work is to alter the
Galerkin formulation as little as possible, and then this inf-sup deficiency has to be characterised
precisely before proposing the method.

The rest of this manuscript is organised as follows. The remaining of this introduction states the
main notations and the problem of interest. In Section 2 the continuous problem is analysed, and
its well-posedness is proved. Section 3 starts by analysing the inf-sup deficiency of the lowest order
pair of finite element spaces. This information is used to propose a stabilised finite element method,
whose stability is proved and optimal error estimates are obtained. Section 4 extends these findings
to the case in which the finite element spaces used are all of equal order. Finally, in Section 5 some
numerical results illustrating our findings are presented.
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1.1 Notations and the problem of interest

Given τ := (τij), ζ := (ζij) ∈ R
2×2, we write, as usual, τ t := (τji), tr(τ ) := τ11 + τ22 and

τ : ζ :=
∑2

i,j=1 τij ζij . We will use standard notation for Sobolev spaces. In particular, (·, ·)D
stands for the L2(D) inner product, ‖ · ‖r,D and | · |r,D denote the norm and seminorm in Hr(D),
respectively, where H0(D) = L2(D), and no distinction is made for vector or tensor-valued functions.
For v = (v1, v2) and τ = (τij) we define the following differential operators

div(v) := ∂xv1 + ∂yv2 , div(τ ) :=

[

∂xτ11 + ∂yτ12
∂xτ21 + ∂yτ22

]

,

and, for D ⊂ R
2 we define the function spaces

H(div, D) := {v ∈ L2(D)2 : div(v) ∈ L2(D)} ,

H(div, D) := {τ ∈ L2(D)2×2 : div(τ ) ∈ L2(D)2 } ,

equipped with their usual norms

‖v‖2div,D := ‖v‖20,D + ‖div(v)‖20,D and ‖τ‖2div,D := ‖τ‖20,D + ‖div(τ )‖20,D .

Finally, if the boundary ofD is denoted by ∂D, 〈·, ·〉∂D stands for the duality pairing betweenH− 1

2 (∂D)

and H
1

2 (∂D).
The physical domain (the plate) is the cylindrical domain Ω×

(

− t
2 ,

t
2

)

, where Ω ⊆ R
2 is an open

polygonal domain, and 0 < t ≪ diam(Ω). Then, given a source term g ∈ L2(Ω), the Reissner-Mindlin
model seeks for rotations β = (β1, β2) of the fybres initially normal to the plate’s midsurface, the
scaled shear stress γ = (γ1, γ2) and the transversal displacement ω, such that

−div(C(ε(β)))− γ = 0 in Ω,
−div(γ) = g in Ω,

γ − κ
t2
(∇ω − β) = 0 in Ω,
ω = 0, β = 0 on ∂Ω,

(1)

where κ := Ek/2(1 + ν) is the shear modulus, E the Young modulus, ν the Poisson ratio, and k a
correction factor usually taken as 5/6 for clamped plates. Just to simplify the presentation we will

suppose that t2

κ ≤ 1. As standard for isotropic materials, ε(β) := 1
2(∇β + (∇β)t) denotes the strain

tensor and C is the tensor of bending moduli, characterised by

Cτ :=
E

12(1− ν2)

(

(1− ν)τ + ν tr(τ )I

)

∀τ ∈ L2(Ω)2×2 , (2)

where I is the identity matrix in R
2×2. Its inverse is given by

C−1τ :=
12(1− ν2)

E

(

1

(1− ν)
τ −

ν

(1− ν2)
tr(τ )I

)

∀τ ∈ L2(Ω)2×2 . (3)

We use C or c, with or without subscripts, to denote generic constants, independent of the discretisa-
tion parameters and the thickness of the plate, which may take different values at different occurrences.
Finally, every physical constant, with the exception of t, will be treated as a fixed constant.
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2 The dual mixed formulation

Following the idea recently proposed in [4], we introduce the bending moment σ := C(ε(β)) in Ω as
an additional unknown. Then, the first equation in (1) becomes

C−1σ − ε(β) = 0 in Ω , (4)

−div(σ)− γ = 0 in Ω . (5)

To present the new mixed formulation, the following function space will be useful

H := {τ ∈ H(div,Ω) : τ t = τ in Ω} . (6)

Since σ = σt in Ω, then σ ∈ H. Next, multiplying (4) by τ ∈ H and (5) by v ∈ L2(Ω)2 and
integrating by parts one arrives at

∫

Ω
C−1σ : τ +

∫

Ω
β · div(τ ) = 0 ∀τ ∈H , (7)

∫

Ω
div(σ) · v +

∫

Ω
γ · v = 0 ∀v ∈ L2(Ω)2. (8)

In addition, multiplying the second equation of (1) by test functions q ∈ H1
0 (Ω) and integrating by

parts gives

−

∫

Ω
γ · ∇q = −

∫

Ω
g q ∀ q ∈ H1

0 (Ω) . (9)

Finally, testing the third equation of (1) by test functions z ∈ L2(Ω)2 leads to

−

∫

Ω
(∇ω − β) · z +

t2

κ

∫

Ω
γ · z = 0 ∀ z ∈ L2(Ω)2 . (10)

Then, equations (7)-(10) can be gathered in the following weak formulation for (1): Find (σ,β, ω,γ) ∈
X :=H × L2(Ω)2 ×H1

0 (Ω)× L2(Ω)2 such that

A((σ,β, ω,γ), (τ ,v, q, z)) = −

∫

Ω
g q ∀ (τ ,v, q, z) ∈ X , (11)

where the bilinear form A : X × X → R is given by

A((σ,β, ω,γ), (τ ,v, q, z)) =

∫

Ω
C−1σ : τ +

∫

Ω
β · div(τ ) +

∫

Ω
div(σ) · v (12)

−

∫

Ω
γ · (∇q − v) −

∫

Ω
z · (∇ω − β) +

t2

κ

∫

Ω
γ · z .

Remark 2.1 In the recent work [11] a different weak formulation was introduced for the same vari-
ables introduced above. The bilinear forms involved in that weak formulation are different, which
induces a radically different choice of norms from the one presented in this work. In particular, the
norms from [11] include the plate thickness t and some dual norms, while our aim is to analyse the
stability and convergence of approximations to (11) using the natural norms for the function spaces
involved.
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2.1 Well posedeness

With the aim to establish the existence and uniqueness of the solution of the Problem (11), we recall
the weak formulation for (1) introduced in [4]: Find ((σ,γ), (β, r, ω)) ∈ H̃ ×Q such that

∫

Ω
C−1σ : τ +

t2

κ

∫

Ω
γ · ξ +

∫

Ω
β · (div(τ ) + ξ) +

∫

Ω
r (τ 1 2 − τ 2 1) +

∫

Ω
ω div(ξ) = 0 , (13)

∫

Ω
η · (div(σ) + γ) +

∫

Ω
s(σ1 2 − σ2 1) +

∫

Ω
ν div(γ) = −

∫

Ω
g ν ,

for all ((τ , ξ), (η, s, ν)) ∈ H̃×Q, where H̃ := H(div; Ω)×H(div,Ω) andQ := L2(Ω)2×L2(Ω)×L2(Ω).
In [4] this last problem is proved to be well-posed, and the following regularity result stated: If Ω is
a convex polygon, there exists a constant C > 0, independent of t, such that

‖ω‖2,Ω + ‖β‖2,Ω + ‖γ‖div,Ω + t ‖γ‖1,Ω + ‖σ‖1,Ω + t ‖divσ‖1,Ω + ‖r‖1,Ω ≤ C ‖g‖0,Ω. (14)

In [4], Theorem 2.2, the well-posedness of (13) was stated assuming that Ω is a convex polygonal
domain. Now, a careful reading of the proof of the results leading to Theorem 2.2 in [4] shows that
the convexity assumption is not needed and then one can state that (13) is well-posed for general open
polygonal plates. This fact will be used below since the following result states that every solution of
(13) also solves (11).

Lemma 2.2 Let ((σ,γ), (β, r, ω)) ∈ H̃ ×Q be the unique solution of (13). Then, (σ,β, ω,γ) ∈ X
and solves (11).

Proof. Testing the second equation of (13) with (0, s, 0) ∈ Q gives σ = σt in Ω, i.e., σ ∈ H.
Furthermore, using (0, ξ) ∈ H̃ as test function in the first equation of (13) gives

∫

Ω

(

t2

κ
γ + β

)

· ξ +

∫

Ω
ω div(ξ) = 0 ∀ ξ ∈ H(div,Ω) . (15)

This implies that in the distributional sense ∇ω = t2

κ γ + β ∈ L2(Ω)2, and then ω ∈ H1(Ω). Hence,
after integrating by parts in (15), it follows that 〈ξ · ν, ω〉∂Ω = 0 on ∂Ω, for all ξ ∈ H(div,Ω). The
surjectivity of the normal trace implies ω = 0 on ∂Ω and thus ω ∈ H1

0 (Ω). Therefore, (σ,β, ω,γ) ∈ X .
To prove that (σ,β, ω,γ) solves (11), first one notes that the first equation in (13) with (τ ,0),

τ ∈H, as test function is (7). Also, using (0, ξ) as test function, integration by parts, and the density
of H(div,Ω) in L2(Ω)2 leads to equation (10). Next, using integration by parts one can see that (9)
is nothing but the second equation in (13) tested against (0, 0, ν) where ν ∈ H1

0 (Ω). Finally, (8) is
recovered by restricting the second equation of (13) to test functions of the form (η, 0, 0). �

The uniqueness of solution of (11) will be established directly in the following lemma.

Lemma 2.3 Let (σ̃, β̃, ω̃, γ̃) ∈ X be such that

A((σ̃, β̃, ω̃, γ̃), (τ ,v, q, z)) = 0 ∀ (τ ,v, q, z) ∈ X .

Then, (σ̃, β̃, ω̃, γ̃) = (0,0, 0,0).
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Proof. From (3) it follows that

∫

Ω
C−1τ : τ ≥

12(1− ν)

E
‖τ‖20,Ω ∀ τ ∈H , (16)

which gives

A((σ̃, β̃, ω̃, γ̃), (σ̃,−β̃,−ω̃, γ̃)) ≥
12(1− ν)

E
‖σ̃‖20,Ω +

t2

κ
‖γ̃‖20,Ω , (17)

and then σ̃ = 0 and γ̃ = 0. Next, let τ̃ := ε(u), where u ∈ H1(Ω)2 is the unique solution of

div(ε(u)) = β̃ in Ω , u = 0 on ∂Ω . (18)

Then, τ̃ ∈H and
A((0, β̃, ω̃,0), (τ̃ ,0, 0,0)) = ‖β̃‖20,Ω = 0 , (19)

which gives β̃ = 0. Finally,

A((0, 0, ω̃,0), (0,0, 0,−∇ω̃)) = ‖∇ω̃‖20,Ω = 0 , (20)

which shows that ω̃ = 0. �

The previous findings can be summarised in the following theorem.

Theorem 2.4 There exists a unique (σ,β, ω,γ) ∈ X solution of (11). In addition, if Ω is convex, it
satisfies (14).

From a discrete point of view, the bilinear form A associated to (11) is not elliptic in the whole
space, and then care must be paid to the choice of the finite element spaces used to discretise this
problem . As was mentioned in the introduction, the most commonly used spaces to present a stable
discrete method are of Raviart-Thomas, or PEERS, type. This led naturally to the introduction of the
extra variable r to impose this symmetry weakly. Our aim in this work is to take an alternative route,
and then approximate σ in the space of piecewise linear continuos and symmetric tensors. Then, if ω is
also discretised using piecewise linear continuous elements and β and γ are discretised using piecewise
constants, some stabilisation must be used in order to obtain a well-posed problem. A desirable
property of such a method is to add to the formulation as few extra terms as possible, in the spirit of
the minimal stabilisation approach proposed in [9]. Like that, the discrete solution may be expected
to inherit at least some of the properties of the continuous one. Another desirable property for a finite
element method for this problem is a stability result, and hopefully error estimates, independent of
the thickness of the plate. In the next section we will introduce a stabilised method satisfying these
restrictions.

3 The stabilised Galerkin scheme

Let {Th}h>0 be a regular family of triangulations of Ω̄. Given a triangle T ∈ Th, we denote by hT its
diameter and define the mesh size h := max{hT : T ∈ Th }. An interior edge of Th is the (nonempty)

6



interior of ∂T ∩ ∂T ′, where T and T ′ are two adjacent elements of Th. Similarly, a boundary edge of
Th is the interior of ∂T ∩ ∂Ω, if it is nonempty. We denote by EI the set of all interior edges of Th,
and by E the set of all edges of the triangulation, including the boundary. The boundary edges are
denoted by Eb = E \ EI . Further, for each e ∈ E , he represents its length. For every edge e ∈ E , we
choose one unit normal vector ne to e, pointing towards the exterior of Ω if e ⊂ ∂Ω. Also, for e ∈ E
and T ∈ Th we introduce the neighbourhoods

ωe = ∪{T ∈ Th : T ∩ e 6= ∅} , ωT = ∪{T ′ ∈ Th : T ′ ∩ T 6= ∅} .

In addition, let v be a vector-valued function, smooth inside each element T ∈ Th. We denote by vT,e
the restriction of vT to e and define the jump of v across it by:

[[v]] :=

{

vT,e − vT ′,e if e ∈ EI ,
vT,e if e ∈ Eb .

Let e ∈ E and T ∈ ωe. We recall the following local trace inequality: there exists C > 0, independent
of h, such that

‖q‖0,e ≤ C
(

h
− 1

2

e ‖q‖0,T + h
1

2

e |q|1,T ) ∀q ∈ H1(T ) . (21)

Let the following piecewise polynomial spaces

Xh,1 := {vh ∈ C0(Ω) : vh|T ∈ P1(T ) , ∀T ∈ Th} ,

Xh,0 := {vh ∈ L2(Ω) : vh|T ∈ P0(T ) , ∀T ∈ Th} ,

where given an integer ℓ ≥ 0 and a subset D of R2, Pℓ(D) denotes the space of polynomials in two
variables defined in D of total degree at most ℓ. Then, we define the following finite element spaces

Hσ
h :=

{

τ h ∈ X2×2
h,1 : τ h = τ th in Ω

}

, (22)

Hβ
h = Hγ

h := X2
h,0 , (23)

Hω
h := Xh,1 ∩H1

0 (Ω) , (24)

Yh := Hσ
h ×Hβ

h ×Hω
h , (25)

and
Xh := Yh ×Hγ

h . (26)

In what follows, we recall appropriate interpolation operators. Let Ih ∈ L(H1(Ω), Xh,1)∩L(H
1
0 (Ω), Xh,1∩

H1
0 (Ω)) be the Scott-Zhang interpolation operator. This interpolator satisfies the following properties

(cf. [13]): for 0 ≤ m ≤ 1 and 1 ≤ n ≤ 2,

‖v − Ihv‖m,T ≤ C hn−m
T |v|n,ωT

∀v ∈ Hn(ωT ) , (27)

‖v − Ihv‖m,e ≤ C h
n−m− 1

2

e |v|n,ωe ∀v ∈ Hn(ωe) , (28)
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where C > 0 is independent of h. The orthogonal projection Πh,ℓ : L
2(Ω) → Xh,ℓ , ℓ = 0, 1, defined

by
∫

Ω
(v −Πh,ℓ(v))wh = 0 ∀ wh ∈ Xh,ℓ ,

will be useful later on as well. This projection satisfies the approximation properties (cf. [13]): for
0 ≤ j ≤ k ≤ ℓ+ 1, and all v ∈ Hk(Ω), the following holds

‖v −Πh,ℓ(v)‖j,Ω ≤ Chk−j‖v‖k,Ω , (29)
{

∑

e∈E

he‖[[v −Πh,0(v)]]‖
2
0,e

} 1

2

≤ Ch‖v‖1,Ω ,

{

∑

e∈E

he‖v −Πh,1(v)‖
2
0,e

} 1

2

≤ Chk‖v‖k,Ω . (30)

Finally, we mention that in the case of vector (or tensor)-valued functions these operators are taken
component-wise.

3.1 The inf-sup deficiency and the stabilised method

In the next result we paraphrase the results in [5] and state the inf-sup deficiency of our choice of
finite element spaces. This result will lead to the definition of the stabilised finite element scheme.

Lemma 3.1 For every vh ∈ X2
h,0, there exists τ̃ h ∈ Hσ

h such that

‖τ̃ h‖1,Ω ≤ Csup‖vh‖0,Ω ,

and
∫

Ω
div(τ̃ h) · vh ≥

1

2
‖vh‖

2
0,Ω − cinf

∑

e∈E

he‖[[vh]]‖
2
0,e ,

where the positive constants Csup and cinf are independent of vh, τ̃ h, h, and, in particular, t.

Proof. Let vh ∈ X2
h,0. Let Ω̂ ⊆ R

2 be an open, bounded, polygonal, and convex domain such that

Ω ⊆ Ω̂. Let u ∈ H1(Ω̂)2 be the unique solution of the problem

−div(ε(u)) = v̂h in Ω̂ , u = 0 on ∂Ω̂ ,

where v̂h stands for the extension of vh by zero to Ω̂\Ω. Since Ω̂ is convex, it follows that u ∈ H2(Ω̂)2.
Defining τ̃ := −ε(u)|Ω ∈ H1(Ω)2×2 it follows that τ̃ = τ̃ t in Ω and it satisfies

‖τ̃‖1,Ω ≤ c‖vh‖0,Ω , (31)

where c > 0 depends only on Ω̂. Next, let τ̃ h := Ih(τ̃ ) ∈ Hσ
h be the Scott-Zhang interpolate of τ̃ .

Then, (27) gives
‖τ̃ h‖1,Ω ≤ C ‖τ̃‖1,Ω ≤ Csup‖vh‖0,Ω . (32)

8



Moreover, using the Cauchy-Schwarz’s and Young’s inequalities, integration by parts, (28), (31), and
the mesh regularity, one obtains

‖vh‖
2
0,Ω =

∫

Ω
vh · div(τ̃ ) =

∫

Ω
vh · div(τ̃ − τ̃ h) +

∫

Ω
vh · div(τ̃ h)

=
∑

e∈E

∫

e
[[vh]] · (τ̃ − τ̃ h)ne +

∫

Ω
vh · div(τ̃ h)

≤
∑

e∈E

‖[[vh]]‖0,e‖τ̃ − τ̃ h‖0,e +

∫

Ω
vh · div(τ̃ h)

≤ C

{

∑

e∈E

he‖[[vh]]‖
2
0,e

}1/2{
∑

e∈E

‖τ̃‖21,ωe

}1/2

+

∫

Ω
vh · div(τ̃ h)

≤ cinf
∑

e∈E

he‖[[vh]]‖
2
0,e +

1

2
‖vh‖

2
0,Ω +

∫

Ω
vh · div(τ̃ h) ,

which, together with (32), completes the proof. �

The previous result suggests the following stabilised finite element scheme associated to the vari-
ational formulation (11): Find (σh,βh, ωh,γh) ∈ Xh such that

Ah((σh,βh, ωh,γh), (τ h,vh, qh, zh)) = −

∫

Ω
g qh ∀ (τ h,vh, qh, zh) ∈ Xh , (33)

where the bilinear form Ah : Xh ×Xh → R is defined by

Ah((σh,βh, ωh,γh), (τ h,vh, qh, zh)) = A((σh,βh, ωh,γh), (τ h,vh, qh, zh))−
∑

e∈E

he

∫

e
[[βh]] · [[vh]] .

(34)

3.2 Stability analysis

In order to perform the analysis, the bilinear form Ah is rewritten as follows:

Ah((σh,βh, ωh,γh), (τ h,vh, qh, zh)) = ah((σh,βh, ωh), (τ h,vh, qh))

+ b((τ h,vh, qh),γh) + b((σh,βh, ωh), zh) +
t2

κ

∫

Ω
γh · zh , (35)

where ah : Yh × Yh → R and b : Yh ×Hγ
h → R are given by

ah((σh,βh, ωh), (τ h,vh, qh)) :=

∫

Ω
C−1σh : τ h +

∫

Ω
βh · div(τ h)

+

∫

Ω
div(σh) · vh −

∑

e∈E

he

∫

e
[[βh]] · [[vh]] , (36)

b((τ h,vh, qh), zh) :=−

∫

Ω
zh · (∇qh − vh) . (37)
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The first step towards the stability result is an inf-sup condition for b. The appropriate norms on
Hβ

h and Yh for this inf-sup condition are given now:

‖vh‖
2
h,0 := ‖vh‖

2
0,Ω +

∑

e∈E

he‖[[vh]]‖
2
0,e , (38)

‖(τ h,vh, qh)‖
2
1 := ‖τ h‖

2
0,Ω + ‖vh‖

2
h,0 + ‖∇qh‖

2
0,Ω , (39)

for all (τ h,vh, qh) ∈ Yh. The following result states the inf-sup condition for b.

Lemma 3.2 There exists α̃0 > 0, independent of h, such that

sup
(τh,vh,qh)∈Yh\{0}

b((τ h,vh, qh), zh)

‖(τ h,vh, qh)‖1
≥ α̃0‖zh‖0,Ω , (40)

for all zh ∈ Hγ
h . Moreover, the discrete kernel of the bilinear form b may be characterised as follows

V h :={(τ h,vh, qh) ∈ Yh : b((τ h,vh, qh), zh) = 0 ∀ zh ∈ Hγ
h }

={(τ h,vh, qh) ∈ Yh : vh = ∇qh in Ω} . (41)

Proof. First, using the local trace result (21) and the mesh regularity it follows that

‖vh‖
2
h,0 = ‖vh‖

2
0,Ω +

∑

e∈E

he‖[[vh]]‖
2
0,e ≤ C ‖vh‖

2
0,Ω , (42)

for all vh ∈ Hβ
h , where C > 0 does not depend on h. Then, for all zh ∈ Hγ

h

sup
(τh,vh,qh)∈Yh\{0}

b((τ h,vh, qh), zh)

‖(τ h,vh, qh)‖1
≥ sup

vh∈H
β

h
\{0}

∫

Ω vh · zh
C ‖vh‖0,Ω

= α̃0 ‖zh‖0,Ω , (43)

which proves (40) with α̃0 := C−1. The proof of the characterisation for V h follows by noting that,
for all (τ h,vh, qh) ∈ Yh, ∇qh − vh ∈ Hγ

h . �

The next result states a uniform inf-sup condition for ah.

Lemma 3.3 There exists α̃1 > 0, independent of h, such that for all (ξh,ϕh, µh) ∈ V h the following
holds

sup
(τh,vh,qh)∈V h\{0}

ah((ξh,ϕh, µh), (τ h,vh, qh))

‖(τ h,vh, qh)‖1
≥ α̃1‖(ξh,ϕh, µh)‖1 . (44)

Proof. Let (ξh,ϕh, µh) ∈ V h. From (16) and the definition of ah it follows that

ah((ξh,ϕh, µh), (ξh,−ϕh,−µh)) ≥
12(1− ν)

E
‖ξh‖

2
0,Ω +

∑

e∈E

he ‖[[ϕh]]‖
2
0,e . (45)

10



Furthermore, in order to control the L2(Ω) norm of ϕh ∈ Hβ
h , choosing its corresponding τ̃ h ∈ Hσ

h

from Lemma 3.1, using the Cauchy-Schwarz’s and Young’s inequalities and the continuity of C−1 (see
(3)), gives

ah((ξh,ϕh, µh), (τ̃ h,0, 0)) =

∫

Ω
C−1ξh : τ̃ h +

∫

Ω
ϕh · div(τ̃ h)

≥
1

2
‖ϕh‖

2
0,Ω − cinf

∑

e∈E

he‖[[ϕh]]‖
2
0,e −

12(1 + 3ν)

E
‖ξh‖0,Ω‖τ̃ h‖0,Ω

≥
1

2
‖ϕh‖

2
0,Ω − cinf

∑

e∈E

he‖[[ϕh]]‖
2
0,e −

6(1 + 3ν)

E

{

δ‖ξh‖
2
0,Ω +

C2
sup

δ
‖ϕh‖

2
0,Ω

}

, (46)

where δ > 0, and Csup, cinf > 0 are the constants from Lemma 3.1. The choice δ =
24(1+3ν)C2

sup

E yields

ah((ξh,ϕh, µh), (τ̃ h,0, 0)) ≥
1

4
‖ϕh‖

2
0,Ω − cinf

∑

e∈E

he‖[[ϕh]]‖
2
0,e −

144(1 + 3ν)2C2
sup

E2
‖ξh‖

2
0,Ω . (47)

Then, (45) and (47) suggest to define

(τ h,vh, qh) := (ξh + c0τ̃ h,−ϕh,−µh) , (48)

where c0 > 0 is a positive constant to be chosen. This choice clearly satisfies

‖(τ h,vh, qh)‖1 ≤ (1 + Csupc0)‖(ξh,ϕh, µh)‖1 . (49)

In addition, using (45) and (47) one gets

ah((ξh,ϕh, µh), (τ h,vh, qh)) ≥

(

12(1− ν)

E
−

c0144(1 + 3ν)2C2
sup

E2

)

‖ξh‖
2
0,Ω

+
c0
4
‖ϕh‖

2
0,Ω + (1− c0cinf )

∑

e∈E

he‖[[ϕh]]‖
2
0,e .

Hence, choosing

c0 = min

{

6(1− ν)E

144(1 + 3ν)2C2
sup

,
1

4cinf

}

,

and using that ϕh = ∇µh, one obtains

ah((ξh,ϕh, µh), (τ h,vh, qh)) ≥ C
(

‖ξh‖
2
0,Ω + ‖ϕh‖

2
h,0

)

≥ Ĉ‖(ξh,ϕh, µh)‖
2
1 , (50)

where Ĉ > 0 is independent of h. Therefore, (44) is a consequence of (50) and (49), with α̃1 =
Ĉ

1+Csupc0
.

�

To study the well-posedness of (33), the space Xh is equipped with the following mesh-dependent
norm

‖(τ h,vh, qh, zh)‖
2
h := ‖(τ h,vh, qh)‖

2
1 + ‖zh‖

2
0,Ω , (51)

for all (τ h,vh, qh, zh) ∈ Xh. The following result states a uniform inf-sup condition for Ah.
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Theorem 3.4 There exist α̃ > 0, independent of h and t, such that for all (ξh,ϕh, µh,ψh) ∈ Xh the
following holds

sup
(τh,vh,qh,zh)∈Xh\{0}

Ah((ξh,ϕh, µh,ψh), (τ h,vh, qh, zh))

‖(τ h,vh, qh, zh)‖h
≥ α̃‖(ξh,ϕh, µh,ψh)‖h . (52)

Consequently, there exists a unique (σh,βh, ωh,γh) ∈ Xh solution of the problem (33). Moreover, this
solution satisfies

‖(σh,βh, ωh,γh)‖h ≤
1

α̃
‖g‖−1,Ω . (53)

Finally, if (σ,β, ω,γ), solution of (11) is such that β ∈ H1
0 (Ω)

2, then the following Galerkin
orthogonality holds

Ah((σ − σh,β − βh, ω − ωh,γ − γh), (τ h,vh, qh, zh)) = 0 ∀ (τ h,vh, qh, zh) ∈ Xh . (54)

Proof. The proof of (52) is reminiscent of the one from [6], Lemma B.1. Indeed, let (ξh,ϕh, µh,ψh) ∈
Xh. First, from Lemmas 3.2 and 3.3, using [16], or [13], Proposition 2.36, there exists (τ h,vh, qh, zh) ∈
Xh such that

ah((ξh,ϕh, µh), (τ h,vh, qh)) + b((ξh,ϕh, µh), zh) + b((τ h,vh, qh),ψh)

≥ γ̃ ‖(ξh,ϕh, µh,ψh)‖h‖(τ h,vh, qh, zh)‖h , (55)

for some γ̃ > 0, independent of h and t.
In addition, from the proof of Lemma 3.3 (cf. (48),(49) and (50)) there exists τ̂ h ∈ Hσ

h such that

ah((ξh,ϕh, µh), (τ̂ h,−ϕh,−µh)) ≥ c ‖(ξh,ϕh, µh)‖1‖(τ̂ h,−ϕh,−µh)‖1 ≥ 0 . (56)

Now, if one supposes that

ah((ξh,ϕh, µh), (τ̂ h,−ϕh,−µh)) +
t2

κ
‖ψh‖

2
0,Ω ≥

γ̃2

4
‖(ξh,ϕh, µh,ψh)‖

2
h ,

then,

Ah((ξh,ϕh, µh,ψh), (τ̂ h,−ϕh,−µh,ψh)) = ah((ξh,ϕh, µh), (τ̂ h,−ϕh,−µh)) +
t2

κ
‖ψh‖

2
0,Ω

≥
γ̃2

4
‖(ξh,ϕh, µh,ψh)‖

2
h ,

and the result follows using that ‖τ̂ h‖0,Ω ≤ C0 ‖ξh‖0,Ω and α̃ = min{1, C−1
0 } γ̃2

4 (independent of h and
t). On the other hand, if one supposes that

ah((ξh,ϕh, µh), (τ̂ h,−ϕh,−µh)) +
t2

κ
‖ψh‖

2
0,Ω ≤

γ̃2

4
‖(ξh,ϕh, µh,ψh)‖

2
h ,
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then the Cauchy-Schwarz inequality, (56), and t2

κ ≤ 1 give for any (τ h,vh, qh, zh) ∈ Xh

t2

κ

∫

Ω
ψh · zh ≤

[

t2

κ
‖ψh‖

2
0,Ω

t2

κ
‖zh‖

2
0,Ω

]
1

2

≤

[

t2

κ
‖ψh‖

2
0,Ω‖zh‖

2
0,Ω

]
1

2

≤

[

γ̃2

4
‖(ξh,ϕh, µh,ψh)‖

2
h‖(τ h,vh, qh, zh)‖

2
h

]
1

2

.

This implies that, for (τ h,vh, qh, zh) ∈ Xh satisfying (55), there holds

Ah((ξh,ϕh, µh,ψh), (τ h,vh, qh, zh)) ≥ γ̃‖(ξh,ϕh, µh,ψh)‖h‖(τ h,vh, qh, zh)‖h

−

[

γ̃2

4
‖(ξh,ϕh, µh,ψh)‖

2
h‖(τ h,vh, qh, zh)‖

2
h

]
1

2

,

which proves (52) with α̃ = γ̃
2 , again independent of h and t. This proves the inf-sup condition (52)

and the well-posedness of (33). The stability result (53) is a direct consequence of (52). Finally, (54)
follows by noting that if β ∈ H1

0 (Ω)
2, then [[β]] = 0 a.e. over all the edges e ∈ E . �

3.3 Error analysis

We begin by introducing some notation. Let (σ,β, ω,γ) ∈ X and (σh,βh, ωh,γh) ∈ Xh be the unique
solutions of (11) and (33), respectively. Hereafter, the individual error between σ and σh is denoted
by eσ := σ−σh, and the errors eβ, eω and eγ are defined in an analogous way. The next result states
a first error estimate for this method.

Theorem 3.5 Let us suppose that the solution of (11) satisfies (σ,β, ω,γ) ∈ H2(Ω)2×2 ×H1
0 (Ω)

2 ×
H2(Ω)×H1(Ω)2. Then, there exists C > 0, independent of h and t, such that

‖(eσ, eβ, eω)‖1 + t‖eγ‖0,Ω ≤ Ch
(

‖σ‖2,Ω + ‖β‖1,Ω + ‖ω‖2,Ω + t‖γ‖1,Ω
)

. (57)

Proof. The error is split into discrete and interpolation errors as follows

(eσ, eβ, eω, eγ) = (σ − Ih(σ),β −Πh,0(β), ω − Ih(ω),γ −Πh,0(γ))

+ (Ih(σ)− σh,Πh,0(β)− βh, Ih(ω)− ωh,Πh,0(γ)− γh)

=: (ησ,ηβ, ηω,ηγ) + (eσh , e
β
h , e

ω
h , e

γ
h) .

First, (27)-(30), and the mesh regularity give

‖(ησ,ηβ, ηω)‖1 + t‖ηγ‖0,Ω ≤ Ch
(

‖σ‖1,Ω + ‖β‖1,Ω + ‖ω‖2,Ω + t‖γ‖1,Ω
)

. (58)

To bound the discrete error one starts noticing that Theorem 3.4 guarantees the existence of (τ h,vh, qh, zh) ∈
Xh such that ‖(τ h,vh, qh, zh)‖h = 1 and

α̃ ‖(eσh , e
β
h , e

ω
h , e

γ
h)‖h ≤ Ah((e

σ
h , e

β
h , e

ω
h , e

γ
h), (τ h,vh, qh, zh)) . (59)

13



Next, using the consistency of the method (cf. (54)) one obtains

α̃ ‖(eσh , e
β
h , e

ω
h , e

γ
h)‖h ≤ Ah((e

σ
h , e

β
h , e

ω
h , e

γ
h), (τ h,vh, qh, zh))

= Ah((η
σ,ηβ, ηω,ηγ), (τ h,vh, qh, zh))

=

∫

Ω
C−1ησ : τ h +

∫

Ω
ηβ · div(τ h) +

∫

Ω
vh · div(η

σ)−
∑

e∈E

he

∫

e
[[ηβ]] · [[vh]]

−

∫

Ω
ηγ · (∇qh − vh)−

∫

Ω
(∇ηω − ηβ) · zh +

t2

κ

∫

Ω
ηγ · zh .

Now, since Πh,0 is the orthogonal projection with respect to the L2(Ω) inner product it follows that

∫

Ω
ηβ · div(τ h) = 0 ,

∫

Ω
ηγ · (∇qh − vh) = 0 ,

∫

Ω
ηβ · zh = 0 , and

t2

κ

∫

Ω
ηγ · zh = 0 . (60)

The remaining terms are bounded one by one. The main tools are integration by parts, the mesh
regularity, and the approximation properties (27)-(30):

∫

Ω
C−1ησ : τ h ≤ C‖ησ‖0,Ω‖τ h‖0,Ω ≤ Ch |σ|1,Ω , (61)

∫

Ω
vh · div(η

σ) ≤ Ch ‖σ‖2,Ω , (62)

∑

e∈E

he

∫

e
[[ηβ]] · [[vh]] ≤ C







∑

T∈Th

hT ‖η
β‖20,∂T







1

2
{

∑

e∈E

he‖[[vh]]‖
2
0,e

} 1

2

≤ Ch ‖β‖1,Ω , (63)

∫

Ω
∇ηω · zh ≤ Ch‖ω‖2,Ω . (64)

The proof then follows from the triangle inequality and (58). �

There are two terms missing from estimate (57), namely, the error in the divergence of σ and the
error in the L2-norm of γ (i.e., without the parameter t in front of it). The next result states an error
estimate for a combination of these two terms.

Corollary 3.6 Under the hypothesis of Theorem 3.5, there exists a constant C > 0, independent of
h and t, such that

‖div(eσ) + eγ‖0,Ω ≤ Ch
(

‖σ‖2,Ω + ‖β‖1,Ω + ‖ω‖2,Ω + t‖γ‖1,Ω
)

. (65)

Proof. Using the definition of method (33) it follows that

∫

Ω

(

div(σh) + γh) · vh =
∑

e∈E

he

∫

e
[[βh]] · [[vh]] ,
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for all vh ∈ Hβ
h . Then, taking vh = div(σh) + γh ∈ Hβ

h and using the Cauchy-Schwarz inequality
and (42) one gets

‖div(σh) + γh‖
2
0,Ω ≤ C

∑

e∈E

he‖[[βh]]‖
2
0,e . (66)

Then, using that div(σ) + γ = 0 in Ω, [[β]] = 0 a.e. over all the edges e ∈ E , the local trace result
(21), and (57) it follows that

‖div(eσ) + eγ‖0,Ω ≤ Ch
(

‖σ‖2,Ω + ‖β‖1,Ω + ‖ω‖2,Ω + t‖γ‖1,Ω
)

, (67)

and the proof is finished. �

Some comments on the last results are in order. The most important is that, even if the constants
in the estimate are independent of t, the error estimate itself is not fully robust. This is due to the
possible t-dependency of the norms on the right-hand-side of (57). More precisely, the norm ‖σ‖2,Ω
is, apriori, dependent on t (the rest of the terms appearing in the right-hand-side of (57) and (65) can
be bounded by ‖g‖0,Ω for a convex plate thanks to (14)). The main reason for this is the lack of an

interpolation operator onto Hβ
h that preseves the divergence. The existence of such an operator is a

fundamental hypothesis in the analyses presented in [4],[3], and [11], and then the analyses of those
references doesn’t seem to be applicable to the present approach. The same comments are valid for
the analysis presented in the next section. Nevertheless, it is worth mentioning that the numerical
results indicate a robustness of the errors with respect to the value of t.

4 A Method using linear continuous elements in all variables

In this section we extend the ideas and results of the previous section to propose a method using the
following choice of finite element spaces

Hσ
h :=

{

τ h ∈ X2×2
h,1 : τ h = τ th in Ω

}

, (68)

Hβ
h = Hγ

h := X2
h,1 , (69)

Hω
h := Xh,1 ∩H1

0 (Ω) , (70)

and
Xh,1 := Hσ

h ×Hβ
h ×Hω

h ×Hγ
h . (71)

Now, the analogous of Lemma 3.1 reads as follows: for every vh ∈ X2
h,1, there exists τ̃ h ∈ Hσ

h such
that

‖τ̃ h‖1,Ω ≤ Csup‖vh‖0,Ω , (72)

and
∫

Ω
div(τ̃ h) · vh ≥

1

2
‖vh‖

2
0,Ω − cinf







∑

T∈Th

h2T ‖ε(vh)‖
2
0,T +

∑

e∈Eb

he‖vh‖
2
0,e







, (73)

where the positive constants Csup and cinf are independent of vh, h, and, in particular, t.
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Then, with the aim of curing this inf-sup deficiency and obtaining estimates as those from Theorem
3.5, we propose the following method: Find (σh,βh, ωh,γh) ∈ Xh,1 such that

Ah,1((σh,βh, ωh,γh), (τ h,vh, qh, zh)) = −

∫

Ω
g qh ∀ (τ h,vh, qh, zh) ∈ Xh,1 , (74)

where the bilinear form Ah,1 : Xh,1 ×Xh,1 → R is defined by

Ah,1((σh,βh, ωh,γh), (τ h,vh, qh, zh)) := A((σh,βh, ωh,γh), (τ h,vh, qh, zh))

−
∑

T∈Th

h2T

∫

T
ε(βh) : ε(vh)−

∑

e∈Eb

he

∫

e
βh · vh −

∑

e∈EI

he

∫

e
[[∂nωh]][[∂nqh]] . (75)

Remark 4.1 Let, for every node xi of Th, ni be the number of triangles having xi as a node. Then,
for a piecewise smooth function v, one defines its Oswald quasi-interpolate as follows (cf. [20])

π⋆
hv(xi) =

1

ni

∑

T :xi∈T

v|T (xi) .

Using this mapping, one can follow the same steps as in [10], Theorem 2.2, to prove that there exists
a constant c > 0, independent of h, such that

∑

e∈EI

he‖[[∂nµh]]‖
2
0,e ≥ c‖∇µh − π⋆

h(∇µh)‖
2
0,Ω ≥ c ‖∇µh −Πh,1(∇µh)‖

2
0,Ω . (76)

As it will become clear in the proof of stability below, this fact explains the need to add the term
containing the jumps of ωh to the formulation.

To perform the analysis, let Yh := Hσ
h ×Hβ

h ×Hω
h ; the bilinear form b is once again given by (37)

while the bilinear form ah : Yh × Yh → R is given by

ah((σh,βh, ωh), (τ h,vh, qh)) =

∫

Ω
C−1σh : τ h +

∫

Ω
βh · div(τ h) +

∫

Ω
div(σh) · vh

−
∑

T∈Th

h2T

∫

T
ε(βh) : ε(vh)−

∑

e∈Eb

he

∫

e
βh · vh −

∑

e∈EI

he

∫

e
[[∂nωh]][[∂nqh]] . (77)

The following norms will be the ones used in the analysis:

‖vh‖
2
h,1 := ‖vh‖

2
0,Ω +

∑

T∈Th

h2T ‖ε(vh)‖
2
0,T +

∑

e∈Eb

he‖vh‖
2
0,e ,

‖(τ h,vh, qh)‖
2
2 := ‖τ h‖

2
0,Ω + ‖vh‖

2
h,1 + ‖∇qh‖

2
0,Ω ,

‖(τ h,vh, qh, zh)‖
2
⋆ := ‖(τ h,vh, qh)‖

2
2 + ‖zh‖

2
0,Ω . (78)

Then, the analogous of Lemmas 3.2 and 3.3 from the previous section read as follows.
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Lemma 4.2 There exists α̃0 > 0, independent of h such that

sup
(τh,vh,qh)∈Yh\{0}

b((τ h,vh, qh), zh)

‖(τ h,vh, qh)‖2
≥ α̃0‖zh‖0,Ω , (79)

for all zh ∈ Hγ . Moreover, the discrete kernel of the bilinear form b is given by

Ṽ h = {(τ h,vh, qh) ∈ Yh : vh = Πh,1(∇qh) in Ω} .

In addition, there exists α̃1 > 0, independent of h, such that for all (ξh,ϕh, µh) ∈ Ṽ h the following
holds

sup
(τh,vh,qh)∈Ṽ h\{0}

ah((ξh,ϕh, µh), (τ h,vh, qh))

‖(τ h,vh, qh)‖2
≥ α̃1‖(ξh,ϕh, µh)‖2 . (80)

Proof. The proof of the inf-sup condition (79) is similar to the proof of (40). The only difference
now being that the analogous to (42) uses a local inverse inequality. The characterisation of Ṽ h is an
immediate consequence of the definition of Πh,1. Finally, to prove (80), let (ξh,ϕh, µh) ∈ Ṽ h. Then,
as in the proof of Lemma 3.3, there exists τ̂ h ∈ Hσ

h such that

ah((ξh,ϕh, µh), (τ̂ h,−ϕh,−µh)) ≥ c



‖ξh‖
2
0,Ω + ‖ϕh‖

2
h,1 +

∑

e∈EI

he‖[[∂nµh]]‖
2
0,e





1

2



‖τ̂ h‖
2
0,Ω + ‖ϕh‖

2
h,1 +

∑

e∈EI

he‖[[∂nµh]]‖
2
0,e





1

2

,

where c > 0 does not depend on (ξh,ϕh, µh) or h. Finally, since ϕh = Πh,1(∇µh), then using (76) one
obtains

‖ϕh‖
2
h,1 +

∑

e∈EI

he‖[[∂nµh]]‖
2
0,e ≥

1

2
‖ϕh‖

2
h,1 +

1

2
‖Πh,1(∇µh)‖

2
0,Ω + c ‖∇µh −Πh,1(∇µh)‖

2
0,Ω

≥
1

2
‖ϕh‖

2
h,1 +min

{

1

2
, c

}

‖∇µh‖
2
0,Ω ,

and the proof follows. �

As a consequence of these inf-sup conditions, and following the same steps as in the proof of
Theorem 3.4, one can prove the following result stating the stability of the method with constants
independent of the plate thickness t.

Theorem 4.3 There exist α̃ > 0, independent of h and t, such that for all (ξh,ϕh, µh,ψh) ∈ Xh,1,

sup
(τh,vh,qh,zh)∈Xh,1\{0}

Ah,1((ξh,ϕh, µh,ψh), (τ h,vh, qh, zh))

‖(τ h,vh, qh, zh)‖⋆
≥ α̃‖(ξh,ϕh, µh,ψh)‖⋆ . (81)

17



Consequently, there exists a unique (σh,βh, ωh,γh) ∈ Xh,1, solution of the problem (75).
In addition, if (σ,β, ω,γ) is the solution of (11) is such that β ∈ H1

0 (Ω)
2 and ω ∈ H2(Ω), then

the following holds

Ah,1((σ − σh,β − βh, ω − ωh,γ − γh), (τ h,vh, qh, zh)) = −
∑

T∈Th

h2T

∫

T
ε(β) : ε(vh) , (82)

for all (τ h,vh, qh, zh) ∈ Xh,1.

Finally, we state the main convergence result of this section.

Theorem 4.4 Let us suppose that the solution of (11) satisfies (σ,β, ω,γ) ∈ H2(Ω)2×2 ×
(

H2(Ω) ∩

H1
0 (Ω)

)2
×H2(Ω)×H1(Ω)2. Then, there exists C > 0, independent of h and t, such that

‖(eσ, eβ, eω, eγ)‖⋆ ≤ Ch
(

‖σ‖2,Ω + ‖β‖2,Ω + ‖ω‖2,Ω + ‖γ‖1,Ω
)

, (83)

‖div(σ)−Πh,1(div(σh))‖0,Ω ≤ Ch
(

‖σ‖2,Ω + ‖β‖2,Ω + ‖ω‖2,Ω + ‖γ‖1,Ω
)

. (84)

Proof. As before, the error is split into interpolation and discrete errors. For this case, all variables
are interpolated using their respective Scott-Zhang interpolates. Using (27) and (28) the interpolation
error satisfies

‖(ησ,ηβ, ηω,ηγ)‖⋆ ≤ Ch
(

‖σ‖1,Ω + ‖β‖1,Ω + ‖ω‖2,Ω + ‖γ‖1,Ω
)

. (85)

To bound the discrete error, from Theorem 4.3 there exists (τ h,vh, qh, zh) ∈ Xh,1 satisfying ‖(τ h,vh, qh, zh)‖⋆ =

1 and α̃‖(eσh , e
β
h , e

ω
h , e

γ
h)‖⋆ ≤ Ah,1((e

σ
h , e

β
h , e

ω
h , e

γ
h), (τ h,vh, qh, zh)). Then, using (82) and the definition

of the bilinear form Ah,1, one gets

α̃ ‖(eσh , e
β
h , e

ω
h , e

γ
h)‖⋆ ≤ Ah,1((η

σ,ηβ, ηω,ηγ), (τ h,vh, qh, zh))−
∑

T∈Th

h2T

∫

T
ε(β) : ε(vh)

=

∫

Ω
C−1ησ : τ h +

∫

Ω
ηβ · div(τ h) +

∫

Ω
vh · div(η

σ)−

∫

Ω
ηγ · (∇qh − vh)

−

∫

Ω
(∇ηω − ηβ) · zh +

t2

κ

∫

Ω
ηγ · zh −

∑

T∈Th

h2T

∫

T
ε(ηβ) : ε(vh)

−
∑

e∈EI

he

∫

e
[[∂nη

ω]][[∂nqh]]−
∑

T∈Th

h2T

∫

T
ε(β) : ε(vh) .

Again, each term is bounded separately. The main ingredients are the Cauchy-Schwarz’s inequality,
an inverse inequality, bounds (27)-(28), and the local trace result (21):

∫

Ω C−1ησ : τ h ≤ Ch‖σ‖1,Ω ,
∫

Ω η
β · div(τ h) ≤ Ch ‖β‖2,Ω ,

∫

Ω vh · div(η
σ) ≤ Ch ‖σ‖2,Ω ,

∫

Ω η
γ · (∇qh − vh) ≤ Ch‖γ‖1,Ω ,

∫

Ω(∇ηω − ηβ) · zh ≤ Ch(‖ω‖2,Ω + ‖β‖1,Ω) ,
t2

κ

∫

Ω η
γ · zh ≤ Cht2‖γ‖1,Ω ,

∑

T∈Th
h2T
∫

T ε(η
β) : ε(vh) ≤ Ch‖β‖1,Ω ,

∑

T∈Th
h2T
∫

T ε(β) : ε(zh) ≤ Ch‖β‖1,Ω ,
∑

e∈EI
he
∫

e[[∂nη
ω]][[∂nqh]] ≤ Ch‖ω‖2,Ω ,
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and (83) follows using the triangle inequality. Estimate (84) is proved as in Corollary 3.6. In fact, for

every vh ∈ Hβ
h (74) yields

∫

Ω
(div(σh) + γh) · vh =

∑

T∈Th

h2T

∫

T
ε(βh) : ε(vh) +

∑

e∈Eb

he

∫

e
βh · vh ,

and then it is enough to consider vh = Πh,1(div(σh)) + γh ∈ Hβ
h and proceed as in the proof of

Corollary 3.6. �

5 Numerical experiments

In this section we report some numerical experiments which confirm the theoretical results provided
in this work. The methods presented in the previous sections have been implemented using a code
written in FEniCS. Some comments on the computational cost are in order. In the case of method (33),
using a combination of piecewise linears and piecewise constants, method (33) leads to a linear system
of, asymptotically, 12 times the number of vertices of the triangulation Th. This is computationally
competitive with the previously existing alternatives [3] and [4]. This economy of unknowns is even
more noticeable when the method (74) is used. In this latter case, the number of unknowns is
asymptotically equal to 8 times the number of vertices.

5.1 A problem with an analytical solution

We first report the numerical results on the same experiment from [4]. Similar numerical results have
been obtained for other test cases as well, but we prefer to restrict our presentation to this represen-
tative benchmark. We have considered an isotropic and homogeneous plate Ω = (0, 1)2 clamped on
the whole boundary for which the analytical solution is explicitly known. We choose the load g as

g(x, y) =
E

12(1− ν2)

[

12y(y − 1)(5x2 − 5x+ 1)
(

2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)
)

+12x(x− 1)(5y2 − 5y + 1)
(

2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)
)

]

.

With this load, the exact solution of the plate problem is given by

ω(x, y) =
1

3
x3(x− 1)3y3(1− y)3

−
2t2

5(1− ν)

[

y3(1− y)3x(x− 1)(5x2 − 5x+ 1) + x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
]

,

β =

(

y3(y − 1)3x2(x− 1)2(2x− 1)
x3(x− 1)3y2(y − 1)2(2y − 1)

)

.

The material constants have been chosen: E = 1, ν = 0.3 and the shear correction factor has been
taken as k = 5/6.

19



We start presenting the results obtained with method (33), using a combination of piecewise linear
and piecewise constant interpolations. The method was implemented and the errors were computed
using the sequence of meshes from Figure 1. We have computed the following quantities:

e1 := ‖eσ‖div,Ω , e2 := ‖eβ‖h,0 , e3 := |eω|1,Ω , e4 := ‖eγ‖0,Ω . (86)

These quantities are larger than the norm in which the error estimates (57) and (65) are stated, but we
have chosen to plot them since they, in particular, imply the validation of the convergence estimates
in the last sections. Calculations using t = 0.01 were performed, and the results are depicted in Figure
2, where we observe that all quantities converge to zero as predicted by the theory. Moreover, in
Figure 3 we plot the different contour plots of different variables in the finest mesh of the sequence.
Finally, our aim is to study the robustness of the error in the ‖ · ‖h-norm, defined by (51). For this, we
computed this norm of the error for the same sequence of meshes and values of t ranging from t = 0.1
to t = 10−6. The results are depicted in Figure 4 where a very robust behaviour of the error can be
observed, showing almost t-independent values.

We then repeat the same experiment using method (74), using piecewise linear interpolations for
all variables. For the same sequence of meshes from Figure 1 we computed the ‖ ·‖⋆-norm of the error,
where the norm is defined in (78). In Figure 5 we depict the behaviour of this error as h tends to 0
and for different values of t. We observe that this norm tends to zero as predicted by the theory, and
moreover it presents a very robust behaviour with respect to the value of t, showing results which, as
in the errors for method (33), are virtually t-independent.

Figure 1: Sequence of uniform meshes on square plate.

Finally, to assess the presence, or lack of, locking in our method, we have repeated the experience
carried out in the recent work [15], Section 5.3. For this, we have fixed a mesh from the sequence
displayed in Figure 1, containing approximately 500 elements, solved the problem on it for different
values of t, and have measured the maximum discrete displacement and compared it to the maximum
exact displacement (measured in all of the nodes of the mesh). The results are provided in Table 1,
where we can observe that both methods show a robust behaviour with respect to t.

5.2 Assessing the lack of locking: a uniformily loaded plate

In this section we repeat the numerical experiment from [11], Section 6.1. For this, we consider the
square plate Ω = (−5, 5)2, E = 10920, ν = 0.3, k = 5/6, impose homogeneous Dirichlet boundary
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Figure 2: Convergence of the components of the energy-norm for thickness t = 10−2, for the P1/P0

method (33).

Table 1: Example 1: max |ωh|/max |ω| for different thicknesses t, on a fixed mesh.

Method \t 0.1 10−2 10−3 10−4 10−5 10−6

P1/P0 method (33) 0.9405 0.9209 0.9206 0.9206 0.9206 0.9206

P1/P1 method (74) 0.8910 0.8872 0.8871 0.8871 0.8871 0.8871

conditions on the whole boundary for both β and ω, and impose the uniform loading g = 1 in Ω. We
have solved this problem using the present approach and the non-conforming method from [2], which
is known to be a locking-free finite element method. We have fixed a mesh of the same type as those
from Figure 1, containing 12 divisions in each direction, and have solved the problem using the present
methods (33) and (74), and the method from [2], on the same mesh. In Table 2 we report the scaled
displacement in the centre of the plate, i.e., 10 · E

12∗(1−ν2)
·ωh(0, 0), for all methods. For comparison we

have also included the results provided in [11]. The results show a very good agreement, and as well a
good agreement with the exact scaled value reported in [11] which is 10 · E

12∗(1−ν2)
·ω(0, 0) = 126.5. In

particular, they show a robust bahavior with respect to the plate thickness t. Also, for this problem
the tensor σ is diagonal (due to the symmetry of the problem), and then we have reported the scaled
values for −100 ·σ11h(0, 0) for the same different thickness, and compare them to the values reported
in [11]. The results are reported in Table 3. Again, a good agreement can be observed, and also a
good agreement with the exact scaled value reported in [11] which is −100 · σ11(0, 0) = 231.
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Figure 3: Approximations on finest mesh (128× 128) for t = 0.01, of transversal displacement ωh (top
left), bending moment σ11h (top right), bending moment σ12h (bottom left) and σ22h (bottom right).

References

[1] M. Amara, D. Capatina-Papaghiuc and A. Chatti: New locking-free mixed method for the
Reissner- Mindlin thin plate model. SIAM Journal of Numerical Analysis, vol. 40, 1561–1582,
2002.

[2] D.N. Arnold and R.S. Falk: A uniformly accurate finite element method for the Reissner-
Mindlin plate. SIAM Journal of Numerical Analysis, vol. 26, 6, 1276–1290, 1989.

[3] E. Behrens and J. Guzman: A new family of mixed methods for the Reissner-Mindling plate
model based on a system of first-order equations. Journal of Scientific Computing, vol. 49, 137–166,
2011.

[4] L. Beirão da Veiga, D. Mora and R. Rodŕıguez: Numerical analysis of a locking-free
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