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Abstract

Wepresent a theoretical and numerical study of a novel acceleration scheme by applying a combina-

tion of laser radiation pressure and shieldedCoulomb repulsion in laser acceleration of protons in

multi-species gaseous targets. By using a circularly polarizedCO2 laser pulsewith awavelength of

10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced,

and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger

degree of freedom in selecting the target compounds ormixtures, as well as their density and thickness

profiles. By impinging such a laser beamon a carbon–hydrogen target, the gaseous target isfirst com-

pressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons

are further accelerated by the electron-shielded carbon ion layer. An 80MeVquasi-monoenergetic

proton beam can be generated using a half-sine shaped laser beamwith a peak power of 70 TWand a

pulse duration of 150wave periods.

1. Introduction

The laser acceleration of quasi-monoenergetic protons has recently drawn tremendous interest due to its

potential applications in cancer treatment [1, 2], proton radiography [3], and isotope production for positron

emission tomography [4]. In the realmof laser acceleration of protons from a target foil, there aremainly two

schemes beingwidely studied: target normal sheath acceleration [5–14] (TNSA) and radiation pressure

acceleration (RPA). In particular, to acquire quasi-monoenergetic protons, the scheme of laser RPAhas been

actively studied in theory and simulations [15–23] and experiments [24–26]. In RPA in the light-sail region, a

high intensity laser beam irradiates an overdense thin foil (or an overdense thin foil formed by laser radiation

compression) and accelerates nearly thewhole foil. The electrons are trapped by a combination of the laser

ponderomotive force and the electric force due to the ions, and the protons in the accelerating frame are subject

to both the electric force of the electron layer accelerating them forward and the inertial force pulling themback.

The balance of these opposing forces forms a trap for the proton and electron layers, resulting in a self-organized

double layer [21]. Therefore, RPA could potentially produce high-energymonoenergetic protons suitable for

many applications, if the accelerated protons have good beamquality and a narrow energy spectrum.However,

previousworks have demonstrated [20, 22, 25, 27, 28] that the Rayleigh–Taylor instability (RTI) limits the

proton energy achieved byRPA and rapidly broadens the proton beam’s energy spectrum.

On the other hand, by usingmulti-species targets, which are now actively studied [26, 29–31], the

broadening of the proton energy spectrumdue to instabilities could be largely suppressed. By using a thin

composite foilmade of carbon and hydrogenwith a relatively large carbon concentration, we found in our

recent work [32] that there are two different stages of acceleration to further push the proton forward. In the

initial RPA stage, the heavier carbon ions are left behind the lighter protons, and a triple-layer systemof carbon
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ions, protons, and electrons is formed. After that, the electron layer has been disrupted by the RTI, and the

shieldedCoulomb repulsion (SCR) stage takes place, in which the proton layer continues to be pushed forward

by the electron-shielded carbon ion layer behind it. The carbon layer delays the disruption of the proton layer by

the RTI and further accelerates the protons. Our simulation study showed that, using a 70 terawatt laser beam to

irradiate a carbon-proton target with 10%protons, a quasi-monoenergetic proton beamwith 60MeVof energy

can be achieved, which is several times the energy obtained froma pure hydrogen foil.

In order to successfully accelerate the protons by theCoulomb repulsion force, we should both reduce the

charge difference between carbon ions and electrons and keep the electrons from returning to the carbon layer

so that the net charge of the carbon-electron layer is positive. In our previous works [32, 33], we concluded that a

higher carbon concentration and smaller spot size can lead to increased proton energy.

Onemain concern about the laser acceleration of a thin solid target is that ultra-thin solid targets of

uniformlymixed 90% carbon and 10%hydrogen, i.e., C0.9H0.1 in an empirical formula or other compound foils

with a high carbon concentration, are difficult tomanufacture [34, 35]. On the other hand, if we use a laser beam

with a longer wavelength, then the critical density, which has an inverse quadratic dependence on laser

wavelength, will be strongly reduced; therefore, high-pressure gaseous targets can be used in the acceleration

scheme. It has been demonstrated, for example, thatmicrometer-sized nozzles and skimmers can be used to

produce supersonic helium atombeams [36]. Previous numerical and experimental studies [23, 37] showed that

it is possible to produce high-energy quasi-monoenergetic proton beams from a gaseous hydrogen target

accelerated by aCO2 laser with awavelength of 10 μm.

There are interesting differences between a thin foil with a thickness smaller than the laserwavelength and a

thick gaseous target, besides the fact that a longer wavelength corresponds to lower critical density. A thicker

target with a density profilemaximized at the center represents amore realistic gas extruded from anozzle.

Moreover, a rich combination accelerationmechanism consists of caviton formation due to the reflectedwave,

hole-boring, and significant target compression. TNSA and shock could all be observed in the acceleration

process, whereas in the laser acceleration of protons using ultrathin solid foil, the accelerationmechanisms

involved aremainly only RPA and SCR.

In this paper, we demonstrate by two-dimensional (2D) particle-in-cell (PIC) simulation that a quasi-

monoenergetic proton beam can be obtained using a long acceleration time, where the signatures of RPA, SCR,

TNSA, and shock acceleration [38, 39] can all be observed.We discuss advantages and disadvantages with

different target thicknesses and densities, and thenfinally compare the proton energy evolution between the

simulation results and our theoreticalmodel and show that RPA and SCR are twomain effects in the acceleration

process.

2. Simulation setup

In order to investigate the acceleration of protons in amulti-ion gaseous target, we employ 2DPIC simulations

usingVORPAL [40]. The simulation domain is λ− ⩽ ⩽x50 100L and λ− ⩽ ⩽y25 25,L and the grid size is

λ 100L in the x dimension and λ 50L in the y dimension, where λ μ= 10 mL is the laser wavelength. The

boundary conditions are absorbing at all boundaries for particles and fields, and the laserwave is injected at the

negative −x boundary.The amplitude of the incident laser has aGaussian profile in the transverse directionwith

waist size λ=w 4.0 ,0 L defined as the diameter =d w2 0 at e
−2 of the peak intensity, a half-sinewave in the time

profile with normalized peak amplitude ω= =a eE m c 10,y z0 , e L and a full duration of τ = T150 ,L L as shown in

figure 1(a), where λ=T cL L 0 is the laser wave period. The pre-ionized target, shown infigures 1(b) and (c),

consists of 90%carbon and 10%hydrogen and is initially located at ⩽ ⩽x l0 0 with the initial thickness

λ=l 2.50 L and the electron density profile

= −
−
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with = + =+ +n n n n6 10e0 max C 0 max p 0 max cr6 and =+ +n n: 9:1.C 0 max p 0 max6 Here, pre-ionized carbon is allocated

as a representative of a heavy ion and could be replaced by any gaseousmolecule with its nucleus having the same

charge-to-mass ratio, such as heliumor nitrogen. The target is resolved by 49macro-particles per cell at the

densitymaximum for all species. Here ε ω=n m ecr 0 e L
2 2 is the critical density, whereme is the electronmass, e is

the elementary charge, ε0 is the electric vacuumpermittivity, andωL is the laser angular frequency.We define

=t 0 as the timewhen the laser beam starts to interact with the target.
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3. Simulation result and analysis

Wecompare the phase space and density distributions at different times and analyze the acceleration

mechanisms individually. Figures 2 and 3 show the phase space and number density distributions of carbon ions

and electrons, whereasfigure 3 shows the enlargements offigures 2(l) and (g), andfigure 4 shows those of

protons.Here the ‐y axes of the phase space distributions are in normalized units γβ=p mc ,x x where px is the

momentumof particle in the longitudinal direction,m is themass of the particle, β = v cx x is the normalized

longitudinal velocity, and γ β β β= − − − −(1 )x y z
2 2 2 1/2 is the gamma factor of the particle. The time evolution of

the proton energy spectrum is shown infigure 5. First, at T20 L after the interaction starts between the laser beam

and the gaseous target, the laser beam compresses the electrons and forms a caviton at critical density, as shown

infigure 2(a). The compressed electron layer then pulls the ions forward, forming a self-induced double layer, or

so-called light sail. Figure 4(a) shows that a small portion of protons are accelerated by the highly compressed

overdensemirror andmove almost twice as fast as the radiation pressure-accelerated light sail. At =t T40 ,L

when the intensity of the pulse continues to increase, almost all particles of the target are highly compressed and

accelerated, as shown infigures 2(q) and 4(l). On the other hand, the RTI becomes observable in the density

distributions of all the particles (figures 2(b), (g), and 4(g)), indicating the decomposition of the electron-carbon

target and the decrease of their densities. In their phase spaces (figures 2(l) and 4(b)), we could observe all the

features of RPA, shock, andTNSA along the acceleration processes of carbon ions and protons, as indicated in

figure 2(l). The enlargement of the carbon phase space and density distribution (figure 3) shows a clear signature

of RPA,which compresses and accelerates the plasma at a layer located at λ≈x 1.4 .L It also shows shock

acceleration of the carbon ionswith the layer having a similar shape as the RPA accelerated one at λ≈x 1.8 L by

the large shock potential, as well as TNSAby the electron sheath in front of the carbon layer, pulling the ion in the

front side forward. There is also a left-behind tail of protons becoming untrapped andmoving backward

γβ <( )0x due to theCoulomb repulsion during the acceleration. That is, there is a small number of protons that

is backward accelerated.

At =t T70 ,L the injected laser amplitude is near its peak =a 100 at the target. The density of electrons,

however, is relativistically underdense to the laserwave, since ∼ <n n n2 10 ,e,max cr cr as shown infigure 2(r). The

laser starts to penetrate the electron cloud, and the thermal expansion of the electrons and carbon ions becomes

more andmore significant. As a result, all carbon ions that accelerated due to the accelerationmechanisms of

shock, RPA, andTNSA, asmentioned previously, start tomerge altogether (figures 2(m) and 4(c)).Meanwhile,

because of a greater charge-to-mass ratio, some of the protons are further accelerated, leaving some of them

trapped in the carbon ion layer and a small amount of thembeing accelerated in a backward direction. The front

end, aswell as the rear end, of the proton layer start to be accelerated by the SCR in both directions at this time.

Figure 1.The initial setup of (a) the laser beam and (b), (c) the particle densities in the target. Thewindow is enlarged around the
center of the target.
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At =t T120 ,L the intensity of the laser pulse is decreasing, and the phase space of carbon ions shown in

figure 2(n) illustrates that almost all of the carbon ions aremerged into a straight line. Thismeans that they are

no longer being affected by the laser beamwhile the electrons are trapped by theCoulomb potential of the

carbon ions. The protons at this time (the fourth columnoffigure 4) are separated into three distinct parts—the

ones that stay in front of and behind the carbon ions, pushed bi-directionally by the SCR, and the ones trapped in

the carbon ions. Since the repulsion force decreases with increasing distance, the protons left behind aremore

accelerated. As a result, the velocity difference could be reduced, and the proton layer becomesmore

monoenergetic (figures 4(d) and 5).

Figure 2.Two-dimensional density distributions of electrons (1st row) and carbon ions (2nd row), the carbon ion phase space (3rd
row), and the one-dimensional density distribution (4th row) of electrons, carbon ions, and their differences, which are plotted by
averaging over λ λ− < <y0.5 0.5 ,L L at times =t T T T T T20 , 40 , 70 , 120 and 180L L L L L.

Figure 3.An enlargement of phase and density distribution of the carbon ion at =t T40 L.

4
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Finally, when the laser pulse has completely left the target, the carbon ions expand freely, and the electrons

follow the density profile of the carbon ions, as shown in the last columnoffigure 2. Figure 4(e) shows that the

protons continue to be accelerated by SCRwithout losing themonoenergetic property, indicating that this SCR

can stably accelerate the protons for a long time. Figure 5 shows a distinct peak at the proton energy 80MeV at

time =t T180 L.

4. Targets with larger density or thickness

The question of whether increasing the target density or thickness could further increase the energy of quasi-

monoenergetic protons is of interest. Since the number of particles being accelerated is increased, the energy

conversion efficiency could increase if the energy and the number of the protons in themonoenergetic peak do

not drop too significantly. Therefore, in this section, simulations with the same laser parameters, but using

targets with larger density or thickness, are performed.

Wefirst investigate the case with doubled target thickness andwith other parameters remaining unchanged.

Figure 6 shows the comparison of the proton profiles of the original case and the case with doubled thickness. In

the casewith doubled thickness, the proton layer is not compressed to form a quasi-monoenergetic layer.

Therefore, we conclude that there exists an upper limit of target thickness l lim for the proton layer to be

successfully compressed into and remain as one quasi-monoenergetic layer. In our laser parameters with a

Figure 4.The phase space (1st row), two-dimensional density distribution (2nd row), and one-dimensional density distribution (3rd
row) of protons, plotted by averaging over λ λ− < <y0.5 0.5 ,L L at times =t T T T T T20 , 40 , 70 , 120 and 180L L L L L.

Figure 5.The proton energy spectra at different times within λ<y L.
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density peak of =n n10 ,e0 max cr wehave λ μ< =l 5.0 50 m.lim L In comparison, the optimal thickness of RPA

with single species foil [16, 19] is λ π= ≈( )l a n n/ / ( ) 0.6,opt L 0 e0 cr much smaller than this limiting value.

On the other hand, the result is quite different for the case with doubled peak density, although the surface

density is the same as in the doubled-thickness case. The target with doubled density could be viewed as being

compressed by a factor of two from the doubled-thickness case. Therefore, it reduces the time and energy the

laser spends in compression. The comparison shown infigure 7 indicates that the case with doubled initial peak

density could trap about two timesmore protons in the front layer and remain quasi-monoenergetic during the

acceleration.However, due to the increased targetmass, the acceleration is slightly lower than for the original

case. Therefore, doubling the target peak density could result in an overall increase in the energy conversion

efficiencywith a larger number of protons butwith lower energy.

5.Discussion

In this section, we calculate the evolution of the protonmomentum, using equations ofmotion of RPA and SCR,

and compare themwith the simulation of the original and double-peak-density cases. The equations ofmotion

Figure 6.The comparison of two-dimensional density distributions and one-dimensional density distributions by averaging over
λ λ− < <y0.5 0.5 ,L L and energy spectra of the protonswithin λ∣ ∣ <y L at =t T220 L between (a) the original case of λ=l 2.50 L and (b)

the casewith doubled thickness λ=l 5.0l L .

Figure 7.The one-dimensional density distributions (the first two columns) and energy spectra (the last two columns) of protons
within λ∣ ∣ <y L at =t T150 L and =t T300 L between the original case of =n n10e0 max cr (the 1st row) and the casewith doubled peak
density =n n20e0 max cr (the 2nd row).
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of RPA can bewritten as [19]

β
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is the instantaneous normalized amplitude of the laser at the target, with τ = =t T 150L L L being the normalized

laser pulse length. The subscript ‘i’ stands for ions, a combination of carbon ions and protons. Figure 8(b) shows

that themomentum evolution calculated theoretically generally agrees with the simulation result for <t T80 ,L

the acceleration periodwhen the target is overdense. Therefore, RPA is the dominant accelerationmechanism

during thefirst 80 laser periods.

After that, the electron layer has become transparent, and theCoulomb repulsion continues tomoderately

accelerate the protons aheadwhile keeping the quasi-monoenergetic property. The equation ofmotion of one-

dimensional (1D) SCRwith the protons assumed to be test charges and the carbon layermovingwith constant

velocity can be expressed as [32]

γ σ

ε
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= =
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⎪

whereσnet is the net surface charge density of the carbon and electron layer andTe is the electron temperature.
The initial time is set as =t T70 ,0 L and the initial conditions σv x v( , , )Cp0 p0 , net at this time are read from the

simulation data.Here we assign =T m c20e e
2 as afitting parameter. The theoretical curves shown infigure 8(b)

generally agreewith the simulation results for an additional time period of∼ T100 L and start to over-estimate the

energy, while the separation of the carbon and proton layers becomes too large to apply the nearly 1D

assumption, where it is assumed that the separation is small comparedwith the laser spot size. However, since

the proton acceleration at that time is almost negligible, and the energy here is nearly a constant (figure 8(a)), the

theoretical estimation here is enough to approximate the energy of the proton beam.

6. Conclusions

Wehave shown that a combination of a series of accelerationmechanisms could be observed in laser

acceleration of a gaseous target, where RPA and SCR are the two dominantmechanisms in both accelerating and

Figure 8.The evolutions of proton (a) energy and (b)momentum. Theoretical predictions of RPA and SCR are shown in panel (b).
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stabilizing the proton layer.We have also demonstrated that the quasi-monoenergetic property depends

significantly on the compression of the target in the early stages and, consequently, verified that there exists an

upper bound less than μ50 m in target thickness in our simulation.We also provided a set ofmodels interpreting

the accelerationmechanism and showed that the energy evolution of the proton layerfits well with the

theoretical prediction before it undergoes nearly constant velocitymotion. It was shown that a quasi-

monoenergetic proton beamof energy 80 MeV could be obtained by aCO2 laser beamof peak power 70 TWand

pulse length T150 L.
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