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FINITE ELEMENT EIGENVALUE ENCLOSURES FOR THE

MAXWELL OPERATOR

GABRIEL R. BARRENECHEA, LYONELL BOULTON, AND NABILE BOUSSAÏD

Abstract. We propose employing the extension of the Lehmann-Maehly-
Goerisch method developed by Zimmermann and Mertins, as a highly effective
tool for the pollution-free finite element computation of the eigenfrequencies of
the resonant cavity problem on a bounded region. This method gives comple-
mentary bounds for the eigenfrequencies which are adjacent to a given param-
eter t ∈ R. We present a concrete numerical scheme which provides certified
enclosures in a suitable asymptotic regime. We illustrate the applicability of

this scheme by means of some numerical experiments on benchmark data using
Lagrange elements and unstructured meshes.
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1. Introduction

The framework developed by Zimmermann and Mertins [32] which generalizes
the Lehmann-Maehly-Goerisch method [25, 23, 26, 27, 28] (also [31, Chapter 4.11]),
is a reliable tool for the numerical computation of bounds for the eigenvalues of
linear operators in the spectral pollution regime [5, 13, 4]. In its most basic for-
mulation [20, 4, 12], this framework relies on fixing a parameter t ∈ R and then
characterizing the spectrum which is adjacent to t by means of a combination of
the Variational Principle with the Spectral Mapping Theorem. As a natural com-
plement to our work [4], in the present paper we show that this formulation can be
effectively implemented for computing sharp estimates for the angular frequencies
and electromagnetic field phasors of the resonant cavity problem by means of the
finite element method.

Let Ω ⊂ R
3 be a polyhedron. Denote by ∂Ω the boundary of this region and by

n its outer normal vector. Consider the anisotropic Maxwell eigenvalue problem:
find ω ∈ R and (E,H) 6= 0 such that

(1)











curlE = iωµH

curlH = −iωǫE
in Ω

E × n = 0 on ∂Ω.

The physical phenomenon of electromagnetic oscillations in a resonator is described
by (1), assuming that the field phasor satisfies Gauss’s law

(2) div(ǫE) = 0 = div(µH) in Ω.

Here ǫ and µ, respectively, are the given electric permittivity and magnetic perme-
ability at each point of the resonator.

The orthogonal complement in a suitable inner product [8] of the solenoidal space
(2) is the gradient space. This gradient space has infinite dimension and is part of
the kernel of the densely defined linear self-adjoint operator

M : D(M) −→ L2(Ω)6

associated to (1). In turns, this means that (1)-(2) and the unrestricted problem
(1), have exactly the same non-zero spectrum and exactly the same eigenvectors
orthogonal to the kernel. For general data, the numerical computation of ω by
means of the finite element method is extremely challenging, due to a combination
of variational collapse (M is strongly indefinite) and the fact that finite element
bases seldom satisfy the ansatz (2).

Several ingenious methods for the finite element treatment of the eigenproblem
(1)-(2) have been developed in the recent past. Perhaps the most effective among
these methods [10, 9] consists in re-writing the spectral problem associated to M2

in a mixed form and employing edge elements. This turns out to be linked to
deep mathematical ideas on the rigorous treatment of finite elements [2] and it is
at the core of an elegant geometrical framework. Other approaches include, [14]
combining nodal elements with a least squares formulation of (1)-(2) re-written in
weak form, [15] employing continuous finite element spaces of Taylor-Hood-type by
coupling (1) with (2) via a Lagrange multiplier, and [11] enhancing the divergence
of the electric field in a fractional order negative Sobolev norm.
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In spite of the fact that some of these techniques are convergent, unfortunately,
none of them provides a priori guaranteed one-sided bounds for the exact eigenfre-
quencies. In turns, detecting the presence of a spectral cluster (or even detecting
multiplicities) is extremely difficult. Below we argue that the most basic formulation
of the pollution-free technique described in [32] can be successfully implemented for
determining certified upper and lower bounds for the eigenfrequencies and corre-
sponding approximated field phasors of (1). Remarkably the classical family of
nodal finite elements renders sharp numerical approximations.

In Section 2 we set the rigorous framework of the self-adjoint operator M and
fix our concrete assumptions on the data of the problem. For these concrete as-
sumptions we consider both a region Ω with and without cylindrical symmetries,
generally non-convex and not necessarilly Lipschitz. In Section 3 we describe the
finite element realization of the computation of complementary eigenvalue bounds.
Based on this realization, in Section 4 an algorithm providing certified eigenvalue
enclosures in a given interval is presented and analyzed. This algorithm is then
implemented and its results are reported in Sections 5-7.

2. Abstract setting of the Maxwell eigenvalue problem

2.1. Concrete assumptions on the data. The concrete assumptions on the data
of equation (1) made below are as follows. The polyhedron Ω ⊂ R

3 will always be
open, bounded and simply connected. The permittivities will always be positive
and such that

(3) ǫ,
1

ǫ
, µ,

1

µ
∈ L∞(Ω).

Without further mention, the non-zero spectrum of M will be assumed to be
purely discrete and it does not accumulate at ω = 0. This hypothesis is verified,
for example, whenever Ω is a polyhedron with a Lipschitz boundary, [29, Corollary
3.49] and [8, Lemma 1.3]. A more systematic analysis of the spectral properties of
M on more general regions Ω is being carried out elsewhere [3].

2.2. The self-adjoint Maxwell operator. We follow closely [8]. Let

H(curl; Ω) =
{

u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3
}

H0(curl; Ω) = {u ∈ H(curl; Ω) :

∫

Ω

curlu · v =

∫

Ω

u · curlv ∀v ∈ H(curl; Ω)}.

The linear space H(curl; Ω) becomes a Hilbert space for the norm

‖u‖curl,Ω =
(

‖u‖20,Ω + ‖ curlu‖20,Ω
)1/2

,

where

‖v‖0,Ω =

(
∫

Ω

|v|2
)1/2

is the corresponding norm of L2(Ω)3. By virtue of Green’s identity for the ro-
tational [22, Theorem I.2.11], if Ω is a Lipschitz domain [1, Notation 2.1], then
u ∈ H0(curl; Ω) if and only if u ∈ H(curl; Ω) and u× n = 0 on ∂Ω. Moreover

(4) H0(curl; Ω)
3 = C∞

0 (Ω)3,

where the closure is in the norm ‖ · ‖curl,Ω.
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A domain of self-adjointness of the operator associated to (1) for ǫ = µ = 1 is

D1 = H0(curl; Ω)×H(curl; Ω) ⊂ L2(Ω)6

and its action is given by

M1 =

[

0 i curl
−i curl 0

]

: D1 −→ L2(Ω)6.

Let

P =

[

ǫ1/2I3×3 0
0 µ1/2I3×3

]

.

Condition (3) ensures that P : L2(Ω)6 −→ L2(Ω)6 is bounded and invertible.
Moreover,

(

ω,

[

E

H

])

∈ R×D1

is a solution of (1), if and only if
[

Ẽ

H̃

]

= P
[

E

H

]

is a solution of

P−1M1P−1

[

Ẽ

H̃

]

= ω

[

Ẽ

H̃

]

.

ThereforeM = P−1M1P−1 on D(M) = PD1 is the self-adjoint operator associated
to (1).

As M anticommutes with complex conjugation, the spectrum is symmetric with
respect to 0. Moreover, ker(M) is infinite dimensional, because it always contains
the gradient space, see [8].

2.3. Isotropic cylindrical symmetries. If Ω = Ω̃ × (0, π) for Ω̃ ⊂ R
2 an open

simply connected polygon, then (1) decouples by separating the variables for ǫ =
µ = 1. In turns, a non-zero ω is an eigenvalue of M1, if and only if either ω2 = λ2

where λ2 is a Dirichlet eigenvalue of the Laplacian in Ω̃, or ω2 = ν2 + ρ2 where ν2

is a non-zero Neumann eigenvalue of the Laplacian in Ω̃ and ρ ∈ N.
The Neumann problem can be re-written as (ν = ω)

(5)











curlE = iωH

curlH = −iωE
in Ω̃

E · t = 0 on ∂Ω̃ ,

for
(

ω,

[

E

H

])

∈ R× (D̃1 \ {0}).

Here

E =

[

E1

E2

]

, curlE = ∂xE2 − ∂yE1, curlH =

[

∂yH
−∂xH

]

,

t is the unit tangent to ∂Ω̃ and

D̃1=
{

u ∈ L2(Ω)2 : curlu ∈ L2(Ω) and u · t = 0
}

×
{

u ∈ L2(Ω) : curlu ∈ L2(Ω)2
}

.

This two-dimensional Maxwell problem exhibits all the complications concerning
spectral pollution as its three-dimensional counterpart.
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We denote by M̃ : D̃ −→ L2(Ω̃)3 the self-adjoint operator associated to (5).
This operator has often been employed for tests which can then be validated against
numerical calculations for the original Neumann Laplacian via the Galerkin method,
[17]. Note that the latter is a semi-definite operator with a compact resolvent, so
it does not exhibit spectral pollution.

3. Finite element computation of the eigenvalue bounds

The basic setting of the general method proposed in [32] is achieved by deriving
eigenvalue bounds directly from [32, Theorem 1.1], as described in [20, Section 6]
and [4]. We will see next that, from this setting, a general finite element scheme for
computing guaranteed bounds for the eigenvalues of M which are in the vicinity of
a given non-zero t ∈ R can be established.

3.1. Formulation of the weak problem and eigenvalue bounds. Let {Th}h>0

be a family of shape-regular [21] triangulations of Ω, where the elements K ∈ Th
are simplexes with diameter hK and h = maxK∈Th

hK . For r ≥ 1, let

Vr
h = {vh ∈ C0(Ω)3 : vh|K ∈ Pr(K)3 ∀K ∈ Th}

Vr
h,0 = {vh ∈ Vr

h : vh × n = 0 on ∂Ω}.
Then

(6) L ≡ Lh = Vr
h,0 ×Vr

h ⊂ D1.

For t ∈ R, let mp
t : D1 ×D1 −→ C be given by

m
1
t

([

E

H

]

,

[

F

G

])

=

∫

Ω

(

(M1 − tP2)

[

E

H

])

·
[

F

G

]

m
2
t

([

E

H

]

,

[

F

G

])

=

∫

Ω

(

(P−1M1 − tP)

[

E

H

])

·
(

(P−1M1 − tP)

[

F

G

])

.

The following weak eigenvalue problem [32, 20, 4] plays a central role below:

(7)

find

(

τ,

[

E

H

])

∈ R× (L \ {0}) such that

m
1
t

([

E

H

]

,

[

F

G

])

= τm2
t

([

E

H

]

,

[

F

G

])

∀
[

F

G

]

∈ L.

Let m±(t) ≡ m±(t, h) be the number of negative and positive eigenvalues of (7),
respectively. Let τ±j (t) ≡ τ±j (t, h),

τ−1 (t) ≤ . . . ≤ τ−(t)m−(t)

be the negative eigenvalues of (7) and

τ+m+(t)(t) ≤ . . . ≤ τ+1 (t)

be the positive eigenvalues of (7), if they exist at all. Let

ρ±j (t, h) = t+
1

τ±j (t)
.

As we will see next, the latter quantities provide bounds for the spectrum of M in
the vicinity of any t ∈ R.

By counting multiplicities, let

. . . ≤ ν−2 (t) ≤ ν−1 (t) < t < ν+1 (t) ≤ ν+2 (t) ≤ . . .
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be the eigenvalues of M which are adjacent to t. That is ν−j (t) is the j-th eigenvalue

strictly to the left of t and ν+j (t) is the j-th eigenvalue strictly to the right of t.

The following crucial statement is a direct consequence of [32, Theorem 2.4] or [4,
Corollary 10] (see also [20, Theorem 11]).

Theorem 1. Let t ∈ R. Then

ρ−j (t, h) ≤ ν−j (t) ∀j = 1, . . . ,m−(t) and ν+j (t) ≤ ρ+j (t, h) ∀j = 1, . . . ,m+(t).

Remark 1. In the case of the lower-dimensional Maxwell operator M̃1, the finite
element spaces on a corresponding triangulation Th of Ω̃ are chosen as

Lh =

{[

uh

vh

]

∈ C0
(

Ω̃
)2+1

:

[

uh

vh

]∣

∣

∣

∣

K

∈ Pr(K)2+1 ∀K ∈ Th and uh · t = 0 on ∂Ω̃

}

.

The weak problem analogous to (7) and a corresponding version of Theorem 1 (and
further statements below) are formulated by substituting mp

t with the corresponding
lower-dimensional forms.

3.2. Convergence of the eigenvalue bounds. According to [4, Theorem 12], if
L captures an eigenspace of M within a certain order of precision O(ε) for small
ε, then the eigenvalue bounds found in Theorem 1 are within O(ε2). We now show
a consequence of this statement in the present setting.

Consider an open bounded segment J ⊂ R, such that 0 6∈ J . Denote by EJ the
eigenspace associated to this segment and assume that t ∈ J . Here and elsewhere
the relevant set where the indices j move is

F±

J (t) = {j ∈ N : ν±j (t) ∈ J}.
Theorem 2. Let r ∈ N be fixed. Then

lim
h→0

∣

∣ρ±j (t, h)− ν±j (t)
∣

∣ = 0 ∀j ∈ F±

J (t).

If in addition P−1EJ ⊆ Hr+1(Ω)6, then there exist C±
t ≡ C±

t (r) > 0 such that

(8)
∣

∣ρ±j (t, h)− ν±j (t)
∣

∣ ≤ C±
t h2r ∀j ∈ F±

J (t)

for h sufficiently small.

Proof. By combining [29, Theorem 3.26] with (4) and standard interpolation esti-
mates (cf. [21]), it follows that

for any

[

F

G

]

∈ D1 there exists

[

F h

Gh

]

∈ Lh

such that

(9) lim
h→0

(

‖F − F h‖curl,Ω + ‖G−Gh‖curl,Ω
)

= 0 .

Since P is a bounded operator, then for any
[

F̃

G̃

]

= P
[

F

G

]

∈ D(M),

we have

(10) lim
h→0

(

∥

∥

∥

∥

M
[

F̃ − F̃ h

G̃− G̃h

]∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

[

F̃ − F̃ h

G̃− G̃h

]∥

∥

∥

∥

0,Ω

)

= 0
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where
[

F̃ h

G̃h

]

= P
[

F h

Gh

]

∈ D(M).

In turns, this is exactly the hypothesis required in [4, Theorem 12] which ensures
the claimed statement.

Let Ir,h denote the interpolation operator associated to the finite element spaces
Vr

h (cf. [21]) and let
[

F h

Gh

]

= Ir,h
[

F

G

]

.

If
[

F

G

]

∈ EJ ⊂ Hr+1(Ω)6,

then

(11)

∥

∥

∥

∥

[

F − F h

G−Gh

]
∥

∥

∥

∥

curl,Ω

≤ c(r)hr

∥

∥

∥

∥

[

F

G

]
∥

∥

∥

∥

r+1,Ω

,

so that

(12)

∥

∥

∥

∥

M
[

F̃ − F̃ h

G̃− G̃h

]
∥

∥

∥

∥

0,Ω

+

∥

∥

∥

∥

[

F̃ − F̃ h

G̃− G̃h

]
∥

∥

∥

∥

0,Ω

≤ Chr

where C > 0 is a constant independent of h. This is precisely the condition [4,
(35)]. Thus, [4, Theorem 12] ensures the claimed statement. �

3.3. Eigenfunctions. The statement established in [4, Corollary 13], provides an
insight on how the eigenspace EJ in the framework of Theorem 2 is also captured
by the trial subspaces L as h → 0. Let

dist1[(F ,G), E ] = inf




X

Y



∈E

∥

∥

∥

∥

[

F −X

G− Y

]∥

∥

∥

∥

curl,Ω

be the Hausdorff distance between a given vector
[

F

G

]

∈ D1 and E ⊆ D1.

Denote by
[

F
±

j (t, h)

G
±

j (t, h)

]

∈ Lh

the eigenvectors of (7) associated to τ±j (t) respectively and assume that
∥

∥

∥

∥

[

F
±

j (t, h)

G
±

j (t, h)

]∥

∥

∥

∥

0,Ω

= 1.

Then, the following result concerning approximation of eigenspaces can be stated.

Theorem 3. Let r ∈ N be fixed. Then,

lim
h→0

dist1[(F
±

j (t, h),G
±

j (t, h)), EJ ] = 0.

If in addition P−1EJ ⊆ Hr+1(Ω)6, then there exist C±
t (r) > 0 such that

dist1[(F
±

j (t, h),G
±

j (t, h)), EJ ] ≤ C±
t (r)hr

for h sufficiently small.
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Proof. Proceed as in the proof of Theorem 2 in order to verify the hypotheses of
[4, Corollary 13]. �

Convergence of the eigenvalue bounds in Theorem 1 are therefore ensured, in
spite of the fact that L are spaces of nodal finite elements with no particular mesh
structure. Note that this is guaranteed, even in the case where ǫ and µ are rough,
however, since P−1EJ 6⊆ Hr+1(Ω)6 unless these coefficients are smooth themselves,
an estimate on the convergence rate in this situation is beyond the scope of The-
orem 3. For a highly heterogeneous medium, a deterioration of the convergence
speed is to be expected.

We remark that the above analysis relies on the regularity of the eigenspaces
associated to the interval J only. Thus, for non-convex Ω, this allows the possi-
bility of approximating eigenvalues associated to regular eigenfunctions with high
accuracy, if some a priori information about their location is at hand.

4. A certified numerical strategy

Let us now describe a procedure which, in an asymptotic regime, renders small
intervals which are guaranteed to contain spectral points. Convergence will be
derived from Theorem 2.

Denote by 0 < tup < tlow the corresponding parameters t in the weak problem
(7), which are set for computing ρ−j (tlow, h) (lower bounds) and ρ+j (tup, h) (upper

bounds) in the segment (tup, tlow). The scheme described next aims at finding
intervals of enclosure for the eigenvalues of M which lie in this segment, for a
prescribed tolerance set by the parameter δ > 0. According to Lemma 4 below,
these intervals will be certified in the regime δ → 0. The numerical experiments
presented in sections 5, 6 and 7, will provide an insight on suitable choices of tup
and tlow for concrete regions Ω.

Procedure 1.

Input.
– Initial tup > 0.
– Initial tlow > tup such that tlow − tup is fairly large.
– A sub-family F of finite element spaces Lh as in (6), dense as h → 0.
– A tolerance δ > 0 fairly small compared with tlow − tup.

Output.
– A prediction m̃(δ) ∈ N of Tr1(tup,tlow)(M).

– Predictions ω±

j,δ of the endpoints of enclosures for the eigenvalues in

σ(M) ∩ (tup, tlow), such that 0 < ω+
j,δ − ω−

j,δ < δ for j = 1, . . . , m̃(δ).
Steps.
a) Set initial Lh ∈ F and m̃ = 1.
b) While

ρ+j,h − ρ−j,h ≥ δ or ρ−j,h > ρ+j,h for some j = 1, . . . , m̃,

do c) - e).
c) Compute

ρ+j,h = ρ+j (tup, h) for j = 1, . . . , m̃up
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where m̃up is such that ρ+m̃up,h
< tlow and

ρ+m̃up+1(tup, h) ≥ tlow.

d) Compute

ρ−m̃low−k+1,h = ρ−k (tlow, h) for k = 1, . . . , m̃low

where m̃low is such that ρ−m̃low,h > tup and

ρ−m̃low+1(tlow, h) ≤ tup.

e) If m̃low 6= m̃up, decrease h, set new Lh ∈ F and go back to c). Otherwise
set m̃ = m̃low = m̃up, decrease h, set new Lh ∈ F and continue from
b).

f) Exit with m̃(δ) = m̃ and ω±

j,δ = ρ±j,h for j = 1, . . . , m̃.

Assume that
(tup, tlow) ∩ σ(M) = {ωk+1, . . . , ωk+m}

where
m = Tr1(tup,tlow)(M) > 0 and k ≥ 0.

A priori, an interval (ω−

j,δ, ω
+
j,δ) obtained as the output of Procedure 1 is not guar-

anteed to have a non-empty intersection with the spectrum of M or in fact include
precisely the eigenvalue ωk+j . However, as it is established by the following lemma,
the latter is certainly true for δ small enough.

Lemma 4. There exist t0 > 0 and δ0 > 0, ensuring all the next items for all
tlow ≥ t0 and δ < δ0.

a) The conditional loop in Procedure 1 always exits in the regime h → 0.
b) m(δ) = m.
c) ω−

j,δ ≤ ωk+j ≤ ω+
j,δ for all j = 1, . . . ,m.

Proof. Set t0 > ω+
1 (tup) sufficiently large, ensuring m 6= 0 for any tlow ≥ t0. Since

ν+j (tup) = ωk+j = ν−m−j+1(tlow) for all j = 1, . . . ,m, Theorem 2 alongside with the

assumption on F , ensures the existence of ρ±j,h in Procedure 1-c) and d), for all
j = 1, . . . ,m whenever h is small enough. Moreover

ρ+j,h ↓ ωk+j and ρ−j,h ↑ ωk+j as h → 0

as needed. �

If the eigenfunctions of M lie in Hr+1(Ω)6, then

ρ+j,h − ρ−j,h = O(h2r).

This means that the exit rate of the conditional loop in Procedure 1 is also O(h2r)
as h → 0.

Observe that in the above procedure, a good choice of tup and tlow has a notice-
able impact in performance. See Section 6.3. The results of the recent manuscript
[12], suggest1 that the constants involved in the estimates of Theorem 2 are of order
|t− ν±1 (t)|−1. Table 6 strongly suggest that the accuracy improves significantly, as
tup ↓ ν−1 (tup) and tlow ↑ ν+1 (tlow).

1An upper bound is provided in [4, Corollary 11] and the value −1 seems to be the right
exponent.
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Figure 1. Semi-log graph associated to Ω̃sqr. Vertical axis:
ω+
k − ω−

k . Horizontal axis: eigenvalue index k (not counting mul-
tiplicity). Here we consider elements of order r = 1, 3, 5 on un-
structured uniform meshes rendering roughly the same number of
degrees of freedom. For each r, we have used exactly the same trial
subspace Lh for all the eigenvalues.

In the subsequent sections we proceed to illustrate the practical applicability of
the ideas discussed above by means of several examples. Two canonical references
for benchmarks on the Maxwell eigenvalue problem are [17] and [10]. We validate
some of our numerical bounds against these benchmarks. Everywhere below we will
write ω±

j ≡ ω±

j,δ (see Procedure 1) where δ might or might not be specified. In the
latter case, we have taken its value small enough to ensure the reported accuracy.
We consider constant ǫ = µ = 1 in sections 5 and 6, and ǫ 6= 1 with jumps in
Section 7.

5. Convex domains

The eigenfunctions of (1) and (5) are regular in the interior of a convex domain,
see [29, 1]. In this, the best possible case scenario, the method of sections 3 and 4
achieves an optimal order of convergence for finite elements.

Without further mention, the following convention will be in place here and
everywhere below. The index k for eigenvalues and eigenvalue bounds will be used,
whenever multiplicities are not counted. Otherwise the index j (as in previous
sections) will be used.
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j ωj
+
− tup (l) tlow (l)

1 1.412236000 0.5 (1) 1.6 (3)
2 1.430672560 0.5 (2) 1.6 (2)
3 1.430673577 0.5 (3) 1.6 (1)
4 1.755308043 1.5 (1) 2.1 (2)
5 1.755329063 1.5 (2) 2.1 (1)
6 2.22200053 1.8 (1) 2.6 (5)
7 2.237667434 1.8 (2) 2.6 (4)
8 2.237684459 1.8 (3) 2.6 (3)
9 2.239533387 1.8 (4) 2.6 (2)
10 2.270778558 1.8 (5) 2.6 (1)

Figure 2. Benchmark spectral approximation for Ωsla. In the
table we compute interval of enclosure for the first 10 eigenvalues,
by means of an implementation of Procedure 1. The trial spaces
are made of Lagrange elements of order r = 3. We have built a
sequence of meshes to be used in conjunction with Procedure 1.
The finest of these ones is the one shown on the leftt side (see step
e)). Total number of DOF=117102.

5.1. The square. Let Ω̃ ≡ Ω̃sqr = (0, π)2 ⊂ R
2. The eigenvalues of M̃ are ω =

±
√
l2 +m2 for l,m ∈ N ∪ {0}. Pick

tup =
1

4
ωk−1 +

3

4
ωk and tlow =

3

4
ωk +

1

4
ωk+1

to machine precision. In our first experiment we have computed enclosure widths
ω+
k − ω−

k for k = 1, . . . , 100 and r = 1, 3, 5. We have chosen h = h(r) such that
the corresponding trial subspaces have roughly the same dimension ≈ 61K. We
have then found all the eigenvalue bounds for a fixed r, from exactly the same trial
subspace. Figure 1 shows the outcomes of this experiment. In the graph, we have
excluded enclosures with size above 10−1.

As it is natural to expect, for a fixed Lh, the accuracy deteriorates as the eigen-
value counting number increases: high energy eigenfunctions have more oscilla-
tions, so their approximation requires a higher number of degrees of freedom. The
accuracy improves with the polynomial order. The first 100 eigenvalues are ap-
proximated fairly accurately (note that ω(k=100) =

√
261) with polynomial order

r = 5.

5.2. The slashed cube. Let Ω ≡ Ωsla = (0, π)3 \ T ⊂ R
3, where T is the closed

tetrahedron with vertices (0, 0, 0), (π/2, 0, 0), (0, π/2, 0) and (0, 0, π/2). This do-
main does not have symmetries allowing a reduction into two-dimensions.

In our first experiment on this region, we determine benchmark eigenvalue en-
closures for (1). The table in Figure 2 shows the outcomes of implementing a
numerical scheme based on Procedure 1. We have iterated our algorithm for three
fixed choices of tup and tlow (third and fourth columns), with δ = 10−2. We have
picked the family of meshes so that no more than five iterations were required to
achieve the needed accuracy. We have chosen trial spaces made out of Lagrange
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elements of order r = 3. All the final eigenvalue enclosures have a length of at most
2 × 10−3. The mesh used in the last iteration is depicted on the left of Figure 2.
The parameter l in this table counts the number of eigenvalues to the right of tup
or to the left of tlow, respectively.

From the table, it is natural to conjecture that there is a cluster of eigenvalues
at the bottom of the positive spectrum near

√
2. The latter is the first positive

eigenvalue for Ω ≡ Ωcbe = (0, π)3, which is of multiplicity 3 for that region. See [4,
Section 5.1]. As we deform Ωcbe into Ωsla, it appears that this eigenvalue splits into
a single eigenvalue at the bottom of the spectrum and a seemingly double eigenvalue
slightly above it. Another cluster occurs at ω4 and ω5 with strong indication that
this is a double eigenvalue. This pair is near

√
3, the second eigenvalue for Ωcbe,

which is indeed double. The next eigenvalues for Ωcbe are 2 and
√
5 with total

multiplicity 5. We conjecture that ωj for j = 6, . . . , 10 are indeed perturbations of
these eigenvalues.

For our second experiment on the region Ωsla, we have estimated numerically
the electromagnetic fields corresponding to index up to j = 6. The purpose of the
experiment is to set benchmarks for the eigenfunctions on Ωsla and simultaneously
illustrate Theorem 3. In Figure 8 we depict the density of electric and magnetic
fields, |E| and |H| both re-scaled to having maximum equal to 1. We also show
arrows pointing towards the direction of these fields on ∂Ωsla. The mesh employed
for these calculations is the one shown in Figure 2.

It is remarkable that for both experiments on Ωsla, a reasonable accuracy has
been achieved even for the fairly coarse mesh depicted.

6. Non-convex domains

The numerical approximation of the eigenfrequencies and electromagnetic fields
in the resonant cavity is known to be extremely challenging when the domain is
not convex. The main reason for this is the fact that the electromagnetic field
might have a singularity and a low degree of regularity at re-entrant corners. See
for example the discussion after [29, Lemma 3.56] and references therein.

In some of the examples of this section we consider a mesh adapted to the
geometry of the region. However, we do not pursue any specialized mesh refinement
strategy. We show below that, even in the case where there is poor approximation
due to low regularity of the eigenspace, the scheme in Procedure 1 provides a stable
approximation.

6.1. A re-entrant corner in two dimensions. The region

Ω̃ ≡ Ω̃L = (0, π)2 \ [0, π/2]2 ⊂ R
2

is a classical benchmark domain both for the Maxwell and the Helmholtz problems,
and it has been extensively examined in the past. Numerical computations for the
eigenvalues of M̃, via an implementation based on a mixed formulation of (5)
and edge finite elements, were reported in [10, Table 5]. See also [17]. We now
show estimation of sharp enclosures for these eigenvalues by means of the method
described in sections 5 and 6.

For the next set of experiments we consider unstructured triangulations of the
domain, refined around the re-entrant corner (π/2, π/2) ∈ ∂Ω̃L. The polynomial
order is set to r = 3. Figures 3, 4 and 9 summarize our findings.
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j ωj from [10] ωj
+
− tup (l) tlow (l)

(from [17])
1 0.768192684 0.773334991694 0.1 (1) 2.1 (4)

(0.773334985176)
2 1.196779010 1.1967827557761026 0.1 (2) 2.1 (3)

(1.19678275574)
3 1.999784988 2.00000000064

1.99999999933 1.5 (1) 2.5 (4)
(2.00000000000)

4 1.999784988 2.00000000067
1.99999999936 1.5 (2) 2.5 (3)

(2.00000000000)
5 2.148306309 2.14848368365199 1.5 (3) 3.1 (5)

(2.14848368266)
6 2.252760528 2.25729896776 1.5 (4) 3.1 (4)
7 2.828075317 2.8284271354186 1.5 (5) 3.7 (4)
8 2.938491109 2.94671343112 1.5 (6) 3.7 (3)
9 3.075901493 3.0758929738571 1.5 (7) 3.7 (2)
10 3.390427701 3.3980724676 1.5 (8) 3.7 (1)

Figure 3. Enclosures for the first 10 positive eigenvalues of M̃
on Ω̃L. The next eigenvalue is above 3.7. Here Procedure 1 has
been implemented on Lagrange elements of order 3. The final
mesh shown on the right has a number of DOF=56055. The mesh
has a maximum element size h = 0.1 and has been refined at
(π/2, π/2) ∈ ∂Ω̃L. For comparison on the second column we in-
clude the eigenvalue estimations found in [10] and [17].

We produced the table in Figure 3 by implementing Procedure 1 in the same
fashion as for the case of Ωsla described previously. For comparison, in the second
column of this table we have included the benchmark eigenvalue estimations found
in [10] and [17]. Note that some of the approximations made by means of the
mixed formulation are lower bounds of the true eigenvalues, and some (see the row
for j = 9 in the table) are upper bounds. This confirms that the latter approach is
in general un-hierarchical as previously suggested in the literature.

From the third column of the table, it is clear that the accuracy depends on the
regularity of the corresponding eigenspaces. The eigenfunctions associated to ω = 2
and ω =

√
8 are found by the translation and gluing in an appropriate fashion, of

eigenfunctions in the sub-region Ω̃ = (0, π/2)2 ⊂ Ω̃L. These eigenfunctions are

smooth in the interior of Ω̃L and they achieve a maximum order of convergence.
The eigenfunctions associated to ω1 and ω2, on the other hand, are singular at the
re-entrant corner. Moreover, the electric field component for index j = 1 is known
to be outside H1(Ω̃L)

2 while that for index j = 2 is in H1(Ω̃L)
2. This explains the

significant gain in accuracy in the calculation of ω2 with respect to the one for ω1.
Here the computation of the eigenvalues with smooth eigenspace (j = 3, 4 or 7) is
less accurate than that for the index j = 2, because of the mesh chosen.

Figure 4 depicts in log-log scale residuals versus maximum element size. We
have considered here Lagrange elements of order r = 3 and r = 5. The hierarchy of
meshes (not shown) was chosen unstructured, but with an uniform distribution of
nodes. Since the eigenfunctions associated to ω1 and ω2 have a limited regularity,
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Figure 4. Compared order of approximation for different eigen-
values in the region Ω̃L. The log-log plot shows residual versus
maximum element size h for the calculation of enclosures for ωj

where j = 1, 2, 3 and L is generated by Lagrange elements of order
r = 3 and r = 5. Note that (E, H) 6∈ Hs(ΩL)

3 for j = 1 and s = 1,
and for j = 2 and s = 1.5. On the other hand, for j = 3 we have
(E, H) smooth, as the eigenfunction is also solution of (1) on a
square of side π/2.

then there is no noticeable improvement on the convergence order as r changes from
3 to 5. Since the third eigenfunction is smooth, it does obey the estimate (8).

Benchmark approximated eigenfunctions are depicted in Figure 9. The mesh
employed to produce these graphs is the one shown on the right of Figure 3. As
some of the electric fields have a singularity at (π/2, π/2) ∈ ∂Ω̃L we have re-scaled
each individual plot to a range in the interval [0, 1].

6.2. The Fichera domain. In this next experiment we consider the region

Ω ≡ ΩF = (0, π)3 \ [0, π/2]3 ⊂ R
3.

See also [4, §5.2] for related results.
The table on right of Figure 5 shows numerical estimation of the first 15 positive

eigenvalues. Here we have fixed tup = 0.1 and tlow = 2.8. We have considered
meshes refined along the re-entrant edges. The final mesh is shown on the left
side of Figure 5. We have stopped the algorithm when the tolerance δ = 0.03 has
been achieved. However, note that the accuracy is much higher for the indices
j = 2, 3, 9, 10, 11, 13, 14, 15.

Figure 10 includes the corresponding approximated eigenfunctions. The mesh
employed for this calculation is the same as that of Figure 5.
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j ωj
+
−

1 1.1441298

2 1.54391228

3 1.54392233

4 2.0815690

5 2.0820796

6 2.0820796

7 2.2348180

8 2.2348187

9 2.32679547

10 2.33250044

11 2.33255066

12 2.400375

13 2.60366023

14 2.6059862
15 2.6059765

Figure 5. Spectral enclosures for the Fichera domain ΩF. Here
we have fixed tup = 0.1 and tlow = 2.8. The final mesh in the
iteration is shown on the left side. Its number of DOF=347460.

RF DOF tlow = 1.95 tlow = 2.05 tup = 1.05 tup = 0.7
(l = 1 ω−

3 ) (l = 3 ω−

3 ) (l = 1 ω+
3 ) (l = 3 ω+

3 )
1 4143 1.24764 1.26640 1.50395 1.3436
0.1 9648 1.25029 1.26830 1.49282 1.3336
0.01 74226 1.25063 1.26846 1.48899 1.3274

Figure 6. Dependence of the accuracy of the bounds from The-
orem 1 on the choice of t for the region Ω̃cut. It is preferable to
pick tup and tlow as far as possible from ω, than to increase the
dimension of the trial subspace.

6.3. A non-Lipschitz domain. As mentioned earlier, for a single trial space L,
the accuracy of the eigenvalue bounds established in Theorem 1 depends on the
position of t relative to adjacent components of the spectrum. In this experiment
we demonstrate that this dependence might vary significantly with t. The numerical
evidence below suggests that a good choice of tup and tlow plays a major role in the
design of efficient algorithms for eigenvalue calculation based on this method.

Let Ω̃ ≡ Ω̃cut = (0, π)2 \ S for S = [π/2, π] × {π/2}. Benchmarks [17] on the
eigenvalues of (5) are found by means of solving numerically the corresponding
Neumann Laplacian problem.

The first seven positive eigenvalues are

ω1 ≈ 0.647375015, ω2 = 1, ω3 ≈ 1.280686161,

ω4 = ω5 = 2, ω6 ≈ 2.096486081 and ω7 ≈ 2.229523505.
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j ωj from [17] ωj
+
− l up low

1 1.15954813181 1.159555456 1 85
2 1.16804100636 1.16807770 2 84
3 1.5834295853 1.5834453229 3 83
4 2.3757369919 2.375788452 4 82
5 2.4724291674 2.472479212 5 81
6 2.5288205712 2.528884634 6 80
7 2.7487894882 2.748868693 7 79
8 3.2334726763 3.23362280 8 78
9 3.47832176265 3.478478775 9 77
10 3.51802898831 3.51822718 10 76

Figure 7. Enclosures for the first 10 positive eigenvalues of M̃
for the transmission problem (Section 7). For comparison, on the
second column we include the upper bounds found in [17]. Here
the trial subspace is made out of Lagrange elements of order 1,
tup = 10−9 and tlow = 11.74. The mesh employed was constructed

in an unstructured fashion in the four sub-domains Ω̃sqr,l. The
maximum element size is set to h = .01 and the total number of
DOF=399720.

The eigenfunctions associated to ω2, ω4 and ω5 are smooth, as they are also eigen-
functions on Ω̃sqr. On the other hand, ω1 and ω3 correspond to singular eigenfunc-
tions. Standard nodal elements are completely unsuitable for the computation of
these eigenvalues, even with a significant refinement of the mesh on S.

The table in Figure 6 shows computation of ω±

3 on a mesh that is increasingly
refined at S with a factor RF for two pairs of choices of tup and tlow. Here h = 0.1
and we consider Lagrange elements of order r = 1. The choice of tup and tlow
further from ω3, even with the very coarse mesh, provides a sharper estimate of ω±

3

than the other choices even with a finer mesh.

7. The transmission problem

In this final example, we consider a non-constant electric permittivity. Let

Ωsqr,1 =
(

0,
π

2

)

×
(

0,
π

2

)

Ωsqr,2 =
(π

2
, π
)

×
(π

2
, π
)

Ωsqr,3 =
(π

2
, π
)

×
(

0,
π

2

)

and Ωsqr,4 =
(

0,
π

2

)

×
(π

2
, π
)

,

so that

Ω̃sqr =
4
⋃

l=1

Ω̃sqr,l.

Set µ = 1 and

ǫ(x) =

{

1 x ∈ Ωsqr,1 ∪ Ωsqr,2
1
2 x ∈ Ωsqr,3 ∪ Ωsqr,4.

Numerical estimations of the eigenvalues of M̃ on Ω̃ ≡ Ω̃sqr for this data were found
in [17].

We have set the experiment reported in Figure 7, on a family of meshes (not
shown), which is unstructured but of equal maximum element sizes in each one of
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the subdomains Ω̃sqr,l. We implemented Procedure 1 as discussed previously, fixing
tup = 10−9 and tlow = 11.74. For comparison, in the second column of the table we
have included the benchmark upper bounds from [17].

As we pointed out in sections 5 and 6, accuracy depends on the regularity of
the corresponding eigenspace. Moreover, finding conclusive lower bounds for the
ninth and tenth eigenvalues turns out to be extremely expensive, if tlow ≈ 3.5.
Observe that, from the reproduced values in the second column of the table, these
two eigenvalues form a cluster of multiplicity 2. It seems that in fact they are part
of a larger cluster. The resulting narrow gap from this cluster seems to be the
cause of the dramatic deterioration in accuracy. Recall the observations made in
Section 6.3.

The data has a natural symmetry with respect to the diagonals of Ω̃sqr. Four
types of eigenvectors arise from these symmetries, and the analytical problem re-
duces to four different eigen-problems which give rise to degenerate eigenspaces.
As we are not considering a mesh that completely respects these symmetries, the
multiplicities arising from them are not shown completely in the numerics.

In order to find reasonable bounds for ω9 and ω10, we had to resource to exploit-
ing the fact that ρ−j (t, h) is locally non-increasing in t, and it respects ordering in
j. An analytical proof of this property is achieved by extending to the indefinite
case the results of [12, §3], but in the present context we have examined them only
from a numerical perspective. Note that, when tlow is near to cross an eigenvalue,
ρ−j (tlow, h) jumps. These jumps appear to be small (respecting the order of the j)
as long as the subspace captures well the eigenvectors. This effect will disappear
eventually as we increase tlow further, due to the fact that L is finite-dimensional.
In our experiments, we have determined that t = tlow ≈ 11.74 is near to optimal
for the trial subspaces employed. Note that tlow = 11.74 gives 85 eigenvalues in the
segment (10−9, 11.74) for these trial subspaces.
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Figure 8. The first six eigenfunctions on Ωsla for the first six
positive eigenvalues. Densities |E| (top) and |H| (bottom). Cor-
responding arrow fields E (red) and H (blue) on ∂Ωsla.
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Figure 9. Eigenfunctions on Ω̃L associated to the first eight pos-
itive eigenvalues. Densities |E| (top) and |H| (bottom). Corre-
sponding arrow fields E. We have re-scaled each individual density
to have as maximum the value 1.
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Figure 10. The first six eigenfunctions on ΩF for the first six
positive eigenvalues. Densities |E| (top) and |H| (bottom). Cor-
responding arrow fields E (red) and H (blue) on ∂ΩF.
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