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Abstract  

Background 

To promote early rehabilitation of walking, gait training can start even when patients 

are on bed rest. Supine stepping in the early phase after injury is proposed to 

maximise the beneficial effects of gait restoration. In this training paradigm, 

mechanical loading on the sole of the foot is required to mimic the ground reaction 

forces that occur during overground walking. A pneumatic shoe platform was 

developed to produce adjustable forces on the heel and the forefoot with an adaptable 

timing. This study aimed to investigate the stimulation parameters of the shoe 

platform to generate walking-like loading on the foot sole, while avoiding strong 

reflexes. 

Methods 

This study evaluated this platform in ten able-bodied subjects in a supine position. 

The platform firstly produced single-pulse stimulation on the heel or on the forefoot 

to determine suitable stimulation parameters, then it produced cyclic stimulation on 

the heel and the forefoot to simulate the ground reaction forces that occur at different 

walking speeds. The ankle angle and electromyography (EMG) in the tibialis anterior 

(TA) and soleus (SOL) muscles were recorded. User feedback was collected. 

Results 

When the forefoot or/and the heel were stimulated, reflexes were observed in the 

lower leg muscles, and the amplitude increased with force. Single-pulse stimulation 

showed that a fast-rising force significantly increased the reflex amplitudes, with the 

possibility of inducing ankle perturbation. Therefore a slow-rising force pattern was 

adopted during cyclic stimulation for walking. The supine subjects perceived loading 

sensation on the foot sole which was felt to be similar to the ground reaction forces 
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during upright walking. The EMG generally increased with force amplitude, but no 

reflex-induced ankle perturbations were observed. The mean change in the ankle joint 

induced by the stimulation was about 1
o
. 

Conclusions 

The rate of force increase should be carefully adjusted for simulation of walking-like 

loading on the foot sole. It is concluded that the dynamic shoe platform provides 

adjustable mechanical stimulation on the heel and the forefoot in a supine position 

and has technical potential for simulation of ground reaction forces that occur during 

walking. 

Keywords 

Foot sole stimulation; dynamic shoe platform; reflex; ground reaction force 

simulation. 

Background  

Patients with injury to or disease of the central nervous system often have impaired 

lower limb function and require bed rest in the acute phase of recovery. In order to 

provide gait training at this stage, a gait orthosis for early rehabilitation of walking 

was proposed for stepping in a supine position [1]. This has a linkage system to 

generate walking-like motion in the lower limbs of a supine subject [1, 2]. Effective 

gait training requires integration of proprioceptive sensory input from the joints of the 

lower extremity and load interactions between the foot and the ground [3]. Apart from 

the coordinated leg movement produced by the gait orthosis [1], suitable stimulation 

of the load receptors in the lower limbs is another key requirement of such a gait 

orthosis for successful neurological recovery [4].  
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The sensory loading input from the foot sole has an important role in modulating 

walking patterns and is beneficial for relearning of walking. During overground 

walking, load receptors in the foot sole detect changes of the body’s centre of mass 

(somatosensory input), which provides proprioceptive feedback for maintenance of 

balance [5]. The cutaneous mechanoreceptors on the foot sole further detect ground 

surfaces [3], and offer information for modulation of walking patterns [6]. In contrast, 

when the feet are unloaded, the neural transmission for gait control is disrupted. Air 

stepping without ground forces on the foot produces walking with variant kinematics 

[7]. After spinal cord injury, patients produce increased muscle activity if the limb 

loading increases during walking training [8]. In order to practise stepping in a supine 

position in the gait orthosis described in [1], an appropriate loading input should thus 

be implemented to mimic the ground reaction forces that occur during overground 

walking [4].  

There are several types of device for foot-pressure stimulation, but further 

investigation is required on the target stimulation pattern and intensity. Vibrating 

insoles were proposed to stimulate the foot sole for somatosensory feedback via 

vibrating tactile actuators [9, 10]. Air-inflated boots were designed to apply pressure 

on the foot sole with increased neuromuscular activation in the lower limbs [11]. 

However, these devices were not specifically designed to simulate the ground reaction 

force patterns. The force was applied simultaneously on the whole foot sole, which is 

different from the adaptable force pattern during overground walking. To simulate 

walking-like loading, pneumatic rubber insoles [12] and stimulative shoes [13] were 

designed. The pneumatic rubber insoles include two rubber chambers, which take 

about 0.2 s to produce a target pressure on the foot sole [12]. The stimulative shoe 

uses a series of cylinder-actuated rods, which allows fast stimulation on the foot sole 
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in less than 0.1 s [13]. During stimulation on the fool sole, too-low intensity, such as 

slow pressing through rubber chambers, might produce limited haptic sensation, while 

too strong and fast stimulation might induce reflexes and even reflex-induced 

movement of the lower limb [14, 15]. The haptic sensation was documented through 

user feedback [12], but the EMG response directly induced by these devices was not 

reported.  

In order to mimic ground reaction forces for users practising gait in a supine 

position, a dynamic shoe platform was designed in the present work using pneumatic 

cylinders. It was expected that the mechanical stimulation of the foot soles would 

produce reflexes, in addition to haptic sensation [14-16]. Strong reflexes might induce 

ankle movement, resulting in the ankle trajectory deviating from the kinematics that 

the gait orthosis is programmed to simulate. To facilitate training and to prevent 

injuries to potential users, the gait orthosis needs to be able to dampen or restrict these 

strong reflex responses by modulating the force patterns applied to the sole of the 

foot.  

The aim of this work was to investigate the stimulation parameters of the shoe 

platform for walking-like loading simulation among able-bodied subjects in a supine 

position. Lower leg muscle activity (EMG) and ankle joint movement in response to 

mechanical stimulation with different intensities were investigated. The EMG analysis 

combined with ankle movement recording sought to determine the stimulation 

parameters for walking simulation, i.e., the intensities that were high enough to 

produce walking-like load sensation, but not high enough to activate reflex-induced 

ankle perturbation in terms of substantial change in the ankle joint.  
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Methods 

Equipment description 

With the aim of mimicking the upward ground reaction force, the shoe platform 

includes a foot plate and two pressure plates (Figure 1). The pressure plates for the 

heel (0.11 m x 0.08 m) and forefoot (0.11 m x 0.07 m) are actuated by cylinders (heel 

stroke 20 mm, diameter 32 mm; forefoot stroke 10 mm, diameter 25 mm). The 

cylinder in its neutral state is retracted, applying no loading on the foot sole. When 

activated by a solenoid valve, the retracted cylinder will extend fully (Figure 2) in 

0.05 s, resulting in a fast upward movement of the pressure plate. Such upward 

stimulation in 0.05 s was defined as a fast stimulus. A one-way flow control valve 

regulates the rising speed of each pressure plate, to fully extend in 0.2 s. Such upward 

stimulation in 0.2 s was defined as a slow stimulus. Both pressure plates can be 

controlled independently, so that the platform can be adjusted to stimulate the foot 

sole with different patterns. 

[Figures 1 and 2 are about here] 

Subjects and measurement devices 

Ten able-bodied subjects were recruited (Table 1). Ethical approval was obtained 

from the Ethics Committee for Non Clinical Research, Faculty of Biomedical & Life 

Sciences, University of Glasgow. Subjects provided written informed consent prior to 

participation. 

[Table 1 is about here] 

Bipolar EMG signals from the tibialis anterior (TA) and soleus (SOL) muscles 

were recorded by a GTEC amplifier (Guger technologies, Austria) via Matlab / 

Simulink (the MathWorks, Inc.). The sampling frequency of the EMG recording was 

1200 Hz. An ultrasound system (zebris Medical GmbH, Allgäu, Germany) was 
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employed to record foot motion at a frequency of 100 Hz. Three zebris markers were 

placed at the medial knee joint (xk, yk), the medial ankle joint (xa, ya) and the first 

metatarsal head (xm, ym) of the right leg (Figure 3). The ankle angle șa, which was 

defined as the angle between the shank and the dorsum of the foot, was calculated as:  
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where Lka, Lam 
and Lkm 

are the lengths between the knee and the ankle, the ankle and 

the first metatarsal head and the knee and the first metatarsal head, respectively. 

Reduction of the ankle angle corresponds to dorsiflexion and increase of this angle 

means plantarflexion.  

[Figure 3 is about here] 

Test procedures 

Before the test, the subjects took off their shoes and wore only their socks. They 

walked overground for several steps for two reasons: i) for the experimenters to 

confirm that the subjects had a normal gait pattern; ii) for the subjects to remember 

the sensation during overground walking, which later served as a reference when they 

provided their feedback on the shoe platform. Then each subject lay down on a 

mattress, with pillows inserted below the right knee joint. The dynamic shoe platform 

was fixed on the right foot. The ankle angle was approximately 150
o
. Minor 

adjustments were made to ensure that the subject lay comfortably on the mattress 

during the whole test.  
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The subject firstly performed maximal dorsiflexion and plantarflexion of the 

right foot three times to produce reference EMG signals during maximal voluntary 

contraction (MVC). The subject was then asked to lie relaxed. Four different 

pneumatic pressures were tested (Table 2). The maximum force was 280 N, which 

corresponds to approximately 30% to 60% of the recruited subjects’ body weight. The 

force range of 30% to 60% of body weight is similar to the force a patient usually 

experiences during treadmill training with body weight support [17]. 

[Table 2 is about here] 

The mechanical stimulation test included two sessions: single-pulse stimuli to 

determine the stimulation parameters and cyclic stimulation to simulate the walking-

like loading. 

(a) Single-pulse stimuli 

This session evaluated the influence of different parameters of the mechanical stimuli 

on the muscle response, including the rising speed of the pressure plate (slow  and 

fast), location of the mechanical stimuli (the heel and the forefoot) and the pressure 

amplitude (2, 2.5, 3 and 3.5 bar). All of these parameters were combined, resulting in 

16 types of stimuli taking place in a random order. Each type of stimulus was 

performed four times. Each stimulus was applied every 30 s and lasted for 0.8 s. The 

subjects had a 5-minute rest in the middle of the session.   

(b) Walking-like loading simulation 

During normal overground walking, the foot sole experiences ground reaction force 

within the stance phase, i.e., during 60% of the gait cycle. Peak forces occur around 

heel-strike and toe-off (Figure 4(a)). The simplified force pattern in Figure 4(b) was 

adopted to simulate the ground reaction forces that occur during walking. The 

simplified walking-like loads during short (2 s) and long (5 s) gait cycles were 
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simulated. For example, to simulate the load occurring in a long gait cycle of 5 s, the 

heel and the forefoot were activated from 0-2 s and 1-3 s, respectively, in every 5 s 

interval. For a person with a height of 1.80 m and a step length of 0.85 m, these two 

selected gait cycles of 2 s and 5 s corresponded to walking speeds of about 3.0 and 1.2 

km/h respectively, which are close to normally adopted walking speeds for patients 

during treadmill training [18]. The four pressures mentioned above (2, 2.5, 3 and 3.5 

bar) combined with the two gait cycles resulted in 8 cyclic stimulation tests. Each test 

started with a 5-second rest, followed by 9 stimulation sequences (9 strikes). After the 

test, the subjects were asked the questions below so as to collect their feedback: 

1. Are the locations of the pressure and the force timing (between heel and forefoot) 

similar to those during normal overground walking?  

2. Is the walking-like stimulation (speed of force) on the heel and on the forefoot 

comparable to daily overground walking? 

3. Do you feel comfortable with the dynamic force application?                      

4. In the case that you don’t have a walking-like feeling on your foot sole, please 

describe the main reason for this. 

5. Choose the word that best describes your sensation during the mechanical force 

stimulation: A. Walking,  B. Pressing,  C. Punching,   D. Jumping,  E. None of these. 

[Figure 4 is about here] 

Data analysis 

EMG signals were recorded with a band-pass filter (5-500 Hz) and a notch filter (50 

Hz), full-wave rectified and saved synchronously with the trigger signal for the 

pressure plate stimulation. The EMG data and foot motion recordings were visually 

observed to remove outliers. EMG data with high background noise were discarded. 
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The foot motion data were further filtered with a window size of 5 to remove noise, 

and finally smoothed with the loess Matlab function. 

For the EMG data during MVC, the RMS amplitude in a 500 ms time window 

centred at the maximal peak of the EMG signals was calculated [14, 19]. The 

maximal MVCRMS (RMS EMG value during MVC) within the three repetitions was 

used as the reference for EMG normalisation.  

For the EMG data from the single-pulse stimuli, the mean amplitude and 

standard deviation (SD) of the baseline raw EMG signals during the 0.8 s prior to 

stimulation were calculated and the reflex threshold was defined as mean + SD of the 

baseline EMG [20]. The reflex was deemed to have occurred if the EMG burst after 

the mechanical stimulation was larger than the threshold for a duration of 10 ms [20]. 

Different subjects had different reflex occurrences, which are expressed as a 

percentage. Each type of stimulus was repeated four times, therefore a reflex 

occurrence of 25% means that the reflex occurred once in four times and 100% means 

that the strong reflex occurred all four times. 

In order to compare the EMG responses from slow and fast stimuli, the mean 

RMS values during the mechanical stimulation (0.8 s) at 3.5 bar of all subjects were 

calculated. Paired-sample one-sided t-tests were performed using SPSS (IBM Corp.) 

to determine whether the fast stimuli produced significantly higher EMG responses 

(significance level p = 0.05). 

During the walking-like loading test, the mean RMS EMG amplitude during the 

total duration of the mechanical stimulation on the foot sole was calculated and 
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compared to that of a 5 s pre-stimulation period, to investigate the EMG response 

from the stimulation. 

Results  
RMS EMG values for all subjects at rest and during MVC are summarised below 

(Table 3). During the mechanical stimulation, reflexes with various amplitudes were 

observed in response to single-pulse stimuli and cyclic walking-load simulation. In 

the sequel, the EMG curves and the ankle angle traces from four representative 

subjects are presented in graphs to show typical EMG profiles induced by the 

mechanical stimuli, while the RMS EMG amplitudes and ankle angles of all the 

subjects under different pressures are presented as mean values in tables and bar plots. 

[Table 3 is about here] 

Single-pulse stimuli 

This test includes stimulation with the pressure plate rising slowly (slow stimuli) and 

quickly (fast stimuli). 

(a) Slow stimuli   

When the pressure plate took 0.2 s to reach full extension for mechanical stimulation, 

reflexes were observed in one or both of the lower leg muscles. Heel stimulation at 2 

bar produced a weak reflex in the SOL (amplitude: 20.2% of MVCRMS) in subject S3 

(Figure 5(a)). When the pressure increased to 3.5 bar, a larger EMG burst (amplitude: 

54.5% of MVCRMS) was observed in the SOL (Figure 5(b)). The ankle angle of S3 

gradually reduced by about 0.9
o
 in response to heel stimulation, regardless of the 

pressure amplitude (the bottom plots in Figure 5). 

Forefoot stimulation induced EMG bursts in the same lower leg muscles as the 

heel stimulation, but the rise of the forefoot plate increased the ankle angle. For S3, 

forefoot stimulation at 3.5 bar produced a reflex in the SOL (Figure 6(a)) with a 
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similar amplitude to that induced by heel stimulation at 3.5 bar (Figure 5(b)). Forefoot 

stimulation increased the ankle angle gradually by 0.8
o
. As well as EMG bursts in the 

SOL, some subjects showed TA activation from the mechanical stimulation. Subject 

S4 (Figure 6(b)) had both the TA and SOL activated by the forefoot stimulation. 

[Figures 5-6 are about here] 

Slow stimuli on the foot sole produced limited reflexes in seven out of ten 

subjects (Table 4). Subjects S1, S3 and S7 had reflexes in the SOL only, S6 and S10 

had increased muscle activity in the TA only, while S2 and S4 had EMG increases in 

both muscles. Subject S3 had the highest reflex occurrence in the SOL, while S4 had 

most reflex in the TA. Slow stimuli on the heel induced slightly more reflex activity 

than that on the forefoot (Table 4). The mean RMS EMG amplitudes during the four 

repetitions of slow stimuli at 3.5 bar for all subjects are presented in Table 5. It can be 

seen that all subjects had small RMS EMG amplitudes (less than 4.5% of MVCRMS). 

The change of the stimulation position from the heel to the forefoot was not found to 

change the muscle activated. The mean RMS EMG values during slow stimuli for all 

the subjects at four pressures are presented in Figure 7. It can be observed that higher 

forces generally produced a higher EMG response. 

[Tables 4-6 and Figure 7 are about here] 

The extension of the pressure plates applied forces on the foot sole, and also 

moved the ankle joint. During the mechanical stimulation, the heel or forefoot 

pressure plate dorsiflexed or plantarflexed the ankle joint, which reduced or increased 

the ankle angle, respectively (Table 6). The mean angle change of all the subjects was 

about 1
o
, irrespective of the pneumatic pressure. 
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(b) Fast stimuli   

When the pressure plate was adjusted to achieve full extension in 0.05 s, reflexes were 

observed in nine out of ten subjects. Three of them showed reflex-induced ankle 

movements. 

For S3, a fast stimulus at 2 bar induced a large EMG burst (amplitude: 186% of 

MVCRMS) in the SOL (Figure 8(a)). Furthermore, the TA was activated by the fast 

stimulus with an amplitude of 8% of MVCRMS. A higher pressure and a faster rising 

speed of the pressure plate both increased the EMG activity. Comparing Figure 8(a) 

and Figure 5(b) with Figure 5(a) shows that an increased rising speed of the pressure 

plate had a larger influence on the muscle response. 

[Figure 8 is about here] 

Apart from the increased muscle activity, some subjects had additional ankle 

perturbations in response to a fast stimulus. In contrast to S3, Subject S6 readily had 

TA activation from the mechanical stimulation. Heel stimulation at 3.5 bar produced a 

strong reflex in the TA (amplitude: 197% of MVCRMS) with double bursts (Figure 

8(b)). The heel pressure plate reduced the ankle angle by about 2.3
o
 in S6. 

Furthermore, an additional change of 1
o
 in the ankle angle (marked with a dashed 

arrow) was observed and was considered as an additional perturbation induced by the 

strong reflex. Such reflex-induced ankle movements were also observed in subjects 

S3 and S7.  

The reflex occurrence for all the subjects in response to fast stimuli at 3.5 bar are 

also presented in Table 4. Similar to slow stimuli, fast stimuli on the heel brought 

more reflex activity than on the forefoot and TA was more easily activated than SOL. 
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However, fast stimuli increased the reflex occurrence. Subjects S1, S4 and S7 had 

reflexes for every fast stimulus. The mean RMS EMG values during fast stimuli for 

all the subjects at four pressures are Figure 9. It can be observed that higher forces 

generally produced a higher EMG response. 

[Figure 9 is about here] 

The mean RMS EMG amplitudes during fast stimuli at 3.5 bar for all subjects 

are presented in Table 7. Compared to slow stimuli (Table 5), much higher RMS 

EMG amplitudes were observed if the pressure plate rose quickly, with the maximal 

RMS amplitude up to 17% and 13% of MVCRMS in the TA and the SOL, respectively. 

Pairwise comparisons were carried out on the four experimental conditions reported 

in Tables 5 and 7 to determine whether the fast stimuli produced higher mean EMG 

responses. For this analysis, the four conditions tested (Heel-TA, Heel-SOL, Forefoot-

TA, Forefoot-SOL) were considered as separate experiments. P-values from paired-

sample one-sided t-tests are shown for each condition in the bottom row of Table 7: 

for three of the conditions (Heel-TA, Heel-SOL and Forefoot-SOL), the fast stimuli 

produced significantly higher EMG responses while the remaining condition 

(Forefoot-TA) showed a trend for a higher EMG response. 

[Table 7 is about here.] 

Walking-like loading simulation 

As the reflex-induced ankle movements observed during fast stimuli should be 

avoided during walking training, the stimulation pattern with slow stimuli, i.e., the 

pressure plate fully extended in 0.2 s, was used to simulate walking-like loading. 
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As expected, mechanical stimulation with the walking-like loading patterns 

increased the muscle activity, with the EMG responses of representative subject S2 

shown in Figures 10-11. Simulation of the loading during the long gait cycle, even at 

2 bar (Figure 10), gave observable EMG bursts in the SOL. The simulation for the 

short gait cycle, even at 3.5 bar (Figure 11), increased the EMG without strong 

reflexes or reflex-induced ankle movement. The SOL had increased EMG 

corresponding to the rise of each pressure plate. The ankle angle changes induced by 

the cyclic mechanical stimulation were about 1.3
o
 from heel stimulation and about 

0.7
o
 from forefoot stimulation in S2 (the bottom plots in Figures 10-11). These results 

were similar to those during the single-pulse stimuli shown in Table 6. 

Nine of the ten subjects had increased muscle activity during stimulation, 

compared to the resting situation. The mean RMS EMG amplitudes during walking-

like loading simulation at variable pressures relative to the resting state for the nine 

subjects are presented in Figure 12. It can be seen that a higher pressure induced a 

larger EMG response, with the largest amplitude occurring in the SOL during the 

simulation of the load for the short gait cycle, and the smallest amplitudes observed in 

the TA during the simulation of the long gait cycle. 

[Figures 10-12 are about here.] 

All ten subjects felt cyclic force patterns on the foot sole and reported a stronger 

loading sensation if a higher pressure was applied. Nine subjects thought the shoe 

platform had the right location of stimulation for walking simulation, while one 

subject S6 thought the force on the top of the foot caused by the Velcro straps made 

the feeling different from walking. Subjects 1-4, 7 and 8 thought the stimulation had 



 - 16 - 

force timing similar to walking. Among the four subjects who perceived timings 

different from walking, Subjects 6 and 10 thought the delay between the heel and 

forefoot stimulation was too long during the simulation of the load for the long gait 

cycle, while Subjects 5 and 9 found it hard to express why they felt different. Subjects 

1-6 and 8 considered the rising speed of force on both the heel and the forefoot to be 

similar to overground walking; Subjects 7 and 10 thought the force on the heel had a 

better feeling than that on the forefoot, while one subject S9 thought the force on the 

forefoot felt better. Seven subjects thought the shoe platform was comfortable to use 

while Subjects 2, 9 and 10 were neutral (neither comfortable nor uncomfortable). 

Subjects 1 and 3-7 described the stimulation as pressing, Subjects 8 and 10 described 

it as punching and Subjects 2 and 9 described it as walking. 

Discussion  

The aim of this work was to investigate the EMG and the ankle angle responses 

induced by mechanical stimulation from the pneumatic shoe platform, thereby 

evaluating the performance of the shoe platform as a rehabilitation tool for simulation 

of walking-like forces on the foot sole of users in a supine position.  

The shoe platform included two pressure plates to produce adjustable forces on 

the heel and the forefoot with an adaptable timing. The simplified force pattern 

(Figure 4(b)) had similar stimulation locations to the normal force pattern (Figure 

4(a)). The shoe platform had similar stimulation timings to the normal force pattern: 

the heel had mechanical stimulation for 40% of the gait cycle, and the forefoot was 

stimulated during 20-60% of the gait cycle. The heel and the forefoot were stimulated 

together for 20% of the gait cycle to simulate the mid-stance phase. However, in 

contrast to the force pattern during overground walking (Figure 4(a)), where force 
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amplitudes around heel-strike and toe-off were very close, our shoe platform 

produced a larger force on the heel than on the forefoot, because the area of the 

pressure plate on the heel was larger than on the forefoot, resulting in a requirement of 

a larger force on the heel to achieve a similar pressure to that on the forefoot. 

Furthermore, the heel is not as sensitive to stimulation as the forefoot [16]. We 

selected a larger force for the heel for simulating the heel-strike shock [21]. In 

summary, the target force patterns of the shoe platform had similar stimulation 

locations and force timings to those during real overground walking. The force 

amplitude was different, with the aim to simulate the heel-strike dynamics.  

Comparing the responses from the slow and fast stimuli, we found that the fast 

rising speed of the pressure plate increased the EMG values but with the possibility of 

inducing ankle perturbation. Among the stimulation parameters, the stimulation 

location was not found to affect the activated muscle. Depending on the subject, the 

foot stimulation activated one or both of the lower leg muscles studied, regardless of 

whether the heel or the forefoot was stimulated. The muscle activity had a small 

increase in response to an increase in the force amplitude, but had a significant 

increase in response to an increased force application rate. Fast stimuli produced 

double-burst reflexes with additional ankle perturbations (Figure 8(b)), which agrees 

with a previous description of withdrawal reflexes [22]. As our study was not 

designed to investigate the reflex patterns in response to foot sole stimulation, our 

experiment was not arranged to use the platform to target specific types of receptors. 

The shoe platform might stimulate the cutaneous mechanoreceptors by dynamic 

forces, resulting in cutaneous reflexes. The movement of the pressure plate changed 

the ankle angle, which might bring a stretch reflex. Fast stimuli might also produce 

withdrawal reflexes. The origin of the reflexes obtained here was not the focus of this 
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study and requires further investigation. From this study we obtained the parameters 

which avoid the strong reflexes, which meets the aim of our study. 

The shoe platform, as a component in the gait orthosis, should avoid these reflex-

induced movements to ensure the safety of the user. Therefore, during the walking-

like loading simulation, the shoe platform stimulated the foot sole slowly, with the 

pressure plate extending fully in 0.2 s. By controlling the supply pressures and 

pneumatic valves, the shoe platform produced various force amplitudes on the foot 

sole, which allowed simulation of the ground reaction forces that occur during 

walking at different speeds. The load simulation for both long and short gait cycles 

increased the EMG activity in the lower leg muscles. This observation is consistent 

with a previous study which showed that foot loading increases the EMG in the TA 

during air stepping [23]. A higher pressure produced stimulation with a higher 

intensity, resulting in a larger EMG response. However, the loading simulation at 3.5 

bar did not produce reflex-induced ankle perturbation, which avoids the risk of injury 

to the user.  

Muscle activity, to some extent, reflected the stimulation intensity, which is 

believed to be related to the sensation intensity for a subject with a normal 

sensorimotor system. All the subjects felt mechanical stimulation on the foot sole, 

with the sensation becoming stronger with the pneumatic pressure. Nine subjects 

showed corresponding increases in the EMG bursts from the TA and/or SOL. The 

EMG from the gastrocnemius muscle was not recorded in this study, because in a 

supine position this muscle contacts the bed. The mechanical loading induced some 

leg motion and produced friction between this muscle and the bed, which might have 

interfered with the EMG recordings on the gastrocnemius. However, the 
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gastrocnemius muscle can also absorb part of the applied mechanical load. This might 

explain why TA/SOL muscle activation was not observed in many cases. Among the 

ten subjects, six subjects thought the mechanical stimulation had similar force timings 

to walking. Seven subjects anecdotally reported that the rising speed of force on both 

the heel and the forefoot to be similar to overground walking. Although this feedback 

was subjective, they provide typical assessments of the shoe platform [12]. 

The force rising time was found to be an important issue to consider during 

simulation of the ground reaction force. The rising time of the ground pressure ranges 

from 0.08 s to 0.16 s during overground walking at normal cadence [2]. When the 

walking speed slowed to 75% of normal cadence, the rising time prolonged to about 

0.25 s [2]. In our study, we found that stimulation force with a rising time of 0.05 s 

produced strong reflexes. To prevent this, we prolonged the rising time to 0.2 s, 

because i) the pneumatic insole [12] took about 0.2 s for simulation of ground force, 

which serves as a reference parameter for our study; ii) we aimed to simulate normal 

and slow walking, therefore we adopted a rising time in the middle of the range (0.08-

0.25 s) of the actual rising time during walking at various speed. To ensure test 

accuracy, the control valve was adjusted to the target position of 0.2 s and kept at this 

level during the whole test. A digital valve to accurately control the force rising time 

is required so that stimulation with other rising times, such as 0.1 s, can be 

investigated.  

The limitation of the shoe platform is that the extension of the pressure plate for 

mechanical stimulation changed the ankle angle by about 1
o
 on average (Table 6), 

which represents about 3% of the range of motion of the ankle joint during normal 
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gait [21]. This ankle movement is unavoidable for the current platform structure, but 

can be reduced if cylinders with a shorter stroke are used.  

Further work is required to improve the shoe platform. Pressure sensors should 

be inserted between the pressure plates and the foot sole so as to record how much 

force is actually applied on the foot by the shoe platform. The force pattern should be 

refined by adopting a pressure control valve to adjust the pressure. Although most 

subjects reported that the stimulation profile (Figure 4(b)) was similar to the ground 

reaction forces that occur during overground walking, the shoe platform needs to 

control the retraction speed of the pressure plates for better simulation of walking-like 

loading. The pneumatic system was easy to control, but noise should be reduced by 

adopting noise silencers. Further tests should be carried out in neurological patients so 

as to investigate the potential for clinical application. 

Conclusions  
The study determined the stimulation parameters and demonstrated the technical 

feasibility of the dynamic shoe platform to simulate walking-like forces on the foot 

sole. With able-bodied users in a supine position, the shoe platform applied 

mechanical forces on the foot sole, which increased the EMG bursts in the lower leg 

muscles and produced loading sensation that is similar to the ground reaction forces 

during overground walking. The shoe platform was demonstrated to be a useful tool 

for stimulation of the foot sole, thus it has potential to be incorporated in a gait 

orthosis for ground reaction force simulation. 
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Figures 

Figure 1  - The shoe platform structure. 

(a) The foot plate (without pressure plates).  (b) The two pressure plates rise for 

mechanical stimulation 

Figure 2  - The pneumatic system for mechanical force stimulation. 

Figure 3  -  Positions of Zebris markers for ankle movement recording. 

Figure 4  - Force patterns. 

(a) a typical upward ground reaction force pattern during normal gait. The force 

shown here was the amplitude in Newtons normalized by body mass. This figure 

was adapted from [4]; (b) the target force pattern produced by the shoe platform. 

The force shown here was the amplitude in Newtons at one bar. 
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Figure 5  - Heel stimulation in S3. The dashed lines mark the single-pulse 
mechanical stimulation periods, with the amplitudes of the dashed lines as the 
reflex thresholds. A larger EMG burst occurs in the SOL at higher pressure. 

(a): 2 bar; (b): 3.5 bar.  

Figure 6  - Forefoot stimulation at 3.5 bar. The dashed lines mark the single-
pulse mechanical stimulation periods, with the amplitudes of the dashed lines 
as the reflex thresholds. Different subjects show different muscle activations. 

 (a) S3; (b): S4. 

Figure 7  -  The mean RMS EMG for all subjects induced by slow stimuli at 
various pressures.  

Figure 8  -  The response to a fast stimulus on the heel. The dashed lines mark 
the single-pulse mechanical stimulation periods, with the amplitudes of the 
dashed lines as the reflex thresholds. Fast stimuli increased the EMG 
amplitude. 

(a): 2 bar in S3. (b): 3.5 bar in S6. The dashed arrow shows reflex-induced ankle 

perturbation. 

Figure 9  -. The mean RMS EMG for all subjects induced by fast stimuli at 
various pressures. 

Figure 10  - Walking-like load simulation for the long gait cycle at 2 bar in S2. 
The EMG data are resampled at 100 Hz to make the EMG profiles easier to 
discern. 

Figure 11  - Walking-like load simulation for the short gait cycle at 3.5 bar in S2. 
The EMG data are resampled at 100 Hz to make the EMG profiles easier to 
discern. EMG bursts are observed in response to cyclic force stimulation. 

Figure 12  -  RMS EMG values (relative to resting state) during walking-like load 
simulation.  

“Long” and “short” refer to the long gait cycle of 5 s and the short gait cycle of 2 s. 
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Tables 

Table 1  -  Subject information.  

Table 2  -  Force amplitudes at various pneumatic pressures (manufacturer�s 
data1).  

Table 3  - RMS EMG values at rest and during MVC (ȝV) 

 Table 4  - Reflex occurrence (%) for foot sole stimulation. 

Table 5  -  Mean RMS EMG values during slow stimuli at 3.5 bar (%MVCRMS). 

Table 6  -  The ankle angle change (degrees) induced by extension of the 
pressure plates during mechanical stimulation. 

Table 7  -  Mean RMS EMG values during fast stimuli at 3.5 bar (%MVCRMS). 

P-values are for comparisons with means in Table 4. 

 

Table 1 

Subject Age (yrs) Gender 
Mass 
(kg) 

Height 
(m) 

Foot 
length 

(m) 

Forefoot 
width (m) 

Hindfoot 
width (m) 

S1 27 F 47 1.54 0.18 0.08 0.05 

S2 24 M 53 1.6 0.2 0.09 0.06 

S3 27 F 54 1.59 0.18 0.1 0.06 

S4 28 F 56 1.62 0.18 0.09 0.05 

S5 30 M 60 1.68 0.23 0.1 0.07 

S6 27 M 72 1.7 0.23 0.1 0.06 

S7 39 M 72 1.73 0.2 0.1 0.06 

S8 28 M 72.5 1.82 0.24 0.11 0.07 

S9 29 M 74 1.76 0.24 0.1 0.06 

S10 24 M 88 1.94 0.25 0.1 0.08 

 

 

 

 

                                                 
1
Available from: http://www.festo.com/cms/de_de/index.htm. Accessed on 20/06/2012. 
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Table 2 

Pressure (bar) Force on the heel (N) Force on the forefoot (N) 

2 160 100 

2.5 200 125 

3 240 150 

3.5 280 175 

 

Table 3 

Subject 
Rest  MVC 

TA SOL TA SOL 

S1 1.16 1.11 162.81 126.52 

S2 1.24 1.46 347.23 91.43 

S3 1.86 1.52 211.12 54.08 

S4 1.29 1.75 69.16 74.23 

S5 1.07 1.03 255.32 31.28 

S6 1.01 1.05 100.04 66.12 

S7 1.15 1.58 220.45 115.57 

S8 1.35 1.05 109.36 31.91 

S9 1.04 1.18 97.78 50.26 

S10 1.41 1.49 318.28 47.53 

Mean±SD 1.26±0.25 1.32±0.27 189.16±97.33 68.89±33.08 
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Table 4 

Subjects Muscles 

Slow stimuli Fast stimuli 

Heel Forefoot Heel Forefoot 

S1 

TA 0 0 100 100 

SOL 25 0 100 100 

S2 

TA 0 25 25 50 

SOL 75 75 100 100 

S3 

TA 0 0 100 50 

SOL 100 100 50 25 

S4 

TA 75 50 100 100 

SOL 50 25 100 100 

S5 

TA 0 0 50 75 

SOL 0 0 100 25 

S6 

TA 50 25 100 100 

SOL 0 0 25 0 

S7 

TA 0 0 100 100 

SOL 25 0 100 100 

S8 

TA 0 0 50 0 

SOL 0 0 100 0 

S9 

TA 0 0 0 0 

SOL 0 0 0 0 

S10 

TA 25 0 100 100 

SOL 0 0 75 50 
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Table 5 

Subject 
Heel stimulation Forefoot stimulation 

TA SOL TA SOL 

S1 0.91 1.14 0.89 1.05 

S2 0.46 3.12 0.89 2.30 

S3 1.19 3.42 1.20 4.02 

S4 3.21 2.77 2.48 2.21 

S5 1.70 2.37 1.07 2.06 

S6 4.41 2.02 3.26 2.10 

S7 2.89 2.41 2.98 1.33 

S8 1.51 2.73 1.53 2.38 

S9 1.38 1.19 1.31 1.22 

S10 3.50 1.85 0.52 1.01 

Mean±SD 2.12±1.30 2.30±0.76 1.61±0.95 1.97±0.90 
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Table 6 

Subject Heel stimulation Forefoot stimulation 

S1 -1.98 2.37 

S2 -1.41 0.51 

S3 -1.08 0.89 

S4 -1.15 1.42 

S5 -0.46 0.61 

S6 -2.45 0.89 

S7 -1.81 1.15 

S8 -1.44 1.14 

S9 -0.97 0.91 

S10 -0.51 0.82 

Mean±SD -1.33±0.63 1.07±0.53 
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Table 7 

Subject 
Heel stimulation Forefoot stimulation 

TA SOL TA SOL 

S1 1.17 2.11 8.82 6.58 

S2 0.49 6.68 0.46 2.63 

S3 3.52 13.34 1.32 8.02 

S4 7.86 6.75 3.31 2.65 

S5 6.52 3.23 2.88 4.61 

S6 13.78 2.16 17.00 1.96 

S7 11.67 4.83 1.58 1.95 

S8 1.73 4.87 1.65 4.39 

S9 1.47 1.27 1.45 1.29 

S10 11.19 8.36 0.67 1.88 

Mean±SD 5.94±4.97 5.36±3.64 3.91±5.19 3.60±2.25 

p-values 0.0054 0.0064 0.0808 0.0117 

 



 

(a)                                         (b)  

Figure 1 

 

Figure 2 

 

 

 

 

 

 

 

 

  

șa 

Lkm 

Lka 

Figure 3 



 Figure 4 

 

Figure 5 

  



 

Figure 6 

 

Figure 7 



 

 

Figure 8 

 

Figure 9 



 

Figure 10 

 

 

Figure 11 

  



 

Figure 12 

 


